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Recently, fluid with fractional-order derivative model attracted many researchers to 
further study compared with the classical fluid mode since it is more precise and realistic. 
To imitate the applications of blood flow in narrow arteries, researchers focused on the 
fractional Casson fluid flow in the cylinder. However, most researchers solved the 
problems numerically and without considering the slip effect at the boundary. Thus, 
obtaining solutions analytically to the unsteady fractional Casson fluid flow in the slip 
cylinder with free convection is the goal of this study. The Caputo-Fabrizio fractional 
derivative approach is utilized to model this problem. By joining the approach of the 
Laplace transform and finite Hankel transform, the fractional governing equations are 
solved, and analytical solutions to the velocity and temperature profiles are gained. The 
fluid velocity rises as the slip velocity and Grashof number increase and it declines with 
the increment of the Casson parameter and Prandtl number. Increasing the fractional 
parameter will result in an increase in fluid velocity and temperature for a large time 
interval. The slip velocity effect influenced fluid flow, especially at the cylinder’s wall. 
These findings are beneficial to explore the more fractional-order derivative model and 
for studying the problems in biomedical engineering. 
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1. Introduction 
 

Free convection flow is one of the well-known heat transfer processes which is involved with fluid 
masses, buoyancy force, and gravity force. It happened naturally when there is a temperature 
difference in a fluid. The hot fluid is less dense than cold fluid which causes hot fluid particles to raise 
due to the buoyancy force while cold fluid particles go down due to the gravity force. Researchers 
are attracted to study free convection flow due to its natural and wide applications in engineering 
such as cooling molten metals, steam pipe and solar ponds, and applications in the medical such as 
the flow of blood in the small blood vessels with the human temperature [1]. Motivated by it, 
analytical research on the free convection flow of Newtonian fluid passed through an oscillating 
cylinder was done by Khan et al., [2]. Javaid et al., [3] solved analytically the similar problem as Ref. 
[2] by utilizing a different kind of fluid, second-grade fluid, and obtained a similar result. Later, Shah 
et al., [4] extended the problem by using Maxwell fluid in a fixed cylinder with additional pressure 
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gradient and magnetohydrodynamics (MHD) effects. Besides, analytical analysis was done by 
Abdelhameed [5] to investigate the consequences of free convection flow for Newtonian fluid 
flowing through an accelerating plate with the MHD effect. They all used the Laplace transform and 
the Hankel transform to solve problems analytically. They also concluded that a rise in the Grashof 
number induces a rise in the fluid velocity. 

Moreover, fluid consists of liquid or gas are one of the heat carriers which transfer the heat 
energy from high temperature to low temperature. There are two categories of fluid which are 
Newtonian fluid and non-Newtonian fluid which is depending on the relationship between strain and 
stress [6]. The non-Newtonian fluid is against Newton's Law of Viscosity. The common example of a 
non-Newtonian fluid because of its distinctive behaviour is the Casson fluid. It is a type of yield stress 
and shear-thinning fluid. When yield stress exceeds applied shear stress, it may act like an elastic 
solid or no flow may occur while fluid will flow if the condition is inverse. Human blood, juice, honey, 
jelly, and tomato sauce are a few examples of Casson fluid [7–10]. Inspired by the applications in 
various fields such as food processing and biotechnology, Mohamad et al., [11] investigated 
analytically Casson fluid flow past through a fixed channel with a free convection effect. Azmi et al., 
[12] extended the problem with an additional MHD effect. Then, the analytical solution of the Casson 
fluid model with free convection flow passed through an exponentially accelerated plate with the 
effects of MHD and porosity was developed by Ramalingeswara Rao et al., [13]. The Laplace 
transform method was used to solve each of them analytically. Besides, Ali et al., [14] explored the 
impact of Casson fluid free convection flow with MHD and pressure gradient effects in an oscillating 
cylinder. By utilizing the Laplace transform and finite Hankel transform approaches, they were able 
to obtain analytical solutions. Later, Kumar and Rizvi [15] examined numerically the behavior of free 
convection flow for the Casson fluid model with the presence of MHD and chemical reaction effects 
outside the cylinder. They used the Crank-Nicolson implicit finite difference approach to solve 
numerically. However, these studies lack an introduction fractional derivative model into the 
governing equations. 

Currently, the fractional-derivative fluid model attracted many researchers to expand the studies 
about it due to the accuracy of the model and the result is more realistic compared to the classical 
model [16]. L'Hopital and Leibniz initially presented the fractional-order derivative approach concept 
to discuss the derivative's n-notation in terms of complex, fractional, or irrational numbers. 
Afterward, several definitions have been established by many researchers to enlighten the usefulness 
of the fractional derivative model in the applications of fluid mechanics like cooling systems, and 
biotechnology like cancer cell treatment. Examples of the popular fractional-order derivative are 
Riemann, Caputo, Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu [17]. Encouraged by its 
benefits in fluid mechanics applications, Ramzan et al., [18] investigated analytically the influence of 
the Caputo fractional derivative fluid model on the fluid velocity flow on the inclined plate. They 
solved by using Laplace transform method. They obtained that increases of fractional parameter led 
to increase of fluid velocity. Then, Ali et al., [19] obtained analytically the significant difference 
between the classical model and Caputo fractional model of Casson fluid velocity profiles with MHD 
effect in the fixed cylinder. Jamil et al., [20,21] investigated an analytically similar problem as [19] in 
the inclined fixed cylinder and stenosed cylinder. They applied Caputo-Fabrizio fractional derivative 
model to governing equations. Later, Ali et al., [22] extended the problem by considering the effect 
of free convection flow in the different boundary conditions such as fixed cylinder, moving cylinder 
[23], and accelerated cylinder [24]. They compute temperature and velocity profiles analytically by 
utilizing the Laplace transform and finite Hankel transform techniques. They noticed that as time 
increases, the fractional model is more realistic than the classical model. However, none of them 
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investigated the fluid behaviour of the Casson model with the presence of the slip velocity effect in 
a cylinder. 

Velocity gradient occurred between two different mediums known as the slip velocity effect at 
the cylinder’s boundary. It means finite velocity difference between viscous fluid particle movements 
and boundary-stretching movement [25]. The importance of the slip velocity effect has been 
highlighted by some researchers such as Nubar [26]. Slip velocity does exist in practical applications 
like polymer’s melting, artificial heart valves and blood flow in blood arteries [27,28]. Padma et al., 
[29,30] simulate blood flow in stenosed arteries by using the Jeffrey fluid model and taking into 
account the slip and no-slip effects. They observed that fluid velocity with slip is higher than the no-
slip effect. The flow of Casson fluid in the exponentially stretched cylinder with the slip effect was 
further investigated numerically by Jalil and Iqbal [31]. Additionally, by employing the Casson fluid 
model, Azmi et al., [32,33] identified analytically the impact of the slip effect at the cylinder's border. 
By utilizing both Laplace transform and finite Hankel transform methods, they were able to obtain 
velocity profiles. None of them consider the fractional-order derivatives model in their governing 
equations. 

According to the authors’ best knowledge, no researchers had previously addressed analytically 
the free convection flow of the Casson fluid through a slip boundary of the cylinder by adopting a 
fractional-order derivative approach. Thus, motivated by it and past studies, the study aims to obtain 
the analytical solution and evaluate the fractional fluid behaviour of the unsteady free convection 
flow in the slip velocity cylinder. This study will focus on Casson fluid model since it imitates human 
blood flow in the small arteries with the slip effect and natural heat transfer process. The momentum 
and energy governing equations are expressed in the Caputo-Fabrizio fractional derivative model. It 
consists of a non-singular kernel which is easier to solve the problem compared with the power-law 
kernel such as Caputo fractional derivative model and therefore it can overcome the limitations in 
modeling physical problems. Later, a combined Laplace transform together with the finite Hankel 
transform approach is used to get an analytical solution for velocity and temperature profiles. Then, 
the obtained analytical solution is plotted and analyzed graphically with the related parameters by 
using Maple software. 
 
2. Problem Formulation 

 
Since it replicates the human blood flows in the arteries, the investigation of an incompressible 

Casson fluid flow in a horizontal cylinder with radius r0, has been taken into consideration. The z-axis 
is considered as the direction in which the Casson fluid flows along the cylinder's horizontal axis, 
while the r-axis is assumed to be normal to it. Casson fluid and the cylinder are at rest with the 
ambient temperature, Tꝏ, at time t*=0. Later, when t*>0, the fluid begins to flow because of a slip 
velocity. Simultaneously, the temperature of the cylinder is raised from ambient temperature to the 
wall temperature, Tw and later it remains constant. The physical diagram for the Casson fluid flow 
issue is shown in Figure 1. 
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Fig. 1. The physical geometry of the fluid flow 

 
Only r and t constitute the temperature and velocity functions. Additionally, all fluid parameters 

are considered to be constant, excluding the density of the buoyancy term, which is computed by 
using Boussinesq's approximation. Given these presumptions, the related partial differential 
equation for momentum and energy is used to define the problem of unsteady Casson fluid flow in 
the cylinder as follows [34]  
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together with the related initial and boundary conditions [19,22] 
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where ρ is the fluid’s density, u* is the velocity component along the z-axis, µ is the fluid’s dynamic 
viscosity, β is the non-Newtonian Casson parameter, g is the gravitational acceleration, βT is the 
thermal expansion coefficient, T* is the fluid’s temperature, cp is the fluids specific heat capacity at 
constant temperature and k is thermal conductivity. The dimensionless variables [19,22] are 
presented as  
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By utilizing dimensionless variables Eq. (4) the momentum governing Eq. (1) and the energy 

governing Eq. (2) are transformed into the dimensionless form together with the initial and boundary 
conditions in Eq. (3), which obtain as  
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together with the appropriate initial and boundary conditions 
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dimensionless momentum governing Eq. (5) and dimensionless energy governing Eq. (6) are 

transformed into Caputo-Fabrizio fractional derivative model which yields 
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fractional derivative [35]. 

 

3. Problem Solution 
 

Analytical solutions for the velocity and temperature profiles are formed by joining the Laplace 
transform and finite Hankel transform. The method for resolving the initial-boundary value and 
transient problems is the Laplace transform while the finite Hankel transform is useful when dealing 
with the cylindrical domain. 
 

3.1 Calculation of Temperature 
 

Firstly, Eq. (9), along with the corresponding initial and boundary conditions in Eq. (7), are 
transformed by using the Laplace transform method, which yields 
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where 
0 1 1 ,a   and 

1 0 ,a a  are the fractional constant parameters, ( , )r s  is the Laplace transform 

of the function ( , )r t and s is the transformation variable. Secondly, finite Hankel transform of zero-

order is applied to the Eq. (10) and by using condition in Eq. (11), give 
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first kind and zero-order, J1 is the Bessel function of the first kind and first order. Then, Eq. (12) is 
simplified and obtained as  
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where  2 2

3 1 0[ ] Prn na n a r a r   is the constant parameter. Thirdly, the inverse Laplace transform is 

applied to the Eq. (13) gaining as 
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Lastly, to solve the  equation analytically for temperature profile in Eq. (14), the inverse finite Hankel 
transform is being used and attained as 
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3.2 Calculation of Velocity 
 

The Laplace transform is employed in Eq. (8) together with the related initial and boundary 
conditions in Eq. (7), which yields 
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where ( , )u r s  is the Laplace transform of the function ( , )u r t . Next, Laplace’s partial differential Eq. 

(16) together with the boundary conditions in Eq. (17) is used in the method of finite Hankel 
transform of zero-order to transform into an ordinary differential equation (ODE), giving 
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transform is applied to Eq. (20), which can be obtained as 
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The analytical solution for velocity profiles is then solved by applying the inverse finite Hankel 

transform to the Eq. (21) which is written as 
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4. Result and Discussion 
 

The blood flow characteristics with the fractional derivative model had been analyzed and plotted 
graphically with the involved important parameters including Casson parameter β, Grashof number 
Gr, Prandtl number Pr, slip velocity parameter us, fractional parameter α, and time parameter t. The 
limiting case of the solved analytical solution (21) is compared with the earlier result by Khan et al., 
[2] to verify the accuracy of the solution. This comparison is shown in Figure 2. Based on the 
observation, both graphs are aligned which indicates both graphs are in mutual agreement. Hence, 
the analytical result that was obtained is accepted.  

 

Fig. 2. Comparison of velocity profile u(r,t) from 
Eq. (21) when β →ꝏ, us=1.0, α=0.999 with Eq. (21) 
when ω= 0 by Khan et al., [1]. 

 
Figure 3 to Figure 9 illustrate the visual discussion on the impacts of related parameters like slip 

velocity parameter us, Casson parameter β, fractional parameter α, Grashof number Gr, Prandtl 
number Pr and time parameter t for the fluid velocity u(r,t) and fluid temperature θ(r,t) versus radial 
coordinate r. The next parametric values are specified for numerical computation based on the 
physical values provided in Refs. [2,23,29,35]: us=0.1 for slip condition, us=0 for no-slip condition, 
Pr=21.0 Prandtl number for blood, t=0.4 for initial state condition, t=3.0 for steady state condition, 
β=0.8, Gr=1.0, α=0.5, and the estimated ranges of significant parameters values are as follows: 
β=0.4,0.8,1.2, Pr=5.0,7.2,21. Besides, in order to obtain broad spectrum plotted graph of the findings, 
some of the range parameters are approximated as: Gr=0.5,1.0,1.5, α=0.3,0.5,0.7 and t=0.1,1.0. 

The Casson parameter β impacts the Casson fluid velocity behaviour with the existence of the slip 
and no-slip boundary display in Figure 3. Generally, the behaviour of Casson fluid which imitates 
human blood flow in the small arteries can be seen as a Casson parameter close to zero [35]. 
According to the graph's observation, a higher Casson parameter will result in a slower fluid flow. It 



CFD Letters 

Volume 15, Issue 3 (2023) 35-47 

43 
 

is due to the increase of the internal friction and shear thickening factor of the fluid. Thus, the fluid 
thickens and becomes more viscous, leading to the fluid's velocity reduction. 

Figure 4 illustrates the thermal Grashof number Gr impact on fluid velocity. The figure consists of 
the graphs with the no-slip and slip velocity effect at the cylinder’s wall.  This demonstrates the rise 
of fluid velocity as the thermal Grashof number increases. It is because the thermal buoyancy force 
will increase as Gr increases. In the case of a free convection flow, the buoyancy force is predominant. 
As fluid temperature rises, the viscous force impact is lessened by the buoyant force that results from 
a decrease in fluid density. Consequently, it enhances fluid velocity.  

Meanwhile, fluid velocity and fluid temperature decrease with increases in Prandtl number Pr as 
illustrated in Figure 5 and Figure 6. The fluid behaviour with the same decrement pattern for the slip 
and no-slip velocity effect is shown in Figure 5. Increasing Pr will increase the momentum diffusivity 
and viscous force of the fluid while decreasing the thermal diffusivity. The thermal diffusivity is thus 
dominated by viscous force, which also increases the resistance of fluid motion. Thereby, velocity 
and temperature profiles will decrease as the Prandtl number increase. Besides that, temperature 
profiles increase as the time parameter increases. 

Figure 7 shows the fluid velocity behaviour as the slip velocity, us, and time, t change. The 
increment value of the slip velocity and time parameter is found to increase fluid velocity. It is 
obviously can be seen on the wall of the cylinder, r=1. It is due to the velocity gradient that exists 
between two different mediums which are the solid boundary cylinder and fluid particles that flow 
through the cylinder. Therefore, fluid velocity at r=1 will be equal to the slip velocity occurring at the 
cylinder's boundary and increase as it approaches the center of the cylinder at r=0 for a longer period. 
Meanwhile, fluid velocity decrease as an approach to r=0 when the slip velocity increase for a smaller 
time interval. It is due to the viscous force being high when an approach to r=0 since the heat transfer 
process is not equally distributed in the fluid.  

Finally, Figure 8 and Figure 9 show how fractional parameters affect fluid temperature and 
velocity. It is discovered that fluid temperature and velocity fall over a shorter period (t=0.4) when 
fractional parameters rise. Meanwhile, fluid velocity and fluid temperature increase as fractional 
parameters increase for a larger time interval t=3.0. It demonstrates that the fractional parameter is 
a significant factor in regulating the fluid's flow velocity and temperature. Since fractional derivatives 
have memory effects, there are differences between small time and large periods. Therefore, as time 
increases, fluid behaviour from an unsteady state will achieve the steady-state condition which 
means that the fluid system is stable. 

 

 

 

 
Fig. 3. Casson parameter impact on fluid velocity 
behaviour u(r,t) when α=0.5, Gr=1, Pr=21 and 
t=3 

 Fig. 4. Thermal Grashof number impact on 
fluid velocity behaviour u(r,t) when α=0.5, 
β=0.8, Pr=21 and t=3 
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Fig. 5. Prandtl number impact on fluid velocity 
behaviour u(r,t) when α=0.5, β=0.8, Gr=1.0 
and t=3 

 

 Fig. 6. Prandtl number and time impact on 
fluid temperature behaviour θ(r,t) when 
α=0.5 

 

 

 

 
Fig. 7. Slip velocity and time impact on fluid 
velocity behaviour u(r,t) when α=0.5, β=0.8, 
Gr=1.0 and Pr=21 

 Fig. 8. Fractional parameter impact on fluid 
velocity behaviour u(r,t) when β=0.8, us=0.3 
Gr=1.0 and Pr=21 

   

 
Fig. 9. Fractional parameter and time impact 
on the temperature of fluid behaviour θ(r,t) 
when Pr=21.0 

 
5. Conclusion 
 

The present study obtained analytical solutions of the fractional Casson fluid model with the free 
convection flow and the slip velocity effect passed through a cylinder. To gain solutions of velocity 
and temperature profiles analytically, the Laplace transform together with the finite Hankel 
transform are employed together. The obtained findings are very useful to study the human blood 
flow in the small arteries. The results lead to the conclusion that; 
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i. Fractional parameter increases will enhance fluid velocity and temperature for a larger 
time interval and vice versa. 

ii. The fluid velocity at the cylinder wall is significantly impacted by slip velocity. 
iii. The obtained analytical solution is identical to the previously published result. The 

obtained solution is accepted. 
iv. Increases in us, Gr, and t lead to fluid velocity enhancement. 
v. Increasing values of β and Pr cause decreasing values of fluid velocity. 

vi. Fluid temperature increases as Pr decreases and t increases. 
 
This study can be extended for future research by including additional effects of MHD, porous 

media, radiation, and chemical reaction as well as other types of fluid. Other than that, the advanced 
contribution can be focused on nanofluids and hybrid nanofluids. 
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