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Abstract—The unstable properties and the advantages of the mRNA vaccine have encouraged many experts worldwide in tackling the
degradation problem. Machine learning models have been highly implemented in bioinformatics and the healthcare fieldstone insights
from biological data. Thus, machine learning plays an important role in predicting the degradation rate of mRNA vaccine candidates.
Stanford University has held an OpenVaccine Challenge competition on Kaggle to gather top solutions in solving the mentioned
problems, and a multi-column root means square error (MCRMSE) has been used as a main performance metric. The Nucleic
Transformer has been proposed by different researchers as a deep learning solution that is able to utilize a self-attention mechanism
and Convolutional Neural Network (CNN). Hence, this paper would like to enhance the existing Nucleic Transformer performance by
utilizing the AdaBelief or RangerAdaBelief optimizer with a proposed decoder that consists of a normalization layer between two linear
layers. Based on the experimental result, the performance of the enhanced Nucleic Transformer outperforms the existing solution. In
this study, the AdaBelief optimizer performs better than the RangerAdaBelief optimizer, even though it possesses Ranger’s advantages.
The advantages of the proposed decoder can only be shown when there is limited data. When the data is sufficient, the performance
might be similar but still better than the linear decoder if and only if the AdaBelief optimizer is used. As a result, the combination of
the AdaBelief optimizer with the proposed decoder performs the best with 2.79% and 1.38% performance boost in public and private
MCRMSE, respectively.
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I.  INTRODUCTION the healthcare fieldstone insights from biological data. Deep
learning solutions such as Artificial Neural Networks (ANN)
have been implemented as promising solutions in various
fields of study. ANN as Convolutional Neural Network
(CNN) [5]-[7] has been used to analyze images such as CT
scans of a patient to analyze, train and predict the possible
illnesses that have yet to be diagnosed. Long Short-Term
Memory (LSTM) has also been utilized in analyzing and
studying the nature of the nucleotide sequences such as
binding sites or searching for motifs.

Transformer [8] is one of the state-of-the-art-art deep
learning architectures that involve stacks of encoders to

non-infectious molecule and undergoes degradation by analyze and decipher the inputs, mostly a sentence composed

normal cellular processes. Besides, mRNA can be modified by natural languages, and a pile of decoders to transform the
to be more stable and highly translatable [1]. mRNA can be encoded inputs into decoded outputs. Several models, such as
recurrent neural networks (RNN) [9] and autoencoders [4],

have been used in Natural Language Processing (NLP).
However, the transformer is more advantageous because it
can process multiple inputs in parallel, depending on the

Vaccines have been a disease prevention trend by injecting
inactivated pathogens [1] or genetic material such as DNA,
mRNA, or protein. The downsides of the inactivated
pathogens vaccine are the efficiency of development and
deployment, and inapplicable to non-infectious diseases such
as cancerous diseases where the gene mutation occurs and the
cell carrying mutated gene starts to divide and grow out of
control, rather than getting infected by bacteria or virus [1].
The nucleic acid therapeutics approach tackles these problems
because they are safe and efficient their production is scalable
[1]. For example, the mRNA vaccine is safe because it is a

produced cheaper and more scalable through its high yield of
in vitro transcription reactions [1]-[4]. Machine learning
models have been highly implemented in bioinformatics and
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number of encoders and decoders in the predefined
architecture. Hence, every encoder has its feature and
sensations when reconstructing a sentence in another
language. Unfortunately, limited studies show the
implementation of transformers in biological systems.

Stanford University has held a competition named
OpenVaccine: COVID-19 mRNA Vaccine Degradation
Prediction, aiming to gather worldwide solutions. Nucleic
Transformer [10]-[12] is one of the promising solutions in the
competition. There are also some solutions submitted in the
competition, such as XGBoost [13],
HistGradientBoostingRegressor [14], Regularized LSTM
[15]-[16] and GNN + Attention + CNN ensemble [17]. Only
Nucleic Transformer and the ensemble solution provide
remarkable prediction loss among these solutions. This
indicates that predicting degradation is a complex problem,
requiring an ensemble or stacking of models.

There are several challenges to be emphasized when
working with machine learning solutions. The possible
difficulties are lacking data, overfitting, imbalanced data, and
model interpretability [17]. Transfer learning [18]-[21] and
data augmentation [22]-[24] can overcome data-hungry
problems. Data augmentation is also able to minimize the
overfitting of the model. Weight decay, batch normalization
[25]-[26], and dropout can be utilized in the model.
Penalization of over-confident output from the model is
considered one of the solutions for overfitting. To balance the
dataset, we can up-sampling smaller or down-sample larger
categories for imbalanced data. Deep learning approaches
seem like a black-box operation. It is interpretable, meaning
we can know what happens when the model is training [27]-

[29]. For instance, the backpropagation-based approach [30]
and the perturbation-based approach [31] can interpret the
model. Therefore, this paper is motivated to propose an
improved optimizer to boost the performance of mRNA
degradation prediction. Next, Section 2 discusses the method
to be implemented, Section 3 presents the results and
discussion, and Section 4 ends with a conclusion.

II.  MATERIAL AND METHOD

The enhanced Nucleic Transformer inherits from the

existing Nucleic Transformer, with a proposed decoder and
the utilization of AdaBelief/RangerAdaBelief optimizer
instead of Ranger optimizer. The proposed decoder consists
of two linear layers with a sigmoid activation function in
between, acting as a normalization layer before the final
output. Fig. 1 shows the design of the proposed decoder.
The degradation rate predictions require several steps, from
preparing the data for the transformer model to generating
prediction results. First, the exploratory data analysis (EDA)
is done once. The EDA step is to study the training dataset's
characteristics and explore the effect of data filtering. The
filtered data is then reshaped into the specific dimension to be
fed into the transformer model later. Afterward, the training
and validation split is done through a stratified 10-fold cross-
validation technique. The training and testing dataset is read
and reshaped for the pre-training step, similar to the training
step. However, there are different sequence lengths, which are
107 and 130 requiring splitting them into long and short
sequences [32].
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Fig. 1 Flowchart of Experimental Design
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In the enhanced nucleic transformer model, five nucleic
transformer encoder layers and a proposed decoder layer are
used to process the data. In the pre-training step, the long
sequences come first to be processed, and then to short lines.
The long and short sequences are randomly mutated or
masked in random positions. The objective of the pre-training
step is to allow the model to predict the true line, structure,
and loop type of every masked or mutated sample. The
weights and state of the pre-training model are then saved and
loaded during the training step. The pre-trained model tells
the general rules of mRNA secondary structure. Then, the
model’s latest state is loaded during the training step. This
time the sequences have the same length and can be processed
in the transformer model. Validation will be done right after
every training epoch. Again, the trained model will be saved
and loaded during testing. Fig. 1 shows the steps of operating
the nucleic transformer from the beginning of data analysis

and preparation until the mRNA degradation rates
predictions.
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A. Exploratory Data Analysis (EDA)

Exploratory data analysis (EDA) is a process often used by
data scientists to analyze and explore datasets to identify the
characteristics of the data. Usually, EDA helps data scientists
discover data patterns, noises or outliers, and anomalies
before making any assumptions. EDA ensures that the results
are valid and applicable to our research objectives. The typical
analysis done by data scientists is standard deviations,
confidence intervals, data point distributions, etc. In this
section, the dataset from OpenVaccine on Kaggle is explored
and analyzed to study the features of mRNA vaccine
candidates and the trends of their degradation properties.
There are five target labels, the five degradation properties
provided in the dataset. The relationships between the
degradation properties and the predicted loop type of mRNA
secondary structure are explored.
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Fig. 2 Description of training (left) and testing (right) datasets through pandas
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Fig. 3 Information of training (left) and testing (right) dataset

Fig. 2 shows 2400 and 3634 sequence samples in training
and testing datasets. In the training dataset, all the sequences
have a length of 107 nucleotides (nt), while there are long
sequences in the testing dataset with a size of 130 nt. In the
training dataset, as shown in Fig. 3, there are two features —
signal_to _noise and SN filter, both are the information
regarding the signal-to-noise ratio of each sequence. Bin and
Kai [16] used this feature to filter the lines used in the training
and validation process. The result of the data filtering is
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shown in Fig. 4 below, where 2257 out of 2400 training
samples had signal to noise values greater than 0.25.
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Fig. 4 Count of the filtered training dataset



Dusry Bastean of Full traaning datasat on SNl

{ I5ak

o Ehet

Fig. 5 Distribution of full training dataset on SN_filter

Distnbudion of kitered Sraining datasst om SK_Flbe

I FREH
e |
190
. 0 4
E
-
o
&
) o
o |
- .. ]
) ]

M i

Fig. 6 Distribution of filtered dataset on SN_filter

From Fig. 5 and Fig. 6, the number of samples with a
SN _filter value of 1 remains unchanged, while that with a
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SN _filter value of 0 reduced from 811 to 668. The training
and testing datasets are diverse due to the results obtained
from the laboratory through experiments, and the testing
dataset does not include those five degradation properties and
is required to be predicted. In the training dataset, all five
degradation properties and their respective experimental error
values for each position exist. The dataset has provided data
grouping through the feature SN_filter, and the data frame is
split by following the part mentioned. Afterward, the values
of each type of predicted loop are grouped in a particular list.
There are seven types of loops found in the dataset, which are
bulge (B), dangling end (E), hairpin (H), internal (I),
multiloop (M), stem (S), and external (X) loop. This
subchapter aims to observe the distribution of values in all
five degradation properties in every loop type. This can help
provide information on how each kind of loop contributes to
the stability of mRNA secondary structure. There are five
degradation  properties: reactivity, ~ deg Mg pHI0,
deg pH10, deg Mg 50C, and deg_50C.

From Fig. 7 and Fig. 8, several observations can be made.
The standard deviations of both full and filtered training
datasets remained unchanged based on Fig. 5 and Fig. 6. In
the full training dataset when SN _filter is 0, the value spans
between 0 and 3. The results tell that the sequences classified
as SN filter of value 0 are statistically more diverged
compared to SN_filter of value 1. However, in the filtered
training dataset, when SN _filter is 0, the value span between
0 and 1 is similar to that when SN_filter is 1. Comparing their
standard deviations to that when SN filter is 1, the value of
stem-loop (S) increased across all five degradation properties.
According to the criteria of signal-to-noise filtering, the
minimum value across all five properties must be greater than
-0.5, and the average signal-to-noise must be greater than 1.0.
The deg_[condition] weights depict the likelihood of decay at
the base after incubating with the particular situation. The
higher the value, the higher the possibility of pruning that
base.
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Fig. 7 Standard deviations of full training dataset on each loop type across five degradation properties
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Fig. 8 Standard deviations of filtered training dataset on each loop type across five degradation properties

The reason for standard deviation divergence when
SN _filter = 0 may be due to the predicted loop type of those
sequences. Since all the dataset entries are obtained from the
prediction (mRNA secondary structure) and experiments
from the laboratory (decay rates across all five properties), the
results must be mixed with noises. For decay rates, the errors
of all five properties are provided with the length of
seq_scored. For the predicted loop type, He et al. [10] have
provided another six biophysical models with a temperature
of 37°C and 50°C since the degradation properties to be
predicted consist of different temperatures. However, these
biophysical models cannot predict secondary structure in
different pH values, and there are no degradation rates across
all five properties for these extra models. In short, relying only

/

on the form provided by the dataset is insufficient in
predicting the degradation rates across all five conditions. In
short, stem-loop (S) is the most stable loop across all five
properties, and external loop (E) is the least durable loop
when SN filter is 1. The dataset filtering process improves
the data quality, as shown from Fig. 7 to Fig. 8 when SN _filter
is 0.

B. Data Filtering and Splitting

The training and testing dataset can be acquired in Chapter
3.3. This step is important during the training step as this
procedure will affect the performance of the nucleic
transformer. The filtering criteria will be based on the existing
method by He et al. [10].
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Fig. 9 Flowchart of data filtering and splitting
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The original training dataset is read and filtered following
the criteria in Fig. 9 above. After the filtering process, the
filtered dataset has 2257 out of 2400 samples. Then, the
stratified 10-fold splitting process is done, and two outcomes
are generated — the indices of split training (2031) and
validation (226) dataset. The validation dataset is again
filtered by including those with signal to noise of value
greater than 1. The finalized validation dataset indices are
then generated. The amount may vary from 208 to 214
samples.

C. Construction of Nucleic Transformer
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Fig. 10 Overview of enhanced Nucleic Transformer framework

From Fig. 10, the enhanced nucleic transformer
construction can be divided into four main phases: data

preparation, pre-training of the enhanced model, training and
validating the model, and the mRNA degradation rates
prediction.

1) Data Preparation: First, the filtered and split datasets
are loaded into object instances, as illustrated in Fig. 11. In
the figure, pre-train data requires sequences and bppm data
only because it learns only the rules of mRNA secondary
structure by predicting the true lines of the inputs. Regarding
training and validation steps, the labels and error weights
provided by the original dataset are loaded into other object
instances. These object instances with full sequences data, or
train and validation split data, are split into batches for pre-
training and training processes. Index 0 to 11 indicates six
biophysical models with two temperature results for each
model. The data loader provided by PyTorch is used to shuffle
and split the dataset into batches. The batches except the last
set will have the same size, while the remaining will
automatically become the last batch instead of discarding
them. Then, all packages will be fitted and shuffled into the
transformer model in every epoch.

2) Pre-training Model: The model structure is identical
to the existing Nucleic Transformer workflow in the pre-
trained model as illustrated in Fig. 12. To pre-train the model,
the model takes mutated or masked sequences and the
respective bppm data. The objective here is to allow the model
to predict the true lines of the mutated or masked sequences
with the help of bpm data. The embedding layer embeds the
input of the series into a dimension of the model dmodel or
ninp = 256. The embedded input will have 256 * 3 because
the input of the sequence contains nucleotides sequence,
structure, and loop type, and each has a dimension of 256. The
projection is a PyTorch Linear layer to transform the
embedded sequence inputs with dimension 256 * 3 into a
dimension of 256.
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Fig. 13 Example output of pre-training process

The embedded and projected sequence inputs and bppm
data are then forwarded ithe nto Nucleic Transformer encoder
stack. ConvTransformerEncoderLayer is a self-customized
layer with convolutions and self-attention mechanisms, where
the value k represents the kernel of the convolutions to
perform kmer-to-kmer interaction mappings. Each layer will
generate processed encoded sequences, attention weights, and

594

processed bppm, and these products will be the inputs of the
next encoder layer until the last layer.

Afterward, the processed encoded sequences will be
decoded in the decoder. The decoder in pre-training settings
has three different linear layer configurations used to
determine the predicted sequence, structure, and loop type.
The loss will be calculated between the predicted sequences,



structure, loop type, and the true sequences data. The loss
function wused is CrossEntropyLoss. AdaBelief or
RangerAdaBelief optimizer will be used. An epoch ends
when all the batches of sequence data are processed. In the
next epoch, all sequence data is shuffled again and split into
batches to ensure the model does not memorize the input
sequences. After all, epochs are done, the model will be saved
and loaded in the training step. Fig. 13 shows the example
output of the pre-training process when the epoch is 5.
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Besides, the proposed decoder has a normalization layer in
between 2 linear layers. The sigmoid layer is used as the
normalization layer to transform the output from the first
linear layer to values between 0 and 1 inclusive. Compared to
the linear decoder used in the existing nucleic transformer, the
proposed decoder with normalization can prevent a certain
degree of overfitting [2] when training the model. Fig. 14
shows the architecture of the proposed decoder. ninp is the
input size, and nclass is the number of predicted classes.

3) Training and Validation of Model: In the training step,
the workflow is similar to the pre-train structure until the
Nucleic Transformer encoder. The decoder is modified to
implement a sigmoid layer between linear layers. The decoder
generates predicted degradation rates and calculates the loss
from the self-customized loss function weighted MCRMSE
with true degradation rates and error_weights, all provided by
the original training dataset. error weights assist the weight
updating process. The calculated loss is then backpropagated
to update model weights. AdaBelief or RangerAdaBelief
optimizer will be used.
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During the validation step, the flow is similar to the training
step except for the calculation of loss and the exception of the
model weights updating process. This time error_weights is
unnecessary because the model weights no longer need to be
updated. The validation process is triggered when all the
training dataset batches are processed in every epoch;

process detailed workflow

however, the validation process will be triggered after several
epochs have been done. The example output of the training
and validation process is shown in Fig. 17 below. The details
of the proposed decoder have been mentioned in the previous
chapter.

Fig. 17 Example output of training and validation process
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4) Prediction Testing: The last process, mMRNA
degradation rates prediction on the test dataset, is done in the
same manner as the validation process. The predicted result is
then saved in .csv file for submission on OpenVaccine

Challenge on Kaggle. The submission will return the
predicted results' public and private MCRMSE scores. The
score will be compared with the scores obtained from the
existing nucleic transformer model. Fig. 19 illustrates the full
proposed Nucleic Transformer framework.
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Fig. 18 Example output of prediction process
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III.

The measures employed for performance analysis are
public and private MCRMSE. The difference between these
two metrics is that private MCRMSE is measured using 91%
of test data, while the remaining 9% is for public MCRMSE.

RESULTS AND DISCUSSION

A. Performance Metric

Fig. 20 displays the loss per epoch of every combination
of optimizers and decoders. Based on the figure, the existing

solution using Ranger optimizer and linear decoder (blue line)
has a relatively higher loss than AdaBelief/RangerAdaBelief
optimizers. Comparing RangerAdaBelief and AdaBelief
optimizer, AdaBelief optimizer shows significant and better
improvement on both decoders. Initially, the AdaBelief and
linear optimizer combination performs the best among others.
However, at the end of pre-training, the AdaBelief and
proposed decoder combination slightly outperforms the
former combination.
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Fig. 20 Pretrain Loss per Epoch
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B. Evaluation of Enhanced Nucleic Transformer

In Table 1, AdaBelief optimizers for both proposed and
linear decoders were presented. AdaBelief and the proposed
decoder have the best performance among the experiments on
public and private MCRMSE. Comparing the proposed
decoder to a linear decoder while using AdaBelief optimizer,
the proposed decoder performs slightly better than the linear
decoder in private MCRMSE.

TABLEI
PERFORMANCE COMPARISON OF EXPERIMENTS
Optimizer Decoder Public Private
Type MCRMSE MCRMSE
AdaBelief Proposed 0.25034 0.36454
Linear 0.25152 0.36457
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From the perspective of the pre-training performance, the
AdaBelief optimizer and linear decoder outperform the rest of
the combination at the beginning of the pretrain process. This
further proves that AdaBelief optimizer is capable of fast
convergence in the early model training process. However,
when it comes to an end, the AdaBelief optimizer and the
proposed decoder overtake the former combination,
indicating that AdaBelief optimizer possesses strong
generalization capabilities. At the same time, the model is
more complicated when implementing the proposed decoder,
which increases the model parameters. By normalizing the
values before the final output, the performance of the Nucleic
Transformer can be slightly improved. However,
implementing the proposed decoder shows its advantages
only in public MCRMSE, which includes only 9% of the test
dataset. In other words, the advantages of the proposed



decoder can only be shown when there is limited data. When
the data is sufficient, the performance might be similar but
still better than the linear decoder if and only if AdaBelief
optimizer is used.

Iv.

This paper addresses the enhancement that can be done on
the existing Nucleic Transformer. The enhanced Nucleic
Transformer consists of the AdaBelief optimizer and the
proposed decoder that applies a normalization layer between
two linear layers. The enhanced version of Nucleic
Transformer eventually provides a 2.79% and 1.38%
performance boost in public and private  MCRMSE,
respectively.

CONCLUSION
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