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Abstract: Accurate lithological mapping is a crucial juncture for geological studies and mineral 
exploration. Hyperspectral data provide the opportunity to extract detailed information about the 
geology and mineralogy of the Earth's surface. Machine learning (ML) and deep learning (DL) 
techniques provide an accurate and effective mapping of various types of lithologies in arid and semi- 
arid regions. This article discusses the use of machine learning algorithms, specifically Support Vector 
Machines (SVM), one-dimensional Convolutional Neural Network (1D-CNN), random forest (RF), 
and k-nearest neighbor (KNN), for lithological mapping in a complex area with strong hydrothermal 
alteration. The study evaluates the performance of the four algorithms in three different zones in the 
Ameln valley shear zone (AVSZ) area at eastern Kerdous inlier, Moroccan western Anti-Atlas. The 
results demonstrated that 1D-CNN achieved the best classification results for most lithological units. 
Additionally, the LK-SVM demonstrated good mapping results compared to the other SVM models, 
as well as RF and KNN. Our study concludes that the combination of the CNN and HyMap data can 
provide the most accurate lithologic mapping for the three selected region, with an overall accuracy of 
~95%. However, this study highlights the challenges in identifying different lithological units using 
remotely sensed data due to spectrum similarities induced by similar chemical and mineralogical 
compositions. This study emphasizes the importance of carefully considering and evaluating ML and 
DL methods for lithological mapping studies, then recommends the high-resolution hyperspectral 
data and DL models for accurate results. The implications of this study would be fascinating to 
exploration geologists for Mineral Prospectivity Mapping (MPM), especially in selecting the most 
appropriate techniques for highly accurate mineral mapping in metallogenic provinces.
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1. Introduction

Reflectance spectroscopy data have been used in several studies to measure specific
chemical and physical properties of surface materials. Remotely sensed Hyperspectral
Imaging (HSI) data play an important role in geological investigations and mineral explo­
ration, especially in arid and semi-arid environments [1- 6]. Various hyperspectral satellites

Minerals 2023,13, 766. https://doi.org/10.3390/min13060766 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-0405-4025
https://orcid.org/0000-0002-3094-020X
https://orcid.org/0000-0001-8783-5120
mailto:a.elharti@usms.ma
mailto:aminejellouli90@gmail.com
mailto:mazlanhashim@utm.my
mailto:soufianehajaj01@gmail.com
mailto:beiranvand.pour@umt.edu.my
mailto:beiranvandpour.amin@utm.my
https://www.mdpi.com/article/10.3390/min13060766?type=check_update&version=2
https://doi.org/10.3390/min13060766
https://doi.org/10.3390/min13060766
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min13060766
https://www.mdpi.com/journal/minerals


Minerals 2023,13, 766 2 of 22

and airborne data have been used continually in geological research [5,7- 9]. Remote sens­
ing techniques allow for efficient mapping and the analysis of lithological units, with 
such techniques becoming the preliminary steps for geological investigations thanks to the 
capability of providing a synoptic view of a specific Earth surface region [10- 12].

Several airborne and spaceborne hyperspectral sensors, including Hyperion, Hy- 
perspectral Digital Imagery Collection Experiment (HYDICE), Hyperspectral Mapper 
(HYMAP) and ENMAP, advanced visible infrared imaging spectrometer (AVIRIS), Digital 
Airborne Imaging Spectrometer (DAIS), and PRISMA are used for lithological discrimina­
tion as well as mineral identification and mapping, due to their spectral richness [13- 17]. 
Several geological investigations assessed the capability of HyMap HSI to map lithofacies 
and hydrothermal features within inaccessible regions, with the results then showing 
that the use of appropriate data-processing algorithms can yield accurate and detailed 
mineralogical and geological mapping [5,14,18,19].

Supervised machine learning and deep learning methods with optical airborne and 
satellite data were broadly used in geological studies [20- 22]. The HyMap data are well 
adapted for the application of supervised learning for lithological mapping tasks due to 
their high spectral and spatial resolution. Indeed, supervised learning techniques, such as 
support vector machines (SVMs), k-nearest neighbor (KNN), random forest (RF), and the 
Convolutional Neural Network (CNN) can be considered as the most applied classifiers in 
lithological mapping [12,23- 25]. In this investigation, we applied SVMs, KNN, RF, and the 
CNN for lithological mapping. The SVMs with radial basis function (RBF) as well as linear 
(LK) and polynomial kernel (PK) functions were assessed. SVMs have become a popular 
machine learning method that may be applied to both classification and regression applica­
tions. The SVMs will be used in this study to classify the various lithological units in three 
sub-zones from the east of the Ameln Valley Shear Zone (AVSZ) of the Moroccan western 
Anti-Atlas semi-arid region. The AVSZ intersects the Idikel mine (Cupper and Manganese) 
and shows several hydrothermal alteration zones (Argillic, phyllic, and dolomitization 
alteration) [19]. The popular choice for SVMs is the RBF kernel, as it has the ability to 
model complex and non-linear decision boundaries. Contrarily, the linear kernel is a more 
simplistic kernel function that may be applied when the data can be separated linearly. 
When the decision boundary is non-linear and the data are not separated linearly, the 
polynomial kernel is utilized. SVMs, decision trees (DTs), and CNNs are non-parametric 
classification techniques, so the image pixel classification is not required as a statistical 
parameter. Following their high capability in determining complex decision boundaries, 
several studies have also been conducted to access different SVM types for classifying 
remotely sensed data. Recently, deep learning and SVMs are the commonly used techniques 
in remote sensing data classification [21,26- 28]. Shirmard et al. [24] used ML and DL for 
lithological mapping in a mineral-rich zone. The latter study exhibited the valuable effect 
of ASTER multispectral data and CNNs in optimizing lithological mapping within the 
southeast of Iran. Accordingly, the mineral potential mapping was improved. Pal et al. [29] 
employed an SVM for lithological mapping in Udaipur, India. The SVM was successful 
in regard to each dataset of OLI, ASTER, and Hyperion, while Deep Learning (DL)-based 
approaches were slightly more accurate than the SVM. Okwuashi and Ndehedehe [30] 
compared the SVM and Deep SVM (DSVM) algorithm with common classifiers, including a 
Deep Neural Network (DNN), KNN, and Gaussian Mixture Model (GMM), with the DSVM 
providing more accurate results than the other models. Bachri et al. [31] applied an SVM 
algorithm in the Sidi Ifni inlier of western Anti-Atlas for lithological classification using 
the combined data from a Digital Elevation Model (DEM) and OLI multispectral data. The 
RBF-SVM implemented in SAGA GIS 6.3.0 software was used to perform this task. Overall, 
lithological and mineralogical mapping using Artificial Intelligence allowed the hardly 
accessible regions' mineral potential to be mapped accurately and time effectively [19,32].

In this study, the capability of the ML and DL techniques were evaluated for automated 
lithological mapping using HyMap imagery. This work evaluates the three support vector 
machine types, linear, the polynomial, and radial basis function kernels, as well as RF,
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the KNN, and the 1D-CNN in the mapping of lithologies within three parts of the Ameln 
valley shear zone (AVSZ) area at eastern Kerdous inlier, Moroccan western Anti-Atlas 
(Figure 1). The following steps were adopted to perform this investigation: (i) selecting 
three areas in the HyMap imagery and evaluating their spectral characteristics; (ii) carrying 
out the lithological mapping using the different ML and DL classifiers; (iii) undertaking 
an accuracy assessment. The validation data are essentially based on the lithological 
units' field observations in each given urea, and the performance evaluation used various 
measures, namely overell accuracy, Kappa, and F1-score. In summary, this work seeks to 
present a comprehensive evaluation of the ML and DL approaches for litholosical mapping 
in a semi-arid region of the AVSZ using HyMap imagery. This study's findings will be 
interesting to exploration geologists for Mineral Prospectivity Mapping (MPM) and other 
experts in the Earth sciencer, in particular when it comes to selecting appropriate techniques 
to use in similar regions.

Figure 1. Geological map of Amlen valley area extracted from the geological map of the Tafraout 
geological map 1/100,000 published by Ministry of Energy and Mines .Modified aiter Hajaj et al., 
2023 [19]).
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2. Materials and Methods
2.1. Geological Sitting of the Study Area

The study area is located in the Anti-Atlasic belt of Morocco (Figure 1). The Anti-Atlas 
forms the Northern edge of the West African Craton [33]. The Proterozoic lithological 
formations outcrop at some inliers, including the Kerdous, Akka, and Bas Draa inliers, as 
well as being surmounted by Ediacaran-Paleozoic cover in the western Anti-Atlas [34].

Within the Kerdous inlier, the Paleoproterozoic basement represents more than 30% 
of the rock [35]. Basement units are formed by a polymetamorphic complex [34,36,37], 
represented in the study area by the orthogneisses of the Jbel (mountain) Ouiharen (Xoe), 
schist, and mica-schist (XI£,). These metamorphic units are overlapped by several granitoids 
from the Paleoproterozoic era, including the Tasserhirt Plateau calc-alkaline granite (XIym). 
The Neoproterozoic and the Paleozoic formations have been deposited in unconformity up 
from the Paleoproterozoic units [37,38]. In the study area (Figure 1), the Neoproterozoic 
units consist of quartzites of Jbel Lkest (XII2q), rhyolitic vulcanites, ignimbrites of Adrar 
Mkorn (XIIIm), Pan-African granites of Tafraout (XII3y), and the volcano-detrital deposits 
of the Tanalt formation (XIIIS1). The dolerite dykes (XII25) are mapped essentially within 
the Jbel Lkest quartzites. Then, the Lower Cambrian units are formed by the Adoudou for­
mation that is partitioned into the basal series represented by schist and sandstone (Ad11a), 
limestone and dolomite (Ad11a), with the lower series being represented by dolomite and 
limestone (Ad12). The study area is known for the existence of several structural features 
trends, with the particular dominance of the NE-SW trend. The dominance of this feature 
was demonstrated with multisource remote sensing datasets [39].

2.2. Characteristics o f HyMap Data
The HyMap is a Hyperspectral airborne imaging system developed by the Integrated 

Spectronic, Sydney, Australia, and operated by the HyVista Corporation. The HyMap data 
principal characteristics are summarized in Table 1.

Table 1. HyMap sensor characteristics, Cocks et al. [13].

Module Spectral Range (nm) Bands Number Spectral Resolution (nm)

VIS 450-890 31 15
NIR 890-1350 31 15

SWIR1 1400-1800 32 13
SWIR2 195-2500 32 17

The HyMap scene of the Amlen valley region was recorded in 124 bands, from 450 nm 
to 2500 nm, with a spatial resolution of around 5 m, and an average spectral resolution 
of 15 nm. The geometric and atmospheric corrections have been performed on the scene 
using HyVista. The imagery data were furnished in ground reflectance by the National 
Office of Hydrocarbons and Mines (ONHYM). The entire HyMap scene was acquired in the 
Anti-Atlasic belt while a regional airborne survey covering a total area of 10,000 km2 was 
conducted. The data imagery has already been geo-referenced in the UTM 29 projection and 
WGS-84 datum. The HyMap Atmospheric and Topographic Correction Model (ATCOR4) 
was applied to the data, which permits the converting radiance to surface reflectance data 
on the basis of the MODTRAN radiative transfer code. It can also eliminate the topographic 
effect of the illumination differences [40]. The noisy bands and the bands covering water 
absorption features were eliminated during this stage. Pre-removal of bad bands is required 
for hyperspectral datasets before data processing techniques. Thus, only 110 bands were 
used for further processing. A vegetation mask was applied on the study area scene, then, 
a gap-filling tool integrated in ENVI (5.3) software was used for the reconstitution of the 
resulting no data pixels to avoid gaps in the results [19]. Figure 2 represents the flowchart 
of the methodology used to process HyMap data in this analysis.
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Figure 2. The flowchart used for the lithological mapping in the study area of the AVSZ.

2.3. Image Processing by Applying Machine and Deep Learning Techniques
2.3.1. Minimum Noise Fraction (MNF)

The MNF method serves as a valuable character transformation technique utilized for 
remote sensing imagery. Its primary objectives are to determine the intrinsic dimensionality, 
or the optimal bands number, then to effectively separate noise from the underlying 
delta. Figure 3 displays the band combinations of MNF1, MNF2, and MNF3 as an RGB 
color eombination. Tire! MNF image exhibits enhanced spectral contrast, facilitating the 
discrimination of different lithological units within the area. The MNF transformation 
allows for the effective grouping of image pixels of similar colors, facilitating the delineation 
of corresponding boundaries with high precision. This process ensures accurate spatial 
representation and enhances the vssual interpretation of the date. Hnace, the MNF imtge 
can be used to confirm the obsesved litho-boundaries during fieldwork.
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Figure 3 . Hie MNF 321 FCC images of AVZ1, AVZ2, and AVZ3 (overlain in the HyMap scene of 
AVSZ with R: Band-1; G: Band-38; B: Band-108).

2.3.2. Classification Using SVMs
Essentially, support vector machines aim to find the best possible boundary between 

different classes of data. SVMs are supervised learning algorithms first introduced by 
Vladimir Vapnik in the early 1990s [41]. These algorithms are a type of machine learning 
algorithm that separate data into different classes by finding a hyperplane with a maximum 
margin between the classes. This makes them more robus t and less prone to overfitting 
than other classifiers.

Some of the most popular kernel functions (K) are chosen in our study for the xi and 
xj input -vectors:

RBF : K (xi,xj) =  exp{ —y||xi — xj||2,y  > 0 (1)

Linear : K(xi,xj) =  yxixj (2)

Polinomial : K (xi,xj) =  (yxixj +  r)d,y  > 0 (3)

where the kernel parameters are y , d, and r. The gamma parameter acts as an inner product 
coefficient in the polynomisl function (Equation (3)) and also controls the kernel width 
in the RBF (Equation (1)), [42]. The paoameter d represents the deonee oi the polynomial 
Ounction (Equation 03 )). The r parameter contro ls how much the high-degree polynomials 
versus low-degree polynomfals influence the model [42].
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2.3.3. K-Nearest Neighbor
The K-NN algorithm is a highly popular supervised ML classification technique. It is 

widely used as a .referred classifier in many statistical studies [43]. The K-NN insttnce- 
based method is e lazy learning method which takes more; processing time than the other 
common ML methods [44]. It classifies every specific sample by its distance from the k 
number of the nearest neighbor samples. The Euclidian distance is usually used to calculate 
the distance of the Is neighbors for each point [45].

2.3.4. Random Foeest
Random forest is a supervised classification algorithm, proposed for the first time by 

Breiman [ i6]. It has recently been rerognized as a powerful machine learning technique 
and has been applied for a broad range of regression and classification tasks. Several 
lithological classification studies using remotely sensed data use the RF algorithm [47,48]. 
A random forest is generated from a large number of decision trees (DTs), where a random 
subset of the inp ut dnta is used to train each IDT [25] . A .agging process allow s the rando m 
dsaw of the new training set an d the replacement oe the initial training set [4e]. Each pi xel 
is classified to a specific class by obtaining the largest popular voted class in the forest 
preceptor's tree [50].

2.3.5. Convolutional Neural Network
In recent years, the CNN bias progressively demonstrated a significant benefit: oS litho­

logical identifieation and mapping on hyperspectral dataeets [5t ,52]. The basis structure 
of a CNN is the convolutional layer, Ihe pooling layer, end the fully connected layer, as 
represented ire Figure 4. The overfitting problbm can be avoided loforehand by applying 
the PCA that reduces the number of spectral bands before feeding them into the 1D-CNN, 
then the computational cost of the convolution operation will be reduced. Thereafter, the 
convolution eeries allows for the extraction of deep features, whith are thin flattened 
in a neuron column that will be ueed as the input of the fully connected layer [53]. The 
final layers of a convolutional neural network tre completely (fully) connected layers 
that allow for the processinr of information sent to lower levels and the iormulation of 
decisions [53,54].

1D-CNN

Figure 4. The one-dimensional convolutional neural network framework Illustration (1-D CNN), 
where several lD-convolution, pooling, and fully connected layers are applied. Thereafter, the fully 
connected layer's output is used to generate the final classification.

2.3.6. Tuning Parameters
Implementing each ML and DL method requires s etting a number of hyperparame­

ters. In this study the classification of HyMap deta was p ereormed using the Advanced 
Hyperspectral Data Analysis Software (AVHYAS) [55] as a python-based plugin in QGIS. 
Thee default settings of parameters were adoptede The used 1D-CNN structure is similar to 
that proposed by Hu et al. in 2014 [56]. Its architecture consists oi five lay ere, each carrying 
its own ret of weights. These layers inelude the input layer, the convolutional layer, the 
max pooling layer, the fully connected layer, and the output layer. In the 1D-CNN the 
input layer can only be represented by vector spectral data. The first hidden layer is a
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convolutional layer of 20 filters with a kernel size of 12. The kernel size is calculated in the 
used CNN architecture by dividing the sequence length by nine [56]. The maxpolling1D is 
implemented as the polling layer before applying the fully connected layer. However, the 
number of epochs in the CNN has been adjusted to 20 to accelerate the computation time.

2.4. Accuracy Assessment Approaches
The confusion matrix is constructed using four parameters: true positives (TPs), 

true negatives (TNs), false positives (FPs), and false negatives (FNs) [57]. Each of these 
parameters represents a different type of classification result, where TPs comprise classes 
that have been correctly predicted as positive; TNs comprise classes that have been correctly 
predicted as negative; FPs comprise classes that have been predicted as positive but are 
actually negative; and FNs comprise classes that have been predicted as negative but are 
actually positive. By analyzing the values in each cell of the confusion matrices, we can 
calculate different indices such as accuracy, producer accuracy, user accuracy, sensitivity, 
and specificity, which provide insight into the performance of the classification model [58].

2.4.1. Accuracy
One of the most widely used metrics in multi-class classification is accuracy, which

is calculated on the basis of the confusion matrix. The accuracy parameter provides a
summary indicator of how well the model has predicted the complete set of data. The 
single individuals in the dataset are the fundamental component of the metric; each unit 
has the same weight and contributes equally to the accuracy number [57]. With the accu­
racy (Equation (4)), only the elements placed in the diagonal confusion matrix are taken 
into account.

Accuracy -  (TP + TN) (4)
y (TP +  TN +  FP +  FN) (4)

2.4.2. Kappa Coefficient
The Kappa coefficient is the relative number of well-classified pixels to all other pixels 

that were examined. The obtained Kappa coefficient in this study demonstrates how well 
the results match the data of reference [59]. Because it checks every component of the 
confusion matrix, it provides an objective statistic when evaluating the classification [60]. 
The KC can be calculated as follows (Equation (5)):

-  (Po -  Pe) (5 )
(1 -  Pe) (5)

where,
Po = (TP + TN)/(TP + TN + FP + FN)
Pe = ((TP + FN) * (TP + FP) + (FP + TN) * (FN + TN))/(TP + TN + FP + FN)2

2.4.3. F1-Score
A single metric, the F1-score is considered as the harmonic mean of precision and 

recall in binary cases. In multi-class cases, the F1-Score will have to involve all the used 
classes. Hence, a comparison of the multi-class measure of recall (Re) and precision (Pr) is 
required. The F1-score is given as follows (Equation (6)):

Pr * Re
F1 -  2 * ------—  (6)

Pr +  Re

where
Pr = TP/(TP + FP)
Re = TP/(TP + FN)



Minerals 2023,13, 766 9 of 22

3. Results
3.1. Training Region Spectral Characteristics

The supervised classifications with both machine and deep learning classifiers were 
performed based on the sampling of the lithological unit's spectra (Table 2). Initially, all 
the training samples were divided into training and test sets (30% for testing, and 70% for 
training). The sampling step was carried out based on the study area of the geological map, 
a visual inspection of the HyMap image in the true color composite and the false color 
composite of the MNF bands 3.2.1, as well as the field survey. Five classes were selected for 
AVZ1, and seven classes were selected for both AVZ2 and AVZ3.

Table 2. Description of the lithological units by each zone, class number, and the number of samples 
(pixels of HyMap) used with the applied approaches for lithological classification.

Zone Class No (Sign) Lithological Character Sample Pixels Count

Class 1 (XII3y) Granites 1274
Class 2 (Xoe) Orthogneisses 1733

AVZ1 Class 3 (XI£.) Schist, micaschist, gneiss 1750
Class 4 (q2e) Quaternary sediments 2295

Class 5 (XIIIm) Vulcanites and ignimbrites 461

Class 1 (Ad12b) Limestone and dolomites (lower series) 484
Class 2 (Ad11a) Schist and sandstone (basal series) 154
Class 3 (Ad11b) Limestone and dolomites (basal series) 292

AVZ2 Class 4 (XIIIS2) Conglomerates 2726
Class 5 (XII2q) Quartzites 1572
Class 6 (XII2S) Dolerites 403
Class 7 (XI£,) Schist, micaschist, gneiss 664

Class 1 (Ad12b) Limestone and dolomites (lower series) 434
Class 2 (Ad11a) Schist and sandstone (basal series) 163
Class 3 (Ad11b) Limestone and dolomites (basal series) 317

AVZ3 Class 4 (XIIIS2) Conglomerates 861

Class 5 (XIIIS1) Greso-pelitic series interposed by tuffs and local red 
limestone, conglomerates 699

Class 6 (XI£,) Schist, micaschist, gneiss 1658
Class 7 (Xoe) Orthogneisses 887

Figure 5 displays the extracted spectral signatures of the lithological units from the 
AVZ1, AVZ2, and AVZ3 HyMap scenes, respectively. The spectral responses of lithofacies 
vary from the HyMap data of a zone to another's, providing distinct spectral signatures 
along the entire wavelength range (Figure 5), due to the high spectral resolution (15 nm). In 
our study area, Mg-Fe-OH/CO3 , Al-OH, and Fe3+/Fe2+ hydrothermal alteration minerals 
were detected and mapped [19]. Almost all the litho-units show an Al-OH absorption 
feature (2200 nm) in AVZ1, while this absorption becomes deeper in the AVZ2 and AVZ3 
lithounits, except for some carbonate lithounits, represented by lower series limestone and 
dolomite and basal series limestone and dolomite. A Mg-Fe-OH/CO3 absorption feature at 
2336 nm was also presented in AVSZ lithounits, becoming deeper in AVZ3.

An Fe3+/Fe2+ absorption feature (950 nm) was also detected in the spectral signatures 
of the study area lithofacies. Hydrothermal alteration minerals, including hematite, kaolin- 
ite, illite, muscovite, montmorillonite, topaz, dolomite, and pyrophyllite, were identified 
and mapped in the AVSZ area, and can explain the various previously described absorption 
features within AVZ1, AVZ2, and AVZ3 [19].

Table A1 displays the results of the Average Jeffries-Matusita (JM) distances [61] for 
AVZ1, AVZ2, and AVZ3. The values of the JM matrix for AVZ1, AVZ2, and AVZ3 are ideal 
in most cases or very close to a value of 2 in several cases, indicating a much significant 
spectral dissimilarity. Additionally, the Ascendant Pair Separation (APS) was computed 
for the HyMap data of three zones. In AVZ1, the APS shows values of, 1.997790,1.999036,
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and 1.999995, for classes 3 and 4, 1 and 4, and 2 and 3, respectively. In AVZ2, the APS 
shows values of 1.998016, 1.999988, and 1.999968 for classes 4 and 5, 4 and 2, and 5 and 
7, respectively. Last, for AVZ3 more distinct spectra have been observed, with the APS 
showing values of 1.99993, 1.99994, and 1.99999, for classes 6 and 7, 5 and 6, and 5 and 
7, respectively.

(A)
ROI Means: avzl (B) ROI Means: avz2 (C)

Figure 5. Mean spectra reflectances of the lithological classes in the AVSZ, derived from AVZ1 (A), 
AVZ2 (B), and AVZ3 (C).

3.2. Lithological Mapping Results
Lithological classification maps of the HyMap dataset using the different SVM types, 

RF, KNN, and 1D-CNN are displayed in Figure 6. Moreover, the? false color composite (FCC) 
image of MNF 3.2.1 as a RGB csmposite was extracted for every classified area (Figure 6). 
In zone 1, the lithological results obtained using SVM-RBF show more noise than other 
SVM types, as illustrated in Figure 6. The mapping results show that the granite (Cl-1) 
and gneisses (Cl-2) units using SVM-RBF are misclassified in some parts into sureounding 
litho logical units. In addition, the vol canites (Cl-5) unit is over-classified within the schist 
(Cl-3) unit compared to the SVM-LK and SVM-PK results (Figure 6). The KNN resultt are 
comparable to RF, while the CNN results better enhanc e the litho-units relatively. In zone 
2 , the lithological classification extracted usings the SVM-RBF method shows a significant 
di fferencf compared to the tw o other met hods (Figur e 6(. Almost call the basal l imestone 
and dolomite units (Cl-3) and basal schfst and sandstone unite (Cl-2) which are clearly 
depicted in the MNF image were misclassified into schist (Cl-7) and lower limestone and 
dolomite (Cl-1) (Figure 6)f while the other classiftcations shew less confusion between these 
units. 'Tine SVM-LK derived map shows relatively more promising results, especially in 
detecting ultimate conglomerate (Cl-4) units in the south-east area of AVZ2. On the other 
hand, tbit? KNNand RF results exhibit a high resemblance to those derived from RBF-SVM, 
while the CNN classification reveals a greater ability to differentiate between basal and 
lower series as well as avoid misclassifidation between comparable ultimate con^omerates 
and quartzitee unit capabilities when mapping lithological units in zone 3 (Figure 6), in 
spite of the occurrence of some misclassification of basal limestone, dolomite units (Cl-2) 
a net ultimate condlomerates (Cl-4i while using- SVM-RBF. it is observed that th e -ithological 
units derived from the SVM-LK and SVM-PK methods exhibit greater precision when 
compared to the resutts obtained from the SVM-RBF method, which is supported by the 
MNd results, field survey, and geological map (Figure 6).

Accuraey and loss are plotted versus iter ations (epochs) foe the tr ain, with the test 
phase of the 1D-CNN having 20 epochs. It is notable that the piot of the tra-n and lest loss 
decreases to achieve a stability potnt, demonetrating learning curves that show good fit. 
Using the four classifieis, the user (UA) and producer (PA) accuracies are represented in 
Figure 7. The UA and PA metrics provide insights inlo the commission and omission errors 
associated with individual classes, respectively [59].



Z0
N

E3
 

Z0
N

E2
 

Z0
N

E1
 

Z0
N

E3
 

Z0
N

E2
 

Z0
N

E1
Minerals 2023,13, 766 11 of 22

■  CLASS 1 
CLASS 2 
CLASS 3 
CLASS 4

■  CLASS 5

CLASS 1 
CLASS 2

■  CLASS 3
■  CLASS 4 

CLASS 5
■  CLASS 6 

CLASS 7

CLASS 1 
CLASS 2

■  CLASS 3
■  CLASS 4 

CLASS 5 
CLASS 6 
CLASS 7

MNF K-NN RF 1D-CNN

Figure 6. Classification results for AVZ1, AVZ2, and AVZ3 using SVM-RBF, SVM-LK, SVM-PL, KNN, 
RF, and 1D-CNN, respectively.
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Figure 7. User and producer accuracy for each class from AVZ1 (A,B), AVZ2 (C,D), and AVZ3 
(E,F) using PK-SVM, LK-SVM, RBF-SVM, 1D-CNN, RF, and kNN.
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3.3. SVC with RBF, Polynomial, and Linear Kernels Evaluation
In AVZ1 the best classification results were obtained by using the PK-SVM method, 

with an overall accuracy of 85.73% (KA = 81.54, F1 = 78). However, the LK-SVM method 
exhibits comparable results, with an overall accuracy of 85.4% (KA = 81.17, F1 = 84.85) 
(Table 6), while the lowest accuracy is obtained by using the RBF-SVM method, with an 
overall accuracy of 79.41% (KA = 73.19, F1 = 78.29). Figure 7A shows the producer and the 
user accuracy of each class. The highest accuracy (average) was obtained with the mapping 
of gneisses unit (CL-2), with more than 95% for all the classifiers (Table 3). In addition, 
the best results in classifying gneisses were obtained using the LK-SVM method, with an 
accuracy of 99.6. A low accuracy was observed in the vulcanites unit (Cl-5) following the 
low PA by using the PK-SVM (72.1) and LK-SVM (62.5) methods (Figure 7A), while the 
quaternary sediments unit reveals a low UA, with about 70% for all the SVM types, which 
reduced the average accuracy of the SVMs (Figure 7A).

Table 3. The accuracy measurements of the lithological classification results for each class in AVZ1.

AVZ1

RBF-SVC LN-SVC PL-SVC RF KNN CNN

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

XII3y (1) 73.3 73.2 90.9 90.8 87.4 87.3 59.7 59.7 63.1 63.1 96.5 96.5
Xo£ (2) 95.2 95.1 99.6 99.6 99.5 99.5 94.5 94.4 94.5 94.4 99.0 96.5
XIt, (3) 78.3 78.2 79.7 79.6 80.6 80.5 77.3 77.2 77.6 77.5 94.1 94.0
q2e (4) 73.0 72.8 78.4 77.9 79.0 78.7 68.7 68.6 69.4 69.3 93.5 93.5

XIIIm (5) 72.6 72.0 80.0 76.1 84.5 82.7 86.0 85.8 81.6 81.5 96.2 96.2

In AVZ2, the highest classification accuracy was obtained from the PK-SVM method, 
with an OA of 75.93 (KA-67.7, F1 = 72.6), which is ~0.4% (OA) higher than the LK-SVM 
method and 5.7% (OA) higher than the RBF-SVM method. By using the RBF-SVM method, 
we noticed a good portion of (Cl-3) was misclassified into (Cl-1) and (Cl-4) (Table 4); 
this was also observed as well with the other SVM types with less intensity. Figure 7B 
shows the UA and the PA of each class in AVZ2 using the three SVM types. The highest 
accuracy is allocated to the lower limestone and dolomite unit (Cl-1) that demonstrated 
good mapping results (See Figure 6), with accuracy averages of 92.5, 94.48, and 85.06 using 
the PK, LK, and RBF-SVM methods, respectively. The lowest accuracy was represented in 
basal schist and sandstone (CL-2), which was almost completely misclassified into Cl-1, 
Cl-4, and Cl-7 (Table 4) using the RBF-SVM method. The misclassification of Cl-2 to Cl-7 
was not recorded when using the LK and PLK-SVM methods, while the misclassification of 
surrounded units (Cl-1 and Cl-3) did persist however. Additionally, the basal limestone 
and dolomite unit (Cl-3) presents a moderate accuracy when using the three methods, with 
the highest accuracy being recorded when using the PK-SVM method. The other classes 
reveal generally good classification, with more than 70% in their cases.

In AVZ3, the best mapping results were obtained by using the LK-SVM method, with 
an overall accuracy of 88.4% (KA = 85.64, F1 = 84.91), which is 3% and 22% higher than 
the PK-SVM and RBF-SVM results, respectively. The schist unit (Cl-6) demonstrated the 
highest classification accuracy, with more than 80% for all the classifiers (Table 5). Lower 
limestone and dolomite (C1-1) shows good mapping results using the PK and LK-SVM 
method, with about 90% accuracy, while exhibiting a low mapping accuracy by using the 
RBF-SVM method due to the misclassification of its surrounding units and Cl-7. The lower 
limestone and dolomite (Cl-1), basal schist and sandstone (Cl-2), and the basal limestone 
and dolomite (Cl-3) demonstrate low classification accuracy results, especially when using 
the RBF-SVM method. However, good accuracy was achieved for almost all the other 
classes (>80%).
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Table 4. The accuracy measurements of the lithological classification results for each class in AVZ2.

AVZ2

RBF-SVC LN-SVC PL-SVC RF KNN CNN

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

Ad12b (1) 85.1 83.1 94.5 94.3 92.5 93.1 68.8 68.4 70.8 70.1 95.8 95.8
Ad11a (2) 2.6 0.4 54.5 53.9 52.9 54.5 20.3 19.6 31.5 30.0 83.4 83.4
Ad11b (3) 58.7 48.5 61.4 61.3 63.3 64.9 44.3 42.9 46.0 46 86.2 86.1
XIIIS2 (4) 71.1 69.8 78.6 77.8 77.8 78.3 73.0 72.8 71.8 71.7 94.1 94.0
XII2q (5) 69.7 67.9 74.8 74.6 75.8 76.9 75.7 75.5 70.9 70.9 92.8 92.8
XII2S (6) 68.5 66.8 80.1 79.2 78.9 79.3 67.9 67.5 67.7 67.2 76.8 76.3
XIt, (7) 74.5 72.8 66.2 65.4 69.3 70.6 73.1 73.0 64.7 63.4 92.9 92.8

Table 5. The accuracy measurements of the lithological classification results for each class in AVZ3.

AVZ3

RBF-SVC LN-SVC PL-SVC RF KNN CNN

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

Ad12b (1) 31.9 31.8 87.6 87.1 85.0 84.8 41.6 40.7 37.1 37.0 95.4 95.4
Ad11a (2) 57.4 56.5 75.6 69.9 75.5 69.7 69.0 67.7 71.2 69.8 93.2 93.0
Ad11b (3) 18.1 16.9 79.5 78.5 75.6 74.5 48.1 47.8 30.1 30.0 91.3 91.2
XIIIS2 (4) 68.4 68.3 91.0 90.6 90.4 89.7 74.9 74.8 71.7 71.7 98.7 98.7
XIIIS1 (5) 69.7 68.4 85.7 85.2 80.4 79.2 66.0 65.9 68.3 68.1 91.3 91.2

XI£, (6) 80.8 80.4 93.4 93.2 91.7 91.4 85.2 84.9 81.5 81.4 97.6 97.5
Xo£ (7) 71.0 70.8 89.5 89.5 85.0 84.8 73.9 73.5 73.6 73.6 91.4 91.2

The results in Table 6 demonstrate that the LK-SVM and PL-SVM methods can provide
more accuracy in lithological mapping within the AVSZ area, with mean overall accuracies
of 83.12 and 82.36%, respectively, taking into consideration the three selected zones. How­
ever, the results of the LK-SVM and PK-SVM methods are much comparable in terms of
performance, with a 0.76% OA increase using the LK-SVM method.

Table 6. The accuracy measurements of the lithological classification results for AVZ1, AVZ2, AVZ3,
and their means, respectively.

RBF-SVC LN-SVC PL-SVC RF KNN CNN

OA 79.41 85.4 85.73 76.24 76.85 95.56
AVZ1 KC 73.19 81.17 81.54 69 69.88 94.19

F1 78.29 84.85 85.73 77.2 77.2 95.86

OA 70.2 75.55 75.93 70.07 67.8 92.19
AVZ2 KC 58.9 67.32 67.7 59.5 56.07 89.77

F1 59.79 72.39 72.6 60.02 59.94 88.78

OA 66.33 88.4 85.42 71.85 69.06 95.46
AVZ3 KC 58.08 85.64 81.98 64.97 61.47 94.04

F1 56.21 84.91 82.08 65.1 61.69 94.08

OA 71.98 83.12 82.36 72.72 71.24 94.76
Mean KC 63.39 78.04 77.07 64.49 62.47 93.00

F1 64.76 80.72 80.14 67.44 66.28 92.40

3.4. SVC-Types, RF and KNN, and CNN Accuracy Assessment
The classification results in AVZ1 indicate that the 1D-CNN reached the best classifica­

tion results for most lithological units. Additionally, the SVM, KNN, and RF traditional 
methods seemed to be poorly classified, with some granite being misclassified as or­
thogneisses. In particular, the granite was particularly misclassified as orthogneisses and
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schist in AVZ1 (Figure 6). The 1D-CNN demonstrated more powerful learning capabilities, 
resulting in fewer classification errors and more precise boundary classification compared 
to other methods. Table 3 presents the accuracy results of the different algorithms for 
AVZ1. The ML methods, including the SVM-LK, KNN, and RF methods, demonstrated less 
classification performance, as noticed for the quaternary sediments (Cl-4) with an accuracy 
of 78.4% using SVM-LK, and for Granites (Cl-1), with accuracies of 63.1% and 59.7% using 
the KNN and RF methods, respectively. On the other hand, the ML methods showed 
advantageous results when using the LK-SVM method. The CNN 1D model achieved the 
best results, with an OA of 95.56% (KC = 94.19%, F1 = 95.86%).

Figure 6 shows comparable classification results using the RBF-SVM, KNN, and RF 
methods in AVZ2. The basal schist and sandstone (Cl-2), as well as the basal limestone 
and dolomites (Cl-3), were mostly misclassified into surrounding litho-units using these 
methods. The SVM-LK, SVM-PK, and 1D-CNN classification results demonstrate a rel­
atively greater ability to delineate the lithological formation in AVZ2. The classification 
accuracy in Table 6 indicated that the 1D-CNN achieved the best performance, obtaining 
a remarkable overall accuracy of 92.19% (KC = 89.77%, and F1 = 88.78%). The 1D-CNN 
enhances the accuracy of classification for the basal schist and sandstone (Cl-2) and basal 
limestone and dolomites (Cl-3) by 28.9% and 24.8%, respectively, compared to the LN-SVC 
method (Table 4). The highest misclassification in AVZ3 was observed between the basal 
schist and sandstone (2) and orthogneisses (7); basal limestone and dolomites (3) and 
basal schist and sandstone (2); as well between basal limestone and dolomites (3) and 
lower limestone and dolomites (1), using the RBF-SVM method; while comparable results 
showing similar litho-unit misclassification were revealed with the KNN and RF methods, 
with a moderate increase in accuracy for the basal limestone and dolomites (3) and basal 
schist and sandstone (2) (See Table 5). In parallel, the best accuracy in the classification of 
Cl-1 and Cl-2 using ML algorithms was achieved using the LK and PL-SVM methods, with 
an overall accuracy of 87.6% and 85.0%, respectively. However, as shown in Figure 6, the 
1D-CNN shows a noticeable improvement in the classification results, with the OA being 
improved by 11.64% compared to the LK-SVM results. Moreover, the 1D-CNN algorithm 
achieved the best overall accuracy of 94.76% (Table 6). The spectral features integration 
with the 1D-CNN can enhance the classification of hyperspectral high-resolution remote 
sensing data.

The obtained lithological classification using the HyMap data was validated using a 
field survey (Figure 8). Different locations were selected to validate the RS-based results. 
Figure 8A-J show numerous field macrophotographs of rock exposure, such as dolomitized 
lower series units (Figure 8A), volcanites in AVZ1 (Figure 8B), faulted conglomerates of 
the ultimate conglomerate litho-unite (Figure 8C), basal series sandstone (Figure 8D), the 
Jbel Lkest quartzites (Figure 8E), quaternary sediments at the bottom of the volcanites 
unit (Figure 8F), basal series carbonates (Figure 8G), sharp contact between the schist and 
volcanites (Figure 8H), orthogneisses with hydrothermal alteration (Figure 8I), and altered 
quartzite in contact with a doleritic dyke (Figure 8J).

Figure 8. Cont.
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D E

Figure 18. Field photographs of the lithological units in the study zones. (A) dolomitized lower 
series units; (15) volcanites in the AVZ1; (C) faulted conglomerates of the ultimate conglomeaate 
litho-unite; (ID) Isasal series sandstone; (E) the Jbel Lkest quartzi(es; (F) quaternary sediments in the 
bottom of volcanites unit; (G) carbonates of basal series; (H) sharp contact If etween the schist and 
volcanites; (I) orthogneisses with hydrothermal alteration; (J) altered quartzite in the contact with the 
doleritic dyke.

4. Discussion

The study area of the AVSZ is a complex area showing strong hydrothermal alteration, 
where many zones of iron, argillic, phyllic, and dolomitization alteration have been revealed 
in the East, Northeast, and Northwest study areas [19]; thus, due to these occurrences, 
lithological mapping using remotely sensed data can be as a challenging task. In semi-arid 
regions with sparse vegetation cover, lithological variations become more pronounced. In 
particular, within the western Anti-Atlas, remotely sensed data from multispectral sensors 
(i.e., ASTER, OLI, and Sentinel 2A) played an important role in lithological and mineral 
mapping [62]. Hyperspectral data can provide more spectral information, and subsequently 
be more sensitive to subtle changes in the reflectance patterns of lithological units, allowing 
for effective detection and classification of these variations. With this understanding, our 
study represents a performance evaluation of HyMap and different algorithms, namely 
SVMs, the 1D-CNN, RF, and the KNN, for lithological mapping in three different zones.
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The results indicate that the 1D-CNN algorithm achieved the best classification results for 
most lithological units, while the SVM, KNN, and RF traditional methods seemed to be 
poorly classified.

Machine learning and deep learning techniques demonstrate a great ability in mapping 
surface geology when used with remote sensing data [22]. Despite the fact that deep 
learning techniques possess the capacity to effectively represent intricate and massive 
datasets, no previous lithological mapping research was conducted in the western Anti­
Atlas of Morocco. Deep learning is broadly categorized into two types of neural network 
architectures: feedforward and recurrent [63].

In the current study, three zones were selected for lithological classification, namely 
AVZ1 (with five classes), and AVZ2 and AVZ3 (with seven classes each). Thereafter, the 
enhancement of the litho-boundaries via MNF transform (Figure 3) as well as fieldwork has 
assisted in the sampling of each class. The Average Jeffries-Matusita distances (Table A1) 
demonstrated a good separability between the study area classes' spectra, which reflects the 
accurate sampling. The SVM algorithm was applied and assessed in the three selected zones 
over the AVSZ using the three kernels: the RBF, LK, and PK. Then, the LK-SVM method 
revealed good mapping results when compared to the other SVM models. Additionally, 
the LK-SVM and PK-SVM methods yielded comparable capability in lithological mapping 
within the study area, showing a higher accuracy than the RBF-SVM method. Figure 7 
shows that the litho-units for the UA and PA demonstrate a considerable improvement 
using the LK-SVM and PK-SVM methods when compared to the RBF-SVM method for 
the three zones. Moreover, accuracy assessment results using the OA, KA, and F1-score 
demonstrated a high homogeneity in the calculated parameters by using the three SVM 
types from one zone to another, results which support the robustness of the results of 
the present study and their applicability in other geologically comparable regions. For 
example, in AVZ1, the OA, KA, and F1 using the LK-SVM method were 5.9%, 7.9%, and 
6.5%, respectively, higher than those obtained by using the RBF-SVM method (Table 6).

In the previous studies, De Boissieu et al. [64] used HyMap and RBF-SVM in regolith- 
geology mapping, where the classification accuracy assessment showed an OA of 70%. 
The overall accuracy presented by De Boissieu et al. [57] was 3.3% higher than that of our 
investigation, which can be due to several factors, including terrain complexity, the target 
materials' geochemistry, and sampling errors. However, the latter accuracy assessment 
results and our results are still close and comparable. In addition to the VNIR and SWIR 
bands, hyperspectral TIR remote sensing images and CNNs can be used to improve 
lithological classification obtained using conventional ML methods [21]. A study conducted 
by Liu et al. [21] in Liuyuan, Gansu Province, China revealed that the use of CNNs and 
hyperspectral TIR data in lithological mapping can enhance the OA of conventional ML 
methods from 2.5% to 25%. Even using multispectral satellite dataset (ASTER, OLI, and 
Sentinel) CNNs could provide the highest lithological mapping accuracy in mineral-rich 
areas [24].

Many remote sensing data classification studies revealed the good performance and 
the adaption of the RBF kernel with SVMs [65]. On the other hand, it is worth it to note 
that selecting an appropriate kernel function for a specific problem is a complex process 
and usually involves testing various types of SVMs and kernel functions to identify the 
most effective approach. Using the four ML and DL methods, according to the accuracy 
assessment using the OA, KA, F1-score, as well as acknowledging the fieldwork in the 
AVSZ area, the combination of the 1D-CNN and HyMap data yielded the most accurate 
lithological mapping results. Compared to the ML methods, the 1D-CNN has the ability 
to extract the hidden relationships in the HyMap data. Additionally, the DL methods 
are still limited, with one of the most important limitations being the large number of 
samples required.

Additionally, the performance of the DL and ML methods may be influenced by 
various factors, such as the choice of hyperparameters, the presence of outliers or noise 
in the data, and the quality and quantity of the training data. In general, due to the
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spectrum similarities induced by the comparable chemical and mineralogical compositions 
of the various lithological units, it is challenging to identify different lithological units 
using remotely sensed data [66]. Additionally, the results can be optimised by refining 
the hyperparameters of the SVM, RF, and KNN ML algorithms, and a grid search in a 
programming environment can be used to find the best hyperparameters. To sum up, even 
though the present study did not use 3D-CNN or 2D-CNN methods, the experimental 
results highlight the effectiveness of the 1D-CNN in enhancing lithological classification 
using hyperspectral HyMap imagery. Nevertheless, incorporating 3D-CNN models to 
hyperspectral imagery introduces increased complexity, resulting in a potentially longer 
computation time [67].

5. Conclusions

The current study evaluated the HyMap VNIR-SWIR bands for lithological classifica­
tion of the Ameln valley region at the eastern Kerdous inlier, Moroccan western Anti-Atlas, 
using the machine and deep learning approaches. The results of classification yielded a con­
siderable and acceptable overall accuracy in the majority of cases (>70%). The lithological 
mapping derived from the HyMap data gave more details on the three distinct zones and 
highlights the lithological boundaries more precisely compared to the geological map of 
Tafraout (1/100,000). The contact between the ultimate conglomerates and the basic series, 
and the basic series and the lower series, was clearly distinguished, with the transition 
between the Precambrian basement and the Palaeozoic cover being marked by several 
mineral occurrences within the western and central Anti-Atlas province.

The choice of hyperparameters, the presence of noise in the data, and the quantity of 
the training data are the most challenging tasks for the ML and DL classifiers. Furthermore, 
we can conclude that the choice of the right SVM kernel function for a given problem is 
not a simple task, and often requires experimentation with different types of SVMs' kernel 
functions to determine the best one. The LK-SVM and PK-SVM methods with the used 
parameters are suitable to be conducted on the HyMap data, with the aim of obtaining 
more accurate and detailed geological mapping compared to the RBF-SVM, KNN, and RF 
methods. It is suggested for future work to apply dimensionality reduction methods such 
as MNF before implementing machine or deep learning methods on the dataset if aiming 
to achieve the best visualization of the litho-units boundaries. To sum up, HyMap imagery 
is recommended for performing small scale lithological mapping in a semi-arid region 
presenting hydrothermal alteration occurrences. From a more comprehensive perspective, 
the LK-SVM, PK-SVM ML, as well as 1D-CNN DL methods coupled with high resolution 
hyperspectral data are suggested to achieve optimal lithological mapping results in arid 
and semi-arid regions. In future research, it is recommended that an approach could be 
established using deep learning techniques and an optimum band selection of HyMap data 
to improve the accuracy and efficiency of lithological classification and mineral exploration 
in the semi-arid regions around the world.
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Appendix A

Table A1. Average Jeffries-Matusita distances for AVZ1, AVZ2, and AVZ3 calculated within the 
HyMap scene of AVSZ (ascendant pair separation (Pair Sep) has been as well indicated).

AVZ1 XII3y  (1) Xoe (2) XI£, (3) q2e (4) XIIIm (5) - -

XII3y (1) 0 2.00000 2.00000 1.99903 2.00000 - -
Xo£ (2) 0 0 2.00000 1.99999 2.00000 - -
XIt, (3) 0 0 0 1.99779 1.99999 - -
q2e (4) 0 0 0 0 1.99999 - -

XIIIm (5) 0 0 0 0 0 - -

Pair Sep. 1.997790 1.999036 1.999995 1.999999 1.999999 1.999999 1.999999
(3 vs. 4) (1 vs. 4) (2 vs. 3) (3 vs. 5) (4 vs. 5) (2 vs. 4) (1 vs. 3)

AVZ2 Ad12b (1) Ad11a (2) Ad11b (3) XIIIS2 (4) XII2q (5) XII2S (6) XI£, (7)

Ad12b(1) 0 2.00000 2.00000 2.00000 2.00000 1.99999 2.00000
Ad11a (2) 0 0 2.00000 2.00000 2.00000 2.00000 2.00000
Ad11b(3) 0 0 0 2.00000 2.00000 2.00000 2.00000
XIIIS2 (4) 0 0 0 0 1.99802 1.99999 1.99980
XII2q (5) 0 0 0 0 0 1.99999 1.99996
XII2S (6) 0 0 0 0 0 0 2.00000
XI£, (7) 0 0 0 0 0 0 0

Pair Sep. 1.998016 1.999988 1.999968 1.999998 1.999999 1.999999 1.999999
(4 vs. 5) (4 vs. 2) (5 vs. 7) (5 vs. 6) (4 vs. 6) (1 vs. 6) (6 vs. 7)

AVZ3 Ad12b (1) Ad11a (2) Ad11b (3) XIIIS2 (4) XIIIS1 (5) X I£, (6) Xoe (7)

Ad12b(1) 0 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
Ad11a (2) 0 0 2.00000 2.00000 2.00000 2.00000 2.00000
Ad11b(3) 0 0 0 2.00000 2.00000 2.00000 2.00000
XIIIS2 (4) 0 0 0 0 1.99999 2.00000 1.99999
XIIIS1 (5) 0 0 0 0 0 1.99994 1.99999

XI£, (6) 0 0 0 0 0 0 1.99993
Xo£ (7) 0 0 0 0 0 0 0

Pair Sep. 1.99993 1.99994 1.99999 1.99999 1.99999 1.99999 1.99999
(6 vs. 7) (5 vs. 6) (5 vs. 7) (4 vs. 7) (4 vs. 6) (3 vs. 4) (1 vs. 7)

References
1. Filizzola, C.; Pergola, N.; Pignatti, S.; Tramutoli, V. Aerial remote sensing hyperspectral techniques for rocky outcrops mapping. 

Ann. Geophys. 2002, 45, 233-245. [CrossRef]
2. El Harti, A.; Bannari, A.; Bachaoui, M.; Aarab, E.; El-Ghmari, A. Etude spectroradiometrique des roches des Jebilet centrales 

(Maroc): Perspective d'utilisation de la teledetection hyperspectrale pour la cartographie geologique. Teledetection 2004, 4, 251-262.
3. Kruse, F.A.; Perry, S.L.; Caballero, A. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. 

Ann. Geophys. 2006, 4 9 ,1.
4. Azizi, H.; Tarverdi, M.; Akbarpour, A. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern 

Iran. Adv. Space Res. 2010, 46, 99-109. [CrossRef]
5. Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. 

Adv. Space Res. 2011, 47, 60-73. [CrossRef]
6. Pour, A.B.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore 

Geol. Rev. 2012, 44,1-9. [CrossRef]
7. Kokaly, R.F.; King, T.V.; Hoefen, T.M. Mapping the distribution of materials in hyperspectral data using the USGS Material 

Identification and Characterization Algorithm (MICA). In Proceedings of the 2011 IEEE International Geoscience and Remote 
Sensing Symposium, Vancouver, BC, Canada, 24-29 July 2011; pp. 1569-1572.

8. Savage, S.H.; Levy, T.E.; Jones, I.W. Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing: 
A case study from the Faynan copper mining district, Jordan. J. Archaeol. Sci. 2012, 39, 407-420. [CrossRef]

9. Ngcofe, L.; Minnaar, H.; Halenyane, K.; Chevallier, L. Multispectral and hyperspectral remote sensing: Target area generation for 
porphyry copper exploration in the Namaqua Metamorphic province, South Africa. S. Afr. J. Geol. 2013,116, 259-272. [CrossRef]

10. Kariuki, P.C.; Woldai, T.; Van Der Meer, F. Effectiveness of spectroscopy in identification of swelling indicator clay minerals. Int. J. 
Remote Sens. 2004, 25, 455-469. [CrossRef]

11. Pena, S.A.; Abdelsalam, M.G. Orbital remote sensing for geological mapping in southern Tunisia: Implication for oil and gas 
exploration. J. Afr. Earth Sci. 2006, 44, 203-219. [CrossRef]

https://doi.org/10.4401/ag-3504
https://doi.org/10.1016/j.asr.2010.03.014
https://doi.org/10.1016/j.asr.2010.08.021
https://doi.org/10.1016/j.oregeorev.2011.09.009
https://doi.org/10.1016/j.jas.2011.09.028
https://doi.org/10.2113/gssajg.116.2259
https://doi.org/10.1080/0143116031000084314
https://doi.org/10.1016/j.jafrearsci.2005.10.011


Minerals 2023,13, 766 20 of 22

12. Shebl, A.; Abdellatif, M.; Hissen, M.; Abdelaziz, M.I.; Csamer, A. Lithological mapping enhancement by integrating Sentinel 2 
and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf. 2021,105,102619. 
[CrossRef]

13. Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMapTM airborne hyperspectral sensor: The system, calibration 
and performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6-8 October 1998; 
pp. 37-42.

14. Bedini, E.; Van Der Meer, F.; Van Ruitenbeek, F. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar 
caldera, southeast Spain. Int. J. Remote Sens. 2009, 30, 327-348. [CrossRef]

15. Tripathi, M.K.; Govil, H. Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mapping. Heliyon 2019,
5, e02931. [CrossRef] [PubMed]

16. Adiri, Z.; El Harti, A.; Jellouli, A.; Maacha, L.; Azmi, M.; Zouhair, M.; Bachaoui, E.M. Mapping copper mineralization using EO-1 
Hyperion data fusion with Landsat 8 OLI and Sentinel-2A in Moroccan Anti-Atlas. Geocarto Int. 2020, 35, 781-800. [CrossRef]

17. Sharma, L.K.; Verma, R.K. AVIRIS-NG hyperspectral data analysis for pre-and post-MNF transformation using per-pixel 
classification algorithms. Geocarto Int. 2020, 37, 2083-2094. [CrossRef]

18. Bedini, E. Mapping alteration minerals at Malmbjerg molybdenum deposit, central East Greenland, by Kohonen self-organizing 
maps and matched filter analysis of HyMap data. Int. J. Remote Sens. 2012, 33, 939-961. [CrossRef]

19. Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Himyari, S.M.; Hamzaoui, A.; Bensalah, M.K.; Benaouiss, N.; Hashim, M. HyMap 
imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, 
Morocco). J. Spat. Sci. 2023,1-22. [CrossRef]

20. Beiranvand Pour, A.; Park, T.-Y.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor 
satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 
10, 1186. [CrossRef]

21. Liu, H.; Wu, K.; Xu, H.; Xu, Y. Lithology classification using TASI thermal infrared hyperspectral data with convolutional neural 
networks. Remote Sens. 2021,13, 3117. [CrossRef]

22. Shirmard, H.; Farahbakhsh, E.; Muller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for 
mineral exploration. Remote Sens. Environ. 2022,268,112750. [CrossRef]

23. Karimzadeh, S.; Tangestani, M.H. Evaluating the VNIR-SWIR datasets of WorldView-3 for lithological mapping of a metamorphic- 
igneous terrain using support vector machine algorithm; a case study of Central Iran. Adv. Space Res. 2021, 68, 2421-2440. 
[CrossRef]

24. Shirmard, H.; Farahbakhsh, E.; Heidari, E.; Beiranvand Pour, A.; Pradhan, B.; Muller, D.; Chandra, R. A comparative study of 
convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data. 
Remote Sens. 2022,14, 819. [CrossRef]

25. Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex 
in Inner Mongolia, China. Remote Sens. 2018,10, 638. [CrossRef]

26. Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M. A comparison study of different kernel functions for SVM-based 
classification of multi-temporal polarimetry SAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 281. [CrossRef]

27. Najafi, P.; Feizizadeh, B.; Navid, H. A comparative approach of fuzzy object based image analysis and machine learning techniques 
which are applied to crop residue cover mapping by using Sentinel-2 satellite and UAV imagery. Remote Sens. 2021, 13, 937. 
[CrossRef]

28. Zhang, C.; Yi, M.; Ye, F.; Xu, Q.; Li, X.; Gan, Q. Application and Evaluation of Deep Neural Networks for Airborne Hyperspectral 
Remote Sensing Mineral Mapping: A Case Study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China. Remote 
Sens. 2022,14, 5122. [CrossRef]

29. Pal, M.; Rasmussen, T.; Porwal, A. Optimized lithological mapping from multispectral and hyperspectral remote sensing images 
using fused multi-classifiers. Remote Sens. 2020,1 2 ,177. [CrossRef]

30. Okwuashi, O.; Ndehedehe, C.E. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020, 
103,107298. [CrossRef]

31. Bachri, I.; Hakdaoui, M.; Raji, M.; Teodoro, A.C.; Benbouziane, A. Machine learning algorithms for automatic lithological mapping 
using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS Int. J. 
Geo-Inf. 2019, 8, 248. [CrossRef]

32. Shirazi, A.; Hezarkhani, A.; Beiranvand Pour, A.; Shirazy, A.; Hashim, M. Neuro-Fuzzy-AHP (NFAHP) Technique for Copper 
Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Geological Datasets in the 
Sahlabad Mining Area, East Iran. Remote Sens. 2022,14, 5562. [CrossRef]

33. Choubert, G. Histoire geologique du domaine de l'Anti-Atlas. Notes Mem. Serv. Geol. Maroc 1952,100, 77-172.
34. Malek, H.A.; Gasquet, D.; Bertrand, J.-M.; Leterrier, J. Geochronologie U-Pb sur zircon de granitoides eburneens et panafricains 

dans les boutonnieres proterozoiques d'Igherm, du Kerdous et du Bas Draa (Anti-Atlas occidental, Maroc). Comptes Rendus 
L'academie Sci.-Ser. IIA-Earth Planet. Sci. 1998, 327, 819-826. [CrossRef]

35. Ouanaimi, H.; Soulaimani, A. Circuit C5, Anti-Atlas central. Nouv. Guides Geologiques Min. Maroc 2011, 3, 73-122.

https://doi.org/10.1016/j.jag.2021.102619
https://doi.org/10.1080/01431160802282854
https://doi.org/10.1016/j.heliyon.2019.e02931
https://www.ncbi.nlm.nih.gov/pubmed/31844772
https://doi.org/10.1080/10106049.2018.1544287
https://doi.org/10.1080/10106049.2020.1801857
https://doi.org/10.1080/01431161.2010.542202
https://doi.org/10.1080/14498596.2023.2172085
https://doi.org/10.3390/rs10081186
https://doi.org/10.3390/rs13163117
https://doi.org/10.1016/j.rse.2021.112750
https://doi.org/10.1016/j.asr.2021.05.002
https://doi.org/10.3390/rs14040819
https://doi.org/10.3390/rs10040638
https://doi.org/10.5194/isprsarchives-XL-2-W3-281-2014
https://doi.org/10.3390/rs13050937
https://doi.org/10.3390/rs14205122
https://doi.org/10.3390/rs12010177
https://doi.org/10.1016/j.patcog.2020.107298
https://doi.org/10.3390/ijgi8060248
https://doi.org/10.3390/rs14215562
https://doi.org/10.1016/S1251-8050(99)80056-1


Minerals 2023,13, 766 21 of 22

36. Choubert, G.; Faure-Muret, A. Les correlations du Precambrien, Anti-Atlas occidental et central. Colloque international sur les 
correlations du Precambrien: Agadir-Rabat, 3-23 mai 1970. Livret guide de l'excursion: Anti-Atlas occidental et central. Notes 
Memoires Serv. Geol. Maroc 1970, 229, 259.

37. Boudzoumou, F.; Vandamme, D.; Affaton, P.; Gattacceca, J.; Ouazzani, H.; Badra, L.; Mahjoubi, E. Evidence of a Permian 
remagnetization in the Neoproterozoic-Cambrian Adoudounian Formation (Anti-Atlas, Morocco). Bull. De L'institut Sci. Rabat 
Sect. Sci. De La Terre 2012, 34,15-28.

38. Soulaimani, A. Interactions Socle/Couverture Dans l'Anti-Atlas Occidental (Maroc): Rifting Fini-Proterozoique et Orogenese 
Hercynienne. Ph.D. Thesis, Caddi Ayyad University, Marrakech, Morocco, 1998. (In French)

39. Hajaj, S.; El Harti, A.; Jellouli, A. Assessment of hyperspectral, multispectral, radar, and digital elevation model data in structural 
lineaments mapping: A case study from Ameln valley shear zone, Western Anti-Atlas Morocco. Remote Sens. Appl. Soc. Environ. 
2022, 2 7 ,100819. [CrossRef]

40. Richter, R.; Schlapfer, D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic 
correction. Int. J. Remote Sens. 2002, 23, 2631-2649. [CrossRef]

41. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual 
Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27-29 July 1992; pp. 144-152.

42. Geron, A. Hands-on machine learning with scikit-learn and tensorflow: Concepts. Tools Tech. Build Intell. Syst. 2017.
43. Atkeson, C.G.; Moore, A.W.; Schaal, S. Locally weighted learning. Lazy Learn. 1997,11-73.
44. Garg, R.; Kumar, A.; Prateek, M.; Pandey, K.; Kumar, S. Land cover classification of spaceborne multifrequency SAR and optical 

multispectral data using machine learning. Adv. Space Res. 2022, 6 9 ,1726-1742. [CrossRef]
45. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In Proceedings of the on the Move to 

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, 
and ODBASE 2003, Catania, Italy, 3-7 November 2003; pp. 986-996.

46. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]
47. Kumar, C.; Chatterjee, S.; Oommen, T.; Guha, A. Automated lithological mapping by integrating spectral enhancement techniques 

and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. 
Int. J. Appl. Earth Obs. Geoinf. 2020, 8 6 ,102006. [CrossRef]

48. Cardoso-Fernandes, J.; Teodoro, A.; Lima, A.; Roda-Robles, E. Evaluating the performance of support vector machines (SVMs) 
and random forest (RF) in Li-pegmatite mapping: Preliminary results. In Proceedings of the Earth Resources and Environmental 
Remote Sensing/GIS Applications X, Strasbourg, France, 10-12 September 2019; pp. 146-157.

49. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222. [CrossRef]
50. Breiman, L. Random Forests-Random Features; Technical Report 567; Department of Statistics, UC Berkeley: Berkeley, CA, USA, 1999.
51. Wang, Z.; Tian, S. Ground object information extraction from hyperspectral remote sensing images using deep learning algorithm. 

Microprocess. Microsyst. 2021, 8 7 ,104394. [CrossRef]
52. Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of lithological mapping based on advanced hyperspectral imager (AHSI) imagery 

onboard Gaofen-5 (GF-5) satellite. Remote Sens. 2020,12, 3990. [CrossRef]
53. Dong, Y.; Yang, C.; Zhang, Y. Deep metric learning with online hard mining for hyperspectral classification. Remote Sens. 2021, 

1 3 ,1368. [CrossRef]
54. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on 

convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251. [CrossRef]
55. Lyngdoh, R.B.; Sahadevan, A.S.; Ahmad, T.; Rathore, P.S.; Mishra, M.; Gupta, P.K.; Misra, A. AVHYAS: A Free and Open Source 

QGIS Plugin for Advanced Hyperspectral Image Analysis. In Proceedings of the 2021 International Conference on Emerging 
Techniques in Computational Intelligence (ICETCI), Hyderabad, India, 25-27 August 2021; pp. 71-76.

56. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 
2015, 2015, 258619. [CrossRef]

57. Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2008, arXiv:2008.05756 2020.
58. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 8 0 ,185-201. [CrossRef]
59. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991,37,35-46. 

[CrossRef]
60. Stehman, S. Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm. Eng. Remote Sens. 

1996, 62, 401-407.
61. John, A.R.; Xiuping, J. Remote Sensing Digital Image Analysis an Introduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1999; 

pp. 10-38. [CrossRef]
62. Adiri, Z.; Lhissou, R.; El Harti, A.; Jellouli, A.; Chakouri, M. Recent advances in the use of public domain satellite imagery for 

mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geol. Rev. 2020,117,103332. [CrossRef]
63. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040-53065. [CrossRef]
64. De Boissieu, F.; Sevin, B.; Cudahy, T.; Mangeas, M.; Chevrel, S.; Ong, C.; Rodger, A.; Maurizot, P.; Laukamp, C.; Lau, I. Regolith- 

geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia. Int. J. Appl. 
Earth Obs. Geoinf. 2018, 64, 377-385. [CrossRef]

https://doi.org/10.1016/j.rsase.2022.100819
https://doi.org/10.1080/01431160110115834
https://doi.org/10.1016/j.asr.2021.06.028
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jag.2019.102006
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1016/j.micpro.2021.104394
https://doi.org/10.3390/rs12233990
https://doi.org/10.3390/rs13071368
https://doi.org/10.1109/TGRS.2016.2584107
https://doi.org/10.1155/2015/258619
https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1007/978-3-662-03978-6
https://doi.org/10.1016/j.oregeorev.2020.103332
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1016/j.jag.2017.05.012


Minerals 2023,13, 766 22 of 22

65. Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Roda-Robles, E. Semi-automatization of support vector machines to map lithium 
(Li) bearing pegmatites. Remote Sens. 2020,12, 2319. [CrossRef]

66. Othman, A.A.; Gloaguen, R. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of 
different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Sci. 2017,146, 90-102. [CrossRef]

67. Medus, L.D.; Saban, M.; Frances-Villora, J.V.; Bataller-Mompean, M.; Rosado-Munoz, A. Hyperspectral image classification using 
CNN: Application to industrial food packaging. Food Control. 2021,125,107962. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12142319
https://doi.org/10.1016/j.jseaes.2017.05.005
https://doi.org/10.1016/j.foodcont.2021.107962

