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Abstract: We investigate the dynamics of high energy dual regime unidirectional Erbium-doped fiber 
laser in ring cavity, which is passively Q-switched and mode-locked through the use of an environmentally 
friendly graphene filament-chitin film-based saturable absorber. The graphene-chitin passive saturable 
absorber allows the option for different operating regimes of the laser by simple adjustment of the input 
pump power, yielding, simultaneously, highly stable and high energy Q-switched pulses at 82.08 nJ and 
1.08 ps mode-locked pulses. The finding can have applications in a multitude of fields due to its versatility 
and the regime of operation that is on demand.
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1. Introduction

The 1.5 |j.m band is best know n as the standard telecom m unication band, of w hich 
the losses in the silica fiber w ould be m inim al com pared to shorter or longer w avelength 
bands. M utually, m ode-locking operations in this region p lay  an irreplaceable role in 
com m ercial and non-com m ercial fields, including in metrology and holography [1- 3 ]. The 
active approach to achieving a phase-locked pulse in a laser uses an external m odulator that 
aids in m odulating the intracavity losses, involving m ore com ponents and com prom ising 
the flexibility and robustness of the laser [4] . Alternatively, the passive approach uses the 
nonlinearity  of a saturable absorber (SA ) through real optical m aterials w ith  nonlinear 
absorption characteristics, making it simpler and more flexible/robust in design. SAs have 
seen usage in  the generation of either passive Q -sw itching or m ode-locking, bu t rarely 
do both happen sim ultaneously  in one laser operation. N either are to be confused w ith  
Q -sw itched m ode-locking, w hich often  leads to unstable lasing operation (also  know n 
as Q -sw itching instabilities), hence its lack of use in applications, and sim ultaneous Q - 
switching and mode-locking not only offer regime switchability but also provide the option 
of the application of both  w henever necessary. Since Q -sw itching yields a larger pulse 
energy w hile m ode-locking produces narrow er pulse w idth, applications can u tilize the 
advantage of both  w ith  ju st a sim ple adjustm ent. Som e researchers have reported Q - 
sw itched and m ode-locked lasing, bu t this is often w hen using a com bination of both  
passive SA  and an intracavity  polarization device to sw itch  betw een the regim es [5- 9 ]. 
A nother Q -sw itched and m ode-locked erbium -doped fiber laser has been  reported using 
gadolinium  oxide-based passive SA, although it requires cavity length adjustm ent in order 
to obtain  stable phase-locked lasing [10]. Som e SA s have also been  reported to produce

Micromachines 2023, 1 4 ,1048. https://doi.org/10.3390/mi14051048 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://orcid.org/0000-0001-9969-8792
mailto:sn.fatin@utm.my
mailto:azizi.kl@utm.my
mailto:wira@utm.my
mailto:hafizal.kl@utm.my
mailto:harith@um.edu.my
mailto:faizalis@um.edu.my
mailto:khairilanwar@miros.gov.my
mailto:fauzan.kl@utm.my
https://www.mdpi.com/article/10.3390/mi14051048?type=check_update&version=3
https://doi.org/10.3390/mi14051048
https://doi.org/10.3390/mi14051048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi14051048
https://www.mdpi.com/journal/micromachines


Micromachines 2023,14,1048 2 of 17

both Q-switched and mode-locked lasers using this method, but with significantly reduced 
frequency [7,11- 13]. This w ork, interestingly, w ill report on the sole use of a passive SA 
inside a simpler cavity device, with no involvem ent of any polarization controller or cavity 
adjustm ent to produce a Q-sw itched and m ode-locked laser simultaneously.

Tw o-dim ensional (2D ) layered m aterials are am ong the m ost w ell exploited  SAs, 
ow ing to their h igh nonlinearity, h igh saturable absorption, and h igh  dam age threshold, 
w ith graphene and carbon nanotubes (CNTs) still spearheading the generation of ultrashort 
pulses due to their perform ance reproducibility  and  their facile fabrication. Their sub­
picosecond relaxation tim e is beneficial because it m akes them  a reliable alternative to the 
conventional use of a sem iconductor saturable absorber m irror (SESAM ), w hich requires 
a com plicated  post-fabrication process. C om pared to CNT, graphene w orks as a fast SA 
ow ing to its relaxation tim e of approxim ately  100-200  fs, and, thus, is m ore capable of 
having high a m ode-locking pum p pow er threshold. A dditionally, there is a lim itation 
on the w orking w avelength of the d iam eter-dependent CNTs. H aving an independent 
w avelength absorption also m eans that graphene resonantly absorbs light [10] regardless 
of the w avelength range, which makes it more versatile and more flexible in multiple fields 
of applications.

A lthough graphene has been  extensively  exploited in term s of its perform ance pa­
ram eters in the years that follow  its first dem onstration as SA  in 2009 [14], such as the 
m axim um  repetition rate, shortest pulse w idth, polarization independent m ode-locking, 
etc., and although its developm ents or related new  findings congested  som ew hat after 
2015, the optim ization and alternatives to its fabrication are still v ital to obtain  an ideal 
m ode-locked device and explore greener alternatives in order to achieve all-fiber laser 
m ode-locking operations. It is w orth  noting that graphene is the p ioneer to m any of the 
em erging SAs, too, and still stands out today due to its superiority and its versatility [15,16]. 
To m ake incorporating SA  devices in fiber laser cavities easier, regardless of the base m a­
terial, researchers have usually opted for host polym ers, such as polyvinyl alcohol (PVA) 
and polyethylene oxide (PEO ) [17- 20] . In order not to be lim ited by synthetic sources, 
the synthesis of graphene film  in  this current w ork m ade use of chitin  in an attem pt to 
achieve cost effectiveness and production and to also yield scalability. Produced from  
natural resources, such as plants and crustacean shells, chitin is the second m ost abundant 
natural product that has proved feasible to manufacture at a low cost. In telecom m unication 
applications, especially, a polym er w ith C-F overtones, such as chitin, w ith low absorption 
losses at the desired w avelength, is better in term s of stability [21].

We have reported the successful im plem entation of a biodegradable and biocompatible 
chitin in a graphene-based SA device in the eye-safe region [22], and this paper will explore 
both  its Q -sw itching and m ode-locking ability  in the telecom m unication region, relying 
on the SA 's low  saturation intensity  and high therm al dam age resistance w ith  no cavity 
adjustment. This study can provide benefits to the application of light detection and ranging 
(LID A R), in  w hich short pulses of light allow  for a very  precise distance m easurem ent, 
especially  in  com p act and lightw eight L ID A R  system s, such as autonom ous vehicles, 
drones, and robots. Additionally, pulsed fiber lasers, w hich  are highly  reliable w ith  low  
noise in the telecom m unication field (as offered by an EDFL), are w ell-suited to harsh and 
rem ote environm ents.

2. Materials, Methods and Characterizations

The g rap h en e-ch itin  film  used in this study w as fabricated follow ing the sam e pro­
cedure as reported in [22,23]. The graphene used in  this study w as yielded from  a 3D  
printer filament obtained online from blackmagic3d. The filament of diameter 1.75 mm has 
a volum e resistivity of 1 ohm-cm. Through a 3D printer nozzle at 210 °C, the filament was 
extruded w ith  a resulting d iam eter of 400 ^m, m aking it d issolve easier in  the follow ing 
step. A  total of 25 m g of the filam ent w as m ixed w ith  1 m L of tetrahydrofuran (TH F), 
producing a graphene-TH F suspension upon vigorous u ltrasonic m ixing. C hitin, on the 
other hand, w as produced separately. Fresh oyster m ushroom s (Pleurotus ostreatus) w ere
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extracted to produce the chitin  and 42 g of nanofibers w ere successfully  extracted from  
3 kg of w hole mushrooms. Initially, the mushrooms were blended for 5 min using a regular 
dom estic b lender before undergoing hot w ater extraction to rem ove any w ater-soluble 
com ponents. Follow ing that, the Pleurotus ostreatus tissues u nderw ent alkaline depro- 
teinization treatm ent ( 1M N aO H ) at 65 °C  for 3 h. This is effective at rem oving proteins, 
lipids, and alkali-soluble glucan. W ater w as then added to the slurry in  order to increase 
its volum e to 1.5 l. The suspension w as stirred for 30 m in at 85 °C. Through 15 m in of 
centrifugation (ThermoScientific, Sorvall Legend RTR), at 7000 rpm, the soluble componepts 
and excess w ater weae rem oved to produce precipitate (cake), w hich  w as tiien soaked in 
alkaline solution. The suspension w as heated to 65 °C  for 3 h  w hile stirring; continuously 
before it w as neutralized by re-centrifugation in  excess water. The neutralized cake w as 
then re-suspended in  w ater (1:40 w / v  ratio) and dispersed by  final b lending for another 
1 min. The suspension w as stored at 4 °C  uniil further use. The produced graphene-TH F 
suspension and chitin was mixed together with a one-to-one (1:1f ratio, totall°ng up to 5 mL. 
A 1-h ultrasonication prociss w es then conducted to break down any agglomeration and to 
stack graphene (-in ce graphene is know n to h a v r a  strong 'Van der W aal cohesive force), 
producing a w ell-dispersed graphena in chitin. A  thin yet sturdy film  w as obtained aftec 
a 36-h am bient tem perature drying in  a petri dish, revealing an SA  w ith  50 |im thicknens, 
as m easured using a 3D  laser m icroscope. Sturdy film  -was obtained after  ̂36 h am bient 
tem perature drying process in e  petri dish.

The g rap hene-ch itin  fflm w as ffrst characterized using field em ission scanning elec­
tron m icroscope (FESEM ) and R am an spectroscopy for their physical m orphologies and 
signature peak profiles, respectively, as show n in Figure 1, from  w hich  the flaky and 
fibrous structure of chitin  are clearly visible am ong the eventy d istributed graphene it­
self. As com pared to the free-standihg chitin  film , tire g rap h en e-ch itin  film  w as visibly  
leas flakan, an iridioiiior of m eohanical im provem ent, as m any has reported before [24,25]. 
W hile chitin  did not exhibit any peak upon the excitation in R am an spectroscopy, both  
graphene and graphene-chitin  m atched w ell w ith  the specified R am an peak proffles for 
graphene [26], w hich  indicates th esu ccessfu l incorporation of graphene in the host poly­
mer [27,28]. The calculated G/2D intensity ratio of less than 2 indicates that the gr apl'iene is 
a m ultilayer graphene.
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Figure 1. Cont.
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Figure 1. FESEM images and Raman spectrum of (a,b) pure chitin film, (c,d) graphene filament slurry, 
and (e,f) graphene-chitin film. Adapted with permission from Elsevier [23].

A  tw in-balanced detector, as illustrated in Figure 2a, w as then used to m easure 
the nonlinaar optical response of tire g rap h en e-ch itin  film , of w hich  the mode-locking; 
w as sourced through a 1.5 ^m Elm o Fem tosecond Erbium  Laser (M enloSystem s) w ith  a 
pulse w idth and a repetition rate of <150 fs and 100 M hz, respecgively. Figure 2 show s 
the m odulation depth of approxim ately  15.08% , w hich w as m easured u sing a saturable 
absorption m odel [2a]— A  value eonsidered high for the; case of m ulti-layhred graphhne, 
w hich is know n to have a low  m odulation depth [30,31]. The saturation intensity  w as 
m easured at 0.01 MWOcm2 w ith a saturable loss of around 85%.
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Figure 2. Nonlinear measurement of graphene-chitin film: (a) twin balanced detector setup), 
(b) modulation depth measurement.

The transm ission and absorption of the graphene-chitin film w as recorded at 39% and 
42%, respectively, in the 1500 em  region, as shown in Figure 3a,b. Visible transmittance can 
be observed from  1000 nm  to 2 0 0 0 n m  thanks tee the zero-bandgap property of graphene, 
which contributed to its wideband absorption ability. The steody and continuoue obsorption 
of at least C2%e thsoughout the near infrared region w as higher than soveral reported 
absorp tion i of graphene based SA s [32,33]. Tha Tauc plot, ar show n in Figure 4, show s 
that the section of the straight line m eets at zero absorption coefficient and photon energy, 
concurring to the theoretical v alue of 0.289 eV of g rap h ere electronic band.

Wavelength (nm)

Figu re 3. Cont.

(a )
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Wavelength (nm)

(b)
Figure 3. UV-Vis-NIR (a) transmission and (1?) absorption spectrum of graphene-chitin.

E n ergy  (eV)

Figure 4. Tauc plot of graphene-chitin film.

/Additionally-, the thickness of the grap h en e-ch itin  film  w as investigated and found 
to be approxim ately 50 ^m, as show n in  Figure 5 . A cting as a fast optical sw itch that can 
rapidly change its absorption properties in  response to changes in the incident optical 
pow er, the thickness of the SA  film  can affect tlie threshold pow er reqrnred for the SA 
to saturate as w ell as tbe duration of the Q -sw itched pulae itself, w hich can be longer 
w ith  thicker film. This, how eaer, can Use affected by other faciors, in clu d in s the cavity 
length, the pum p pow er, and the SA  m aterial itself. The; chem ical analysis of the sam ple, 
besides, w as done u sin a  EDS. The secondary aad  baekscattered alectrons w ere used in 
im age form in s w hile X-rays w ere used to idgntify and quantify  the chenricals present at 
the selected test suriace. From Figure 6, it can be seen that the graphene-chitin  sample was 
m ade up oi m ostly  carbon (43.44°%) and oxygen (20.44°%). The M in ot elem ent of N a w as 
also detected, w hich w as due to contam ination duoing the hanSlinh of the film prior to the 
characterization, and this can be caused sim ply by skin contact of the handler with the film.
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Figure5 . Thickness measurement of the graphene-chitin film.

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Plus Det

Figure 6. Chemical composition of graphene-chitin film.

3. Experimental Setup

The experim ental setup of the Erbium -doped fiber laser (EDFL) is show n in Figure 7 . 
A  1.5 m  long Erbium -doped fitter (ED I3) w as used as the gain m edium . The setup also 
consiste d o f a 980/1550 nm w avelength division multiple xer (WDM ), an isolator, the newly 
fabricated graphene as SA, and an 95/5 output coupler, arranged in a  ring configuration. 
The core and cladding d iam efer of the ED F are 8 |im and 125 |im, respectively. The 
num erical aperture of the ED F is 0.16 and has Erbium  ion absorptions of 45 dB/m  at 
1-4850 nm and 80 dB/m at 15e0 ran. The eD F w as pumped by a 980 nm laser diode (LD) via 
the W DM. The uee of an isolator ensured unidieectional propagation of the oscillating laser. 
The output of the laser w as fspped from -tlie cavity oh rough a 95/5 couplar w hile keeping 
95%  of the l ig t t  to oscillate in  the ring cavity. The spectrum  of the ED FL w as inspected 
by using the optical sp ectrum  analyzer (OSA) (Yokogawa A G 6370B, Tokyo, Japan) w ith a
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spectral resolution of 0.05 nm , w hereas the m ixed dom ain oscilloscope (O SC) (Tektronix 
M D 03024, Beaverton, OR, USA) was used to observe the output pulse train and the signal- 
to-noise ratio (SN R) via a 460 kH z bandw idth photo-detector (PD ) (Thorlab D ET01C FC , 
Newtow n, NJ, USA). The fabricated graphene-chitin  film w as placed in betw een two fiber 
ferrules w ith the aid of an index-m atching gel before its integration in the fiber laser cavity.

Pump Laser 
(980 nm)

Figure 7. Experimentall setup of EDFL incorporating graphene-chitin film-based SA.

4. Results and Discussions

A  w avelength shift of around 7.05 nm and a w idening of the spectral band of approx­
im ately  1.03 nm  w as observed u pon the insertion of the graphene-chitin  SA , as show n 
in  Figure 8, w hich  can be attributed to the insertion loss. The change in the refractive 
inden of the g raphena-chitin  as it transM ons from  a low  to a h igh intensity  state san  also 
cause the w avelengtb  shift i A t higher input pum p power, the SA  caturates, resulting in 
the decrease of its refractive index, causing a shorter resonance wavelength, as observed in 
Figure; b. Additionally, the broader spectrum  m ight result from the nonlinearity of the SA 
itself, causing a degree of loss to the cavity upon its inse rtion [34,35].

W avelength (nm )

Figure 8!. Optical spectrum of the EDFL before and after graphene-chitin SA integration.
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The input pump power was then increased steadily, recording a Q-switched operation 
as the pum p pow er reached 80.63 mW , and it rem ained steady up until 163.16 mW , w ith 
no dam age inflicted on the film , indicating that the film  w as able to w ithstand high input 
pow er and can self-start a Q -sw itched lasing at low  power.

Typical Q -sw itched laser output train and its single envelope under the m axim um  
input pum p pow er o f 163.16 m W  is show n in  Figure 9a,b. The repetition rate o f the 
Q -sw itched pu lse train  w as 88.97 kH z, w ith  corresponding shortest pulse duration of 
1.54 i s  and pu lse-to-pulse separation of 11 ills. The variations o f the Q -sw itching pulses 
w ith  the increasing pum p pow er w ere observed and recorded in Figure I 0a,b. Increasing 
the input pum p power from 80.63 m W  to 163.16 m W  caused the repetition rate 0o increase 
from  14.49 kH z to 88.97 kH z w hile the pulse w idth w as reduced from  12 .08 i s  to 1.54 i s ,  
w hich resulted from  the increase of the pum p rate o f  the upper faser level.

40 60
Time (fis)

100

(a) (b)

Figure 9. Q-switched pulsed train of -tine granhene-chitin based EDFL: (at OSC trace with pulse 
separanion of 11.24 |is; (b) Single pulseenvelope with a pulse width of 1.54 |is.

14

12

10

8

6

4

2

0

Pump Power (mW)

(a) (b)

Figure 10. Q-switchrd pulsed train trend of the graphene-chitin based EDFL: (a) Repetition rate and 
pulse width vs the input pump power; (b) Peak power and pulse energy vs the input pump power.

The pulse w idth  obtained w as low er than m any of the previously reported single­
regim e Q -sw itched operation using graphene-PV A  based Sas, and it wao com parabte to 
the one em ploying a graphene-sifica hybrid w aveguide and optically deposited graphene 
oxide [32- 34]. It was also lower than those reported using M Xenes snd M AX phaso [35- 39]. 
The calcu lated  instantaneous peak pow er and pu lse energy w as observed to follow  the 
upw ard trand in  w hich the peak pow er and the pulse energy m axed (out at 53.3 m W  and 
82.08 nJ, respecttvely. The recorded pulse anergy is h igher than the (one reported  using
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SW CNT SA via evanescent field interaction as well as M Xenes and M AX phases [35- 39]. A 
high SN R of 57 dB w as obtained at the m axim um  repetition rate of 88.97 kHz, as shown in 
Figure 11, wherein no changes or drifts were observed in the spectral widths and frequency 
stability, indicating high laser operation stability. This is supported further by a long-term  
stability test of over 6 h, from  w hich the laser spectra and the pulse train w ere m onitored 
every  1 h. W ith steady output intensity  and no changes to the central w avelength  of the 
output spectrum , a highly stable laser operation w as achievede This can be seen in the 6 h 
long observation of the optical spectrum  and pulse train  in Figure 12a,b, respectively  in 
w hich the evolution at each hour represented by the different eaioss show ed no obvious 
m odulations, from hour one (purple) to hour 6 (orange).

s  
sa

e
Si

-30

-50

-70

-90

-110
0 100 300200

Frequency (kHz)

Figure 11. RFSA measugomsnecO dte ^apOene-clhitin film besed EDFL, el SNR of 57 dB.

400

(a)

Figure 12. The stability of the output spectrum and pulse train for graphene-chitin based SA as 
passive Q-switcher over 6 h at a 1-h interval.

As the pum p pow er increased further than 163.16 mW, the pulse train observed in 
the oscilloscope began to becom e unstable, and by the point that the pump power reached
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167.75 mW, a m ode-locking operation can be seen to start taking over, though w ith a very 
unstable operation. At a high pumping level, the thermal accum ulation and supersaturation 
of the SA produced a sharp decrease in the transm ission of the laser pulse passing through 
the SA , leading; to the generation nf short pulses [9,40]. Eventually, a t 172.33 mW, a 
self-started stable m ode-locked operation w as obtained due to energy quantization, w ith 
no need for polarization state ad justm ent. G raphene-based SA  can be used for both  Q- 
switching and m ode-locking operations. During (2-switching, the graphene SA is opsrated 
in  a nonlineer absorption regim e, w hile during m ode-locking, it is operated In a linear 
abs orption regim e. G raphrne's ab ility  to generate electron-hole pairs and shrift tha Ferm i 
level relative to the Dirac point is responsible for both its nonlinear and its linear absorption 
behavior. G raphene's fast response tim e and strong nonlinear absorption m ake it a good 
sw itch, w hile its linear abnorption response m akes it a good m odulator for inducing mode 
locking. The increase in pum p pow er and m atching sound-trip time of the laser pulse and 
the com p ensate. fiCer dispersion can drivathe laser cavity into a regime of high energu an9 
short pulses, leading to fast and phase-locked em ission. Polarization controllers, although 
helpful in controlling the polarization of the laser output, and, thus, helping to obtain the 
m ode-locked operation ire m ultiple w orks2 does add to the com plexity  of the fitter k s e r  
system  and increane the system 's insertion loss. The lim ited range of ad justm ent o f the 
polarization controller also limits its usefulness in certain appiications [ f l -4 3 ] . The optical 
spuctrum af the mode-locked pulse is depicted in Figure 13, w ith the resolution oi the OSA 
set at 0.02 nm . The central w avelength of the spectrum  w as at 1562.23 nm , w ith  a w ide 
3 dB bandw idth m easured at approximately. 10.26 nm.

E ca

o
c .
-

&s
O

1530 1540 1550 1560 1570 1580 1590 1600
Wavelength (nm)

Figure 13. Optical spectium of tine. soliton mode-locked EDFL based on graphene-chitin film.

The central w avelength slightly shifted from  the continuous w ave (CW ) of the laser 
cavity w hich w as initially at 1562.4C nm, mainly due to the loss introduced by the insertion
ol the SA. ieveral pairs of Kally sidebands can ba observed from the spectrum, indicating a 
clear characteristic of a  traditional neeative dispersion solitoe w herein the group "velocity 
of the signal in the fiber is h igher at a shorter w avelength. This resulted in a stable pulse 
that m aintained its shape and its am plitude as it propagated through the fiber due to the 
balance betw een non-linear effectr and dispersion. W ith h igh peak pow er as one o f ite 
characteristics, this explains w hy the peak power of several m agnitudes is h ith er than that 
of Q -sw itching operation [44- 46], and this is a neceesity in  optical com m unication w here 
efficient data transm ission requires high power.

The m ode-locked pulse w as observed to be stable from the threshold pum p pow er of 
172.33 mW  to the m axim um  pump power of 1.81.50 mW. The usual limitation of film-based
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SA  in  w ithstanding high inp ut pow er [47,48] w as not observed in  this study due to the 
high therm al dam age o f graphene and chitin , w hich have higher therm al stability w hen 
compared to conventional polymers such as PEO and PVA [49- 51]. Additionally, exposed to 
higher temperature, the harmful degradation products of synthetic polymers, such as toxic 
gases, can be avoided as chitin w hen degraded and w ill break dow n into chitosan, w hich 
has been reported to happen at a temperature between 200 °C  and 300 ° C [52,53 ]. The pulse 
train is presented  in  Figure 14a w ith  a uniform  pu lse-to-pulse in terval o f approxim ately  
38 ns, w hich w as consistent w ith  the cavity round-trip tim e. The fundam ental frequency 
o f 2h.11 M H z w as found to be stable at the m ode-locking state w hile concurring to the 
total cavity length of around 8 m. Figure 14b shows the autocorrelation trace at the pump 
pow er o f C81.50 mW. By applying sech2 fitting, the pu lse duration at its FW H M  w as 
estim ated  to be about 0.70 pe, resulting in  a pu lse duration of 1.C8 ps (t f w h m /1.54). The 
autocorrelation trrce  revealed thar the result o f the experim ont follow s the sech2 fitting 
closely. The calcu lated  output pow er and pulse energy oC Che m ode-locked ED FL w as
39.75 W  and 0.043 nJ, eespectively.

15

11

-1
200 300

Time (ns)

(a)

Figure 14. (a) Mode-locked pulse trace with joulse separation of 38.3 ns; (b) Autocorrelation erace 
with pulse width of 1.08 ps.

The RF spectrum  of the generated m ode-locked pulse w as recorded -with a span 
of 500 M H z and 50 M H z, eespectively, as show n in  Figure 15a,b. A  sharp signal at 
26.11 M Hz, corresponding to the fundam ental frequency of the laser cavity, w as observed. 
The background noire w as euppressed by  40 dB from  the peak segnal, h igh lieh ting  low - 
am plitude noise fluctuation and good m ode-locking stability. The w ideband RF spectrum 
was up to 500 M Hz, where an evenly spaced frequency interval w as observed, and w hich 
w as free from, spectral m odulation. Figure 16a,b show s tire; 6-h stability test of the optical 
spectrum  analyser (OSA) and otcilloscope trace for each hour represented by the differ- 
enf colors dor each hour, Indicating; stable m ode-locking operation w ith  conststent —3 dB 
linewidths and no timing jitter. A  consistent 3 dB bandwidth as demonstrated here is useful 
for applicatiens requiring stable laser perform ance such as optical chm m unications and 
sensing, system  w hich  nneds efficient transm ission o t signal over long; distaneeg w ithout 
distortion or loss o f inform ation. A  com parison o f the obtained m ode-locked operation 
to previously reported onos using graphene-baeed SA s are sum m arized in  Table 1. 'Phis 
w ork har t f e  advontage of duol-regim e operation in a single laser cavity, arid, also, m ode- 
locking without an additional component, such as a polarization controller or a single-mode 
fiber (SMF).
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(a)
(b)

Figure 15. RFSA measurement of the mode-locked EDFL based on graphene-chitin: (a) RF spectrum 
at 500 MHz span; (b) RF spectrum af 50 MHz span showing an SNR of 40 dB.

Figure 16. The stability of -the output spectrum for graphene-chitin based SA as passive mode locker 
over 6 h at a 1-h interval.
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Table 1. Mode-locked EDFL using graphene based SA in the 1.5 region.

Material
Center

WaveLength
(nm)

Threshold 
Pump 

Power (mW)

Pulse
Width

Repetition 
Rate (MHz)

SNR
(dB)

Modulation
Depth

(%)

Average Output 
Power 
(mW)

Ref

Graphene Nanoplatelets 1559.26 86.3 0.59 ns 21.36 - 27.7 - [54]

Graphene-DNA 1563 280 0.82 ps 14.11 50 - 7.5 [55]

Graphene Nanoplatelets 1558.35 22.6 0.69 ps 13.11 58.2 - 6.7 [56]

GO-PEO 1558.6 70 1.25 ps 21.8 - - 0.363 [57]

rGO 1567.29 273 1.38 ns 12.66 50 5.5 - [58]

CVD graphene-PMMA 1569.5 93 24 ns 5.78 65 - 12.1 [59]

CVD Graphene-PMMA 1555 100 0.252 ps 56.37 - - 15.66 [60]

Graphene-PMMA 1562.7 45 0.967 ps 14.3 61.3 1.52 - [61]

Graphene-chitin 1563.47 172.33 1.08 ps 26.11 40 15.08 53.3 This work

5. Conclusions

G raphene-chitin  film -based SA w as used to generate sim ultaneous Q -sw itching and 
m ode-locking operations in the telecom m unication region. The lasing produced a Q - 
switched 1.54 i s  pulse at a high input pump power of 163.16 mW. This operation w as able 
to produce a h igh peak pow er and a pulse energy of 53 .3  m W  and 82 .08 nJ, respectively. 
Beyond the input pum p pow er of 163.16 mW, the pulse started to becom e unstable, and 
upon reaching 172.33 mW, the m ode-locked pulse can be observed. The 26.11 M Hz pulse 
correlated to a 1.08 ps pulse w idth w ith  a peak pow er of 39.75 W. A lthough progressive 
works are still needed to im prove the perform ance of the Q-switched and the m ode-locked 
EDFL— such as by optimizing the cavity configuration through output coupling efficiency, 
by gaining m edium  doping concentration, and by im proving the SA quality— this finding 
will be of interest due to their application in material processing, optical spectroscopy, and 
telecom m unication.
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