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Soil respiration plays a crucial role in the worldwide carbon cycle and displays great sensitivity to shifts in soil 
temperature and moisture levels. Accurate prediction of soil respiration under different ratios of food waste 
compost (FWC) amended soil in various variables requires a clear understanding of the processes involved. 
This research introduces an appropriate model aimed at estimating soil respiration. This paper employed three 
distinct regression models: multiple linear (Model 1), first-order polynomial (Model 2), and second-order 
polynomial (Model 3). These models were employed to predict soil respiration by assessing its relationship with 
various factors. The study examined several factors, including FWC amended ratio (A), pH (B), electrical 
conductivity (EC) (C), organic matter (OM) (D), carbon-to-nitrogen ratio (C/N) (E), moisture content (F), porosity 
(G), and microbial count (H). These factors were considered potential influencers of the CO2 efflux response. It 
was observed that A,B,C and E exhibited p-values below 0.05 signifying their significance in the context of the 
study. Among the regression models, Model 3 demonstrated the lowest mean squared error of prediction 
(MSEP) and root mean square error (RMSE), 1.142 % and 0.153, respectively. The suitability of Model 3 for 
predicting soil respiration was attributed to its capacity to account for interaction effects among independent 
variables. Conversely, the results indicated that a non-linear model provide a better understanding of soil 
respiration under different ratios of FWC amended soil due to the smallest MSEP and RMSE, suggesting that 
the predictive model for CO2 efflux aligned more with second-order behaviour.  

1. Introduction 
Soil respiration approximately provides ~75 × 1015 g of carbon projected annually into the global carbon budget, 
making it the second-largest contributor to gross carbon dioxide (CO2) release into the atmosphere after oceans 
(Sharma et al., 2020). Slight adjustments in the rate of soil respiration can have notable effects on the yearly 
carbon absorption of terrestrial ecosystems because this process plays a significant role in transferring carbon 
between the Earth's biosphere and its atmosphere (Su et al., 2019). For instance, if the CO2 released from the 
soil surpasses the amount produced by plants, it can considerably impact atmospheric CO2 levels. Recent 
literature has been particularly focused on soil respiration due to its dual role in shaping net ecosystem carbon 
budgets and its relevance in the context of global changes (Chia et al., 2021). Accurate modeling of soil 
respiration is imperative for comprehending alterations in carbon storage within ecosystems and changes in 
carbon movement to the atmosphere caused by shifts in climate. While there's been recognition through 
workshops and synthesis efforts about the necessity of creating and validating models for soil respiration in 
conjunction with empirical findings (Ryan and Law, 2005), this approach has rarely been done. Presently, 
attempts have been made to experimentally separate soil respiration into its different components, yet the 
outcomes have displayed variations across different methodologies. The process of partitioning during 
experimental treatments becomes even more complicated due to distinct responses of these components to 
environmental shifts connected to climate change (Ryan and Law, 2005), and strong covariation among factors 
(Chen et al., 2011). Thus, achieving precise separation of soil respiration components remains an ongoing 
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challenge. Quantifying or modelling variations in soil respiration under different ratios of FWC amended soil is 
crucial for further investigating the processes behind changes in soil respiration caused by various factors. 
Because soil ecosystems are complicated, most research to date have relied on empirical models (Subke et al., 
2006), which are based on significant relationships between temperature (part of which includes soil moisture) 
and soil respiration (Phillips et al., 2016). However, the correlative model of CO2 efflux is required to increase 
quantitative knowledge of soil respiration by accounting for other parameters such as C/N ratio and pH value 
(Hibbard et al., 2005). 
This study initially involved measuring CO2 efflux and applying Z-score limit for pre-processing to eliminate 
outliers. Once optimal outcomes were achieved, a Type III Sum of Squares analysis was employed to identify 
three highly influential factors affecting CO2 efflux. Subsequently, both multiple linear and non-linear regression 
were utilized to determine the most suitable correlative model for CO2 efflux. Finally, a comparison of outcomes 
among different models was conducted, alongside an assessment of the error percentage between predicted 
and observed CO2 efflux values.  

2. Experimental Procedure 
2.1 Data collection and data pre-processing 

There are 8 input variables in this study including food waste compost (FWC) amended ratio (A), pH (B), 
electrical conductivity (EC) (C), organic matter (OM) (D), carbon-to-nitrogen ratio (C/N) (E), moisture content 
(F), porosity (G), and microbial count (H). A set of CO2 efflux data was measured from all FWC amended soil 
treatments by using IRGA analyzer. The data observations were collected based on previous research (Dolit et 
al., 2022) as shown in Table 1. Before establishing the relationship between input and output variables, the data 
pre-processing step was conducted to remove outliers. The default significance level is 5 % and the p-value is 
obtained with a Monte Carlo simulation approach. 

Table 1: Effect of different ratio of FWC amended soil on the physical properties of sandy soil (P<0.05) 

Soil: Compost 
ratio 

Porosity (%) Organic 
matter (%)  

pH C/N ratio Electrical 
conductivity (dS/m) 

100:0 91.97±0.11 6.62 ± 0.88 4.77±0.00 5.9 1.35 ± 1.06 
95:5 92.34±0.11 8.59 ± 4.60 6.86±0.05 7.2 5.604 ± 0.16 
85:15 94.26±0.11 15.67 ± 3.30 6.88±0.04 8.8 9.398 ± 0.006 
75:25 94.42±0.19 18.67 ± 2.83 6.98±0.03 11.9 12.988 ± 0.24 
65:35 95.00±0.20 21.67 ± 0.47 7.03±0.01 16.3 15.281 ± 0.02 

2.2 Multiple linear regression 

A multiple linear regression model referred to as Model 1 was introduced and presented as Eq(1). 

𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  � 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 
(1) 

where 𝑋𝑋𝑖𝑖  and 𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are the input and output variables and 𝛽𝛽𝛽𝛽 is the unknown predictor coefficients. To perform 
the regression analysis of Model 1, XLSTAT in Microsoft Excel was employed. From the Eq(1), the significance 
of each input variable was determined using a p-value threshold of less than 0.05. In statistical terms, a p-value 
below 0.05 is typically considered statistically significant, leading to the rejection of the null hypothesis (H0). The 
null hypothesis assumes no relationship between the variables under study, implying that one variable does not 
impact the other. Three of the most significant variables were further subjected to multiple linear and non-linear 
regression analyses to ascertain the optimal CO2 efflux. 

2.3 Multiple non-linear regression 

In this study, both first and second-order non-linear models were developed and compared. Second-order 
modeling is anticipated to provide more accurate predictions when the process exhibits non-linear behavior and 
contains a significant amount of nonlinearities, in contrast to the first-order linear model. First-order (Model 2) 
and second-order predictive modelling (Model 3) are shown in Eq(2) and Eq(3) respectively. 

𝑌𝑌 =  �𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖
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(3) 

where 𝑌𝑌 represents the output variable, 𝑋𝑋𝑋𝑋 corresponds to the input variables (first-order terms), while 𝑋𝑋𝑋𝑋𝑋𝑋2 and 
𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 denote the second order terms derived from the input variables, 𝛽𝛽𝛽𝛽𝛽𝛽, 𝛽𝛽𝛽𝛽j and 𝛽𝛽𝛽𝛽 are the unknown predictor 
coefficients. In a second-order analysis, the independent variables terms change while the dependent variable 
remains in first-order form. There is no y-intercept or zero-order terms in the model because all the data are 
mean-centered and standardized beforehand. These models were regressed and interpreted the goodness of 
fit statistic by using XLSTAT in Microsoft Excel. The sum square of error (SSE), mean square of error (MSE), 
and root mean square of error (RMSE) were assessed to evaluate the explanation of the response variable in 
both model predictions. 

2.4 Model validation 

Five test data set were used to evaluate the performance of the models. The prediction analysis relied on the 
coefficients (β) obtained from the regression models, which were then used to predict the CO2 efflux. The 
process of model validation was conducted using XLSTAT statistical software.  
To compare the results and determine the best model, the RMSE was calculated for each model. The RMSE 
serves as a measure of the average difference between the actual CO2 efflux values and the predicted values 
generated by the model. Lower RMSE values indicate better model performance, as they signify a smaller 
discrepancy between the predicted and observed values. Therefore, by comparing the RMSE values of different 
models, the one with the lowest RMSE can be considered the best-performing model in terms of accuracy. 

3. Results and Discussion 
3.1 Data collection and pre-processing 

638 CO2 efflux observations for all variables of FWC amended soil treatments were obtained. These data were 
pre-processed to obtain preliminary information such as the outliers. There were 597 observations left after 
outlier removal.  

3.2 Multiple linear regression of predictive model 

There are a total of three predictive models as shown in Eq(1), Eq(2) and Eq(3) for the input soil respiration 
variables. The input and output sets X and Y are then regressed by using multiple least square regression 
(MLSR) algorithm to obtain the value of β. Each model gives different β values which leads to different prediction 
results for each method. Firstly, a set of training data was regressed with a multiple linear model. 
Table 2 showed that there are 4 variables having p-values less than 0.05 including A,B,C and E which denoted 
that they are significant variables. C/N is the most influential variable. However, variables D,F,G and H are not 
bring significant information to explain the variability of the CO2 efflux and can be removed from the model. 
Based on the table, the determination R2 coefficient was 0.887, nearly close to 1, indicating that the prediction 
and actual values were nearly fit. Besides, the F value (8.787) and the p-value (<0.002, which is less than 0.05) 
of this model, both implied that this is a significant model. However, the sum square error (SSE) and mean 
square error (MSE) is not too close to 0. The mathematical equation for these model terms was presented in 
Eq(4). 

𝐶𝐶𝐶𝐶2 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 69.079 + 0.075𝐴𝐴 − 0.767𝐵𝐵 + 0.481𝐶𝐶 − 0.035𝐷𝐷 − 0.407𝐸𝐸 + 0.005𝐹𝐹 − 0.688𝐺𝐺
− 0.008𝐻𝐻 (4) 

According to the Table 2, three of the most significant factors were selected and regressed with multiple linear 
regression again to determine the optimal CO2 efflux. The chosen variables were FWC Amended Ratio (A), pH 
(B) and C/N ratio (C) while the CO2 efflux was the response. The linear regression model (Model 1) was 
estimated by using Eq(1) in the TXLSTAT for the CO2 efflux response. The goodness of fit statistics was used 
to evaluate the results.  
Based on Table 3, the determination R2 coefficient was 0.317, far away from unity, indicating that the prediction 
and actual values were not fit. Besides, the F value (2.167) and the p-value of the F statistic (0.138, which is 
more than 0.05) of this model, both implied that this is not a significant model. The linear equation for these 
model terms was presented in Eq(5).  
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Table 2: Type III Sum of Squares analysis (CO2 Efflux) 

Source  Sum of 
Square  

DF Mean 
Square 

F Value Pr > F p-values signification 
codes 

Model 3.407 8 0.426 8.787 0.002 ** 
A 0.364 1 0.364 7.509 0.023 ° 
B 0.320 1 0.320 6.606 0.030 * 
C 0.231 1 0.231 4.771 0.047 *** 
D 0.077 1 0.077 1.597 0.238 ° 
E 0.374 1 0.374 7.721 0.021 * 
F 0.010 1 0.010 0.212 0.656 ° 
G 0.137 1 0.137 2.820 0.127 * 
H 0.000 1 0.000 0.003 0.956 ° 
Pure Error 0.436 9 0.048    
Corrected Error 3.843 17     
R-squared 0.887      
Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ° < 1 

Table 3: Analysis of variance (CO2 Efflux) 

Source  Sum of 
Square  

DF Mean 
Square 

F Value Pr > F p-values signification 
codes 

Model 1.219 3 0.406 2.167 0.138 ° 
Pure Error 2.625 14 0.187    
Corrected Error 3.843 17     
R-squared 0.317      
Computed against model Y=Mean(Y) 

𝐶𝐶𝐶𝐶2 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −1.290 − 0.034𝐴𝐴 + 0.108𝐵𝐵 + 0.172𝐶𝐶 (5) 

As conclusion, all the eight input variables are important. However, the multiple linear model with three 
significant variables (Model 1) is not compatible and less accurate to predict the CO2 efflux. Therefore, a set of 
training data was proceeded to regress with a multiple non-linear model.   

3.3 Multiple non-linear regression of predictive model 

For the multiple non-linear models, the regressions were extended by using first-order predictive modelling 
(Model 2) and second-order predictive modelling (Model 3). The polynomial regression models were estimated 
using XLSTAT for the CO2 efflux. The goodness of fit statistics was used to evaluate the results. 
Table 4 shows the SSE, MSEP and RMSE towards all model equations. After obtaining the forecasted output, 
MSEP was calculated between actual output data with the predicted value to investigate the prediction model 
efficiency. The prediction graph was shown in Figure 1 for each model. The MSEP closest to zero is the most 
accurate. 

Table 4: Goodness of Fit Statistics 

Predictive Modelling  Model SSE MSEP RMSE 
Multiple Linear 1 2.625 0.187 0.433 
Polynomial First Order 2 0.597 0.054 0.233 
Polynomial Second Order 3 0.188 0.023 0.153 
 
The MSEP values of Model 3 is significantly smallest compared to others. CO2 efflux prediction fit second order 
well due to the interaction variable effect which the independent variables are multiplied with another 
independent variable. On the other hand, the response is well modelled by a non-linear function shows CO2 
efflux predictive modelling reflects second order behaviour more than a linear behaviour. Therefore, second 
order modelling is the most suitable for soil respiration prediction. The mathematical equation for Model 2 and 
Model 3 terms were presented in Eq(6) and Eq(7), respectively. 

𝐶𝐶𝐶𝐶2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  281.925 − 9.4006𝐴𝐴 + 39.983𝐵𝐵 + 48.179𝐶𝐶 + 1.357𝐴𝐴𝐴𝐴 − 0.005𝐴𝐴𝐴𝐴 − 6.853𝐵𝐵𝐵𝐵 (6) 
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𝐶𝐶𝐶𝐶2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  152.074 +  6.639𝐴𝐴 − 10.884𝐵𝐵 −  35.018𝐶𝐶 − 1.024𝐴𝐴𝐴𝐴 +  0.037𝐴𝐴𝐴𝐴 +  5.654𝐵𝐵𝐵𝐵 
− 0.0002𝐴𝐴2 − 1.977𝐵𝐵2  − 0.208𝐶𝐶2 (7) 

 

Figure 1: Comparison of predicted vs experimental CO2 efflux for (a) Model 1, (b) Model 2 and (c) Model 3  

3.4 Predictive modelling validation for soil respiration 

Assessing the model's quality requires quantifying and reporting the predictive accuracy of the generated 
models. The model is tested on an independent dataset that was not used to develop the model. A broadly used 
method to evaluate predictive validity for continuous outcomes is the MSE. The MSE is calculated as the 
average of the squared differences between the observed and predicted values. A smaller value for MSE 
indicates that the predicted values are closer to the observed data and therefore a better prediction. The results 
from the predicted and experimental CO2 efflux were shown in Table 5. 
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Table 5: Predicted vs experimental data of CO2 efflux 

Data Experimental CO2 
Efflux 

Predicted CO2 Efflux Mean Square Error (MSE) (%) 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

1 0.225 0.234 0.218 0.225 3.810 2.936 0.084 
2 0.130 0.519 0.107 0.130 298.386 18.174 0.333 
3 0.397 0.457 0.485 0.409 14.965 22.082 2.978 
4 1.406 0.661 1.319 1.416 53.006 6.161 0.756 
5 0.882 1.082 0.912 0.869 22.651 3.400 1.555 

                                                                          Average MSE (%) 78.566 10.550 1.142 
 
The MSE (%) value between the predicted and the actual value for Model 1, Model 2 and Model 3 were 78.566 
%, 10.55 % and 1.142 % respectively. The results obtained through XLSTAT proved that Model 3 produces the 
smallest MSE between experimental and predicted value of CO2 efflux and gives a clearer trend of data. On the 
other hand, Model 1 and Model 2 give a significant increment in MSE, it indicates that CO2 efflux prediction does 
not reflect a linear behavior. Therefore, second-order modelling (Model 3) should be chosen as the model fits a 
non-linear response and improve the framework for CO2 efflux prediction. The polynomial second order 
modelling is shown in Eq(8) for CO2 efflux. 

𝐶𝐶𝐶𝐶2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  152.074 +  6.639𝐴𝐴 − 10.884𝐵𝐵 −  35.018𝐶𝐶 − 1.024𝐴𝐴𝐴𝐴 +  0.037𝐴𝐴𝐴𝐴 
+  5.654𝐵𝐵𝐵𝐵 − 0.0002𝐴𝐴2 − 1.977𝐵𝐵2  − 0.208𝐶𝐶2 

 (8) 

4. Conclusions 
As conclusion, the study's findings underscored the significance of employing a second-order polynomial model 
in enhancing the precision of CO2 efflux prediction. This assertion was substantiated by the model's remarkably 
minimal average error percentage, measuring at 1.14 %. This study aids in the order of CO2 efflux predictive 
modelling and non-linearity of input to output variables.  
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