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Abstract Multinomial logistic regression is preferred in
the classification of multicategory response data for its ease
of interpretation and the ability to identify the associated
input variables for each category. However, identifying
important input variables in high-dimensional data poses
several challenges as the majority of variables are unnecessary
in discriminating the categories. Frequently used techniques
in identifying important input variables in high-dimensional
data include regularisation techniques such as Least Absolute
Selection Shrinkage Operator (LASSO) and sure independent
screening (SIS) or combinations of both. In this paper, we
propose to use ANOVA, to assist the SIS in variable screening
for high-dimensional data when the response variable is
multicategorical. The new approach is straightforward and
computationally effective. Simulated data without and with
correlation are generated for numerical studies to illustrate
the methodology, and the results of applying the methods on
real data are presented. In conclusion, ANOVA performance
is comparable with SIS in variable selection for uncorrelated
input variables and performs better when used in combination
with both ANOVA and SIS for correlated input variables.

Keywords ANOVA, High-dimensional Data, Sure Indepen-
dence Screening, LASSO, Multinomial Logistic Regression

1 Introduction

Multinomial logistic regression (MLR) is a statistical tool
to model dependent variables with categorical responses. In

this model, probability prediction describes the relationship be-
tween dependent or response variables (Y ) with p input vari-
ables or predictors (X). As the probabilities are numerical,
MLR is a type of ‘Regression’. However, the purpose of the
MLR model is for ‘Classification’ based on these probabili-
ties. Several classification methods are found in the literature to
model data with the categorical response variable. Frequently
used methods are support vector machines (SVM), neural net-
works, decision trees, logistic regression, hierarchical classifi-
cations and linear discriminant analysis (LDA) [1, 2]. How-
ever, logistic regression is preferred because it is easily in-
terpreted and provides input variables or predictors associated
with each category [3, 4].

Among the p input variables, not all are helpful for the sta-
tistical model. Sparse models make interpretation easy, im-
prove computation time, and maximise model performance. A
parsimony model is a desired property in any model building.
Besides, the input variables are expected to be independent
with no correlation or with low degree of correlation. Several
methods such as forward, backward, stepwise, and best sub-
set are methods available for variables selection [5]. Each of
these methods imposes some selection criteria. Some of fre-
quently used selection criteria are Akaike’s information crite-
rion (AICp), Schwarz’ Bayesian criterion (SBCp), and Mal-
lows’ Cp criterion [6, 7]. Several modifications and extension
to these criteria can be found in [6].

Advancement in computing technologies has led to the de-
velopment of vast amount of data. The number of features or
variables collected for each sample can even exceed the num-
ber of samples. Data are characterised as high-dimensional
when the number of features or input variables (p), is more
than the number of the observations (n), often referred as p ≫
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n [8, 9]. For example, high-throughput microarray technolo-
gies allow researchers to evaluate tens of thousands of genes in
a single experiment [10].

High-dimensional data pose several challenges [11, 12, 13].
Computational complexity [12], poor interpretability and high
accuracy during training but poor performance with test data
[14] are the main challenges. Most importantly, the majority of
the input variables are frequently unnecessary in discriminating
between samples. As a result, prior to or during analysis, such
as regression, classification, or clustering, some techniques for
variable selection are required.

Regularisation is one method for variable selection used
to solve the p ≫ n problem. For example SCAD [15],
Danzig selector [16], adaptive LASSO [17], LASSO [18], and
their related methods. Although regularisation techniques like
LASSO [18] are helpful for automatically selecting variables
in high-dimensional data, these methods fail when the data
become ultra-high-dimensional space. Ultra-high-dimensional
data refers to dataset with log(p) = O(nα) for some 0 ≤ α ≤
1 [19]. It can be challenging to automatically and correctly
choose variables in ultra-high-dimensional space.

Fan and Lv [19] pioneered the sure independence screening
(SIS) and iterative sure independence screening (ISIS) methods
to solve this problem in a regression context. They claimed that
all-important variables in the model are preserved with a prob-
ability near 1 by selecting variables using the SIS technique.
The approach, which is easy to understand and computation-
ally effective, aims to reduce dimensionality of input variables
prior to variable selection by using regularised model learning.
Later, Fan et al. [20] expanded the SIS approach for gener-
alised linear models, naming it as vanila SIS (Van-SIS) and
introduced two variants of ISIS, naming as first variant of ISIS
(Var1-SIS) and second variant of ISIS (Var2-SIS), both vari-
ants needed when input variables that are marginally unrelated
but jointly related to response variable.

In Var1-SIS and Var2-SIS, the sample data need to be split
into two halves randomly for independent learning. Input vari-
ables that overlap from the selected variables from each half
of sample data are included for the final variable selection via
regularisation. However, in highly correlated input variables,
this approach may result in poor identification of important in-
put variables due to smaller sample size for learning. In this
paper, a solution to the problem is proposed by screening in-
put variables with an analysis of variance (ANOVA) and SIS
before variable screening via LASSO. The rest of the article is
organized as follows. Section 2 discusses the proposed method,
while Section 3 covers numerical results based on simulation
data to illustrate the effectiveness of the proposed method. Sec-
tion 4 presents the proposed method application on real data.
Lastly, Section 5 discusses the conclusion and limitations of
the proposed method.

2 Materials and Methods

In this section, MLR, ANOVA, SIS and LASSO methods
are briefly reviewed. This is followed with ANOVA assisted
sure independent screening (ANOVA-SIS) methodology. Two

variants of ANOVA-SIS are introduced as Var1-ANOVA-SIS
and Var2-ANOVA-SIS.

2.1 Multinomial Logistic Regression
Consider dataset with K category response variable, Yi ∈

[0, 1, ...,K] and X = [X0, X1, ..., Xp] where X0 ≡ 1 be the
multivariate independent variables that influence the response
Yi ∼ multinomial(n = 1, P = (Pi0, ..., PiK)), where

P (Yi = 0|Xi) = Pi0

P (Yi = 1|Xi) = Pi1

.

.
P (Yi = K|Xi) = PiK

For each observation (Xi, Yi), Yi can only take one value
of [0, 1, ...,K]. This can be represented by a vector, Yi =
(Yi0, Yi1, ..., YiK), where

Yik =

{
1, if Yik = k, k = 0, 1, ...,K

0, otherwise.

subject to :∑K
k=0 Yik ≡ 1, Pik ∈ [0, 1] and

∑K
k=0 Pik ≡ 1

Following Hosmer Jr et al. [21], setting category 0 as the base-
line category, each probability Pik can be computed from a
softmax function, written as

Pik =
exp(Xiβk)

1 +
∑K

k=1 exp(Xiβk)

where β0, β1, ..., βK are unknown regression coefficients vec-
tors with p + 1 entries, collectively represented by a matrix β
of dimension K × (p+ 1) ,

β =


β10 β11 ... β1(p+1)

β20 β21 ... β2(p+1)

. . ... .

. . ... .
βK0 βK1 ... βK(p+1)


and β0 = 0, a vector with all p + 1 entries is zero. Logit
function for category k can be written as :

gk(Xi) = ln

(
P (Yi = k|Xi)

P (Yi = 0|Xi)

)
= ln

(
exp(Xiβk)

1 +
∑K

k=1 exp(Xiβk)

/
exp(Xiβ0)

1 +
∑K

k=1 exp(Xiβk)

)
= Xiβk, sinceXiβ0 = 0, exp (Xiβ0) = 1

The logit can be interpreted as log of odds ratio of observing
category k over category 0 given the input variables, X , ex-
pressed as a linear model, Xiβk.

For a single observation, Xi is a vector of 1 × (p+ 1) di-
mension that goes through a summation with parameter matrix
βT and gives a vector Zi with the dimension of 1×K.
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Xi
β−→ Zi

Each Zi goes through the softmax function and gives K prob-
abilities for K categories, Pik with k = [1, ...,K]. Proba-
bility for baseline category i.e for category 0 then can be de-
rived from 1 −

∑K
k=1 Pik. The response variable will be pre-

dicted as category k, based on the maximum probability of
Pik, k = 0, 1, ...,K.

Maximum likelihood estimation (MLE) is the common
method used in estimating the matrix β in MLR model. MLE
can be written as

L(β|Xi;Yi) =

n∏
i=1

K∏
k=0

PYik

ik

L(β|Xi;Yi) = ln

n∏
i=1

K∏
k=0

PYik

ik , take natural log

=

n∑
i=1

K∑
k=0

YiklnPik

=

n∑
i=1

(1−
K∑

k=1

Yik)lnPi0 + Yi1lnPi1 + ...+

YiK lnPiK

=

n∑
i=1

Yi1ln
Pi1

Pi0
+ ...+ YiK ln

PiK

Pi0
+

ln
1

1 +
∑K

k=1 gk(Xi)

=

n∑
i=1

K∑
k=1

Yikgk(Xi)−
n∑

i=1

ln(1 +

K∑
k=1

gk(Xi))

Minimising L(β||Xi;Yi) the MLR estimator is the

β̂MLE = argmin
β

n∑
i=1

K∑
k=1

d(Yik, X
T
i βk) (1)

where d(Yik, X
T
i βk) = −L(β|Xi;Yi) is the deviance for the

ith observation.
No closed form solutions can be found to solve (1). For op-

timised solution, one has to resort to iterative algorithms such
as Newton method or gradient descent method.

2.2 Analysis of Variance
Analysis of variance (ANOVA) is a statistical technique used

to compare the means of more than two groups by analysing
variances. ANOVA answers the statistical question on the
null hypothesis : the assumption that all groups are equal
and drawn from the same population. Any difference among
groups comes from random sampling differences. Essentially
ANOVA, answers the question of whether group means differ
from each other.

Following [22, Chapter 15], consider N observations were
sampled randomly from G groups with n1, n2, ..., nG repre-
senting the sample size from each group. Let ygj be the jth

observation from group g. The data from the G groups can be
presented as per the Table 1. If the G group means are rep-
resented by µ1, µ2, ..., µG, the null hypothesis can be equally
tested as follows :

H0 : µ1 = µ2 = ... = µG

H1 : µi ̸= µj At least one pair of µiµj

Table 1. Observations from G Groups

Group
1 2 ... G
y11 y21 ... yG1

y12 y22 ... yG2

. . ... .

. . ... .

. . ... .
y1n1 y2n2 ... yGnG

Each group g sample mean is denoted as ȳ1, ȳ2, ..., ȳG, which
are derived as follows :

ȳg =

∑ng

j=1 ygj

ng

(
g = 1, 2, ..., G and N =

G∑
k=1

ng

)

The overall mean is expressed as

¯̄y =

∑ng

j=1

∑ng

j=1 ygj

N
=

∑ng

j=1 ng ȳg

N

Variability in each group g, computed with sum of squared
of each observations about their sample mean ȳg . that is,

SSg =

ng∑
j=1

(ygj − ȳg)
2

The total within-groups variability, denoted as SSW is each
SSg , that is,

SSW = SS1 + SS2 + ...+ SSG =

G∑
g=1

ng∑
j=1

(ygj − ȳg)
2

and variations between groups SSG are computed as follows :

SSG =

G∑
g=1

ng (ȳg − ¯̄y)
2

Overall measure of variability SST can be computed by taking
sum of squared all sample observations from overall sample
mean, as expressed as

SST =

G∑
g=1

ng∑
j=1

(ygj − ¯̄y)
2

The mean squares within group MSW and between groups
MSG are given by
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MSW =
SSW

N −G

MSG =
SSG

G− 1
The ratio of the mean squares is basis for testing null hypothe-
sis. The ratio denoted as FSTAT , is a test statistic.

FSTAT =
MSG

MSW
The FSTAT test statistic follows an F distribution, with G−1
degrees of freedom in the numerator and N − G degrees
of freedom in the denominator. A test of significance level
α is provided by the decision rule, reject H0 if FSTAT ≥
FG−1,N−G,α.

2.3 Sure Independence Screening
Following the SIS method in [19, 20], the marginal utility

Lj is the negative log-likelihood computed with one input vari-
able. The marginal utility for the jth independent variable xj

for j = 1, .., p, with response variable yi, i = 1, .., n, is defined
by:

L0 = argmin
β0

l (β) = L(β0, Yi), and

Lj = argmin
β0,βj

l (β) = L(β0 +Xjβj , Yi)

The marginal utilities L1, .., Lp are then ranked in ascending
order giving, Lv1 , Lv2 , .., Lvq , . . . , Lvp from where q vector of
input variables (xv1 , xv2 , .., xvq ) is selected. Here, q = ⌊n/
4 log n⌋, for multicategory classification, as suggested by Fan
et al. [20]. With, q < n , computational complexity is reduced,
and low dimensional statistical methods can be applied.

2.4 LASSO
Least absolute shrinkage and selection operator or LASSO

[18] impose penalty term with L1-norm on model coefficients.
The L1-norm constraint yields a sparse solution by assigning
zero coefficients to a subset of the variables; thus LASSO pro-
vides an automatic variable selection. L1-norm regularization
or LASSO penalty term is frequently used when dealing with
high-dimensional data [8] to produce sparse model and highly
interpretable model.

Penalised multinomial logistic regression (PMLR) is
achieved by adding a non negative term to (1) given regularised
parameter βPMLR. λ ≥ 0 is a regularisation parameter.

β̂PMLR = argmin
β

 n∑
i=1

K∑
k=1

d(Yik, X
T
i βk) + λ

K∑
k=1

p∑
j=1

|βkj |


(2)

where j ∈ {1, 2, ..., p} excluding the intercept parameter β0.
If λ = 0, β̂PMLR = β̂MLE .

However Fan and Lv [19] and Fan et al. [20] demonstrated
that directly applying LASSO without independent variable
screening can result in recruiting many unwanted input vari-
ables.

2.5 ANOVA Assisted Sure Independence
Screening

In variable selection for the MLR model, the input variable
that is useful in discriminating a category from the G categories
is potentially an important variable. Categorical responses can
be used to partition each input variable observation into its re-
spective category bucket as per Table 1. The categories can be
assumed as a factor with G levels, which is equivalent to plac-
ing each observation of the input variable Xj into a specific
group g, (g = 1, 2, ..., G). This way of partitioning is similar
to the setup of ANOVA. As such, if the input variable is random
with no contribution to any particular category, the means com-
puted from each group are expected not to differ significantly
from each other. Treating all input variables as the dependent
variable and partitioned into G groups, the ANOVA test can
be conducted component-wise. Since the computation of each
ANOVA only involves one input variable at a time, the compu-
tational complexity is reduced O (np) in a similar way in SIS
[19] method.

Only variables that produce significant results from the
ANOVA test will be selected as the candidate variable, i.e input
variables that contribute for discriminating at least one group
from the rest of the groups. Here the selection of variables
is refereed as ANOVA sure independence screening (ANOVA-
SIS). The first d ≤ n vector of input variables selected after
reordering is based on the FSTAT values in descending or-
der. Variables selected via ANOVA-SIS may still include some
unimportant variables. Regularization via LASSO as in (2)
will further remove unimportant variables [19, 20]. In this way,
the estimation procedure is formally defined as Van-ANOVA-
SIS. The final model is built from the set of variables selected
from Van-ANOVA-SIS for purpose of prediction of categories
from given input variables.

The above two steps variable selection is outlined in details
in two steps as follows :

• Step 1 : Variable Screening by ANOVA

– Step 1.1: Split data set to traning data and test data
in ratio of 80 : 20.

– Step 1.2: Conduct ANOVA test component-wise
for each input variable on the training dataset. For
each significant test, record the input variable and
the associated FSTAT values.

– Step 1.3: Sort the FSTAT values in descending or-
der and its corresponding variables recorded in step
1.2. The larger FSTAT value, is the better discrimi-
nating power by the input variable.

– Step 1.4: Select the first d variables
A = {Xi1 , Xi2 , ..., Xid} from step 1.3. Here,
d = ⌊n/4 log n⌋.

• Step 2 : Variable Selection via LASSO

– Step 2.1: The d variables selected from step 1.4
are low-dimensional data with d ≤ p. LASSO
is applied to further select variables by choosing
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the appropriate tuning parameter, λ, from cross
validation method.

– Step 2.2: Final variables selected from step 2.1
by discarding variables with zero coefficients of β,
leaving the final input variables in the model with
size d′ ≤ d.

– Step 2.3: Predict the category k for test dataset
from step 1.1 based on the final variables in step 2.2.

2.6 First Variant of ANOVA-SIS
Unlike splitting data into two halves as outlined by Fan et

al. [20], the first variant of ANOVA-SIS ( Var1-ANOVA-
SIS) simply selects the set of variables size d from SIS and
from ANOVA-SIS, each with d = ⌊n/4 log n⌋. Let A1 =
{Xi1 , Xi2 , ..., Xid} be the variables selected from SIS and
A2 = {Xi1 , Xi2 , ..., Xid} be the variables selected from Van-
ANOVA-SIS. Input variables appear in both A1 and A2 and are
then selected as the candidate input variables A, where A =
A1 ∩ A2.

With similar argument by Fan et al [20], input variables that
appear in A are much fewer as these input variables have to ap-
pear twice at random in the sets of A1 and A2. Final selection
of important input variables is performed by applying LASSO.

2.7 Second Variant of ANOVA-SIS
The option of d = ⌊n/4 log n⌋ in Var1-ANOVA-SIS reduces

the probability of including important input variables. The
second variant of ANOVA-SIS (Var2-ANOVA-SIS) overcomes
this by having a larger value of d = ⌊n/ log n⌋, to increase the
probability in selecting the important input variables. However,
this may also increase some unimportant variables but can be
eliminated by applying LASSO in final selection of important
input variables.

3 Numerical Study
To evaluate the performance of Van-ANOVA-SIS, Var1-

ANOVA-SIS and Var2-ANOVA-SIS, simulated data generated
in the context of multinomial logistics regression with p =
1000 input variables X1, ..., Xp. 100 simulation data gener-
ated with each consist of sample size of 200. The size of
true model set to 5, i.e the numbers of non-zero coefficients
with important input variables are fixed as X1, X2, X3, X4 and
X5 by choosing non zero coefficients in matrix β. The co-
efficients and important input variables remain same for each
simulation and the 5 coefficients are generated randomly as
(−1)

U
(4 log n/

√
n+ |Z|) with Z ∼ N (0, 1) and U is a ran-

dom integer between [−10, 10]
Four different scenarios were considered for the input vari-

ables in :

• Scenario 1 : X1, ..., XP are independent and identically
distributed N(0, 1) random variables.

• Scenario 2 : X1, ..., XP are jointly multivariate normal
distribution and marginally N(0, 1) with no correlation
among variables.

• Scenario 3 : X1, ..., XP are jointly multivariate nor-
mal distribution and marginally N(0, 1) with correlation,
corr(Xi, X4) =

1√
2

for all i ̸= 4 and corr(Xi, Xj) =
1
2 if

i and j are distinct elements of {1, ..., p} \ {4}

• Scenario 4 : X1, ..., XP are jointly multivariate nor-
mal distribution and marginally N(0, 1) with correlation,
corr (Xi, X5) = 0 for all i ̸= 5, corr (Xi, X4) = 1√

2)

for all i /∈ {4, 5}, and corr (Xi, Xj) = 1
2 if i and j are

distinct elements of {1, ..., p} \ {4, 5}.

Scenarios 1, 3 and 4 are same scenario setting found in [20].
All analyses were implemented in Jupyter Notebook using

Python programming language (version 3.9.7). Throughout of
the analysis, the tuning parameter λ is fixed at 0.0055 based on
the cross validation. Gradient descent method used to optimise
the penalised MLR model is stated in (2). After performing 100
simulations for each of the scenarios above, the performance
was compared with Van-SIS, Var1-SIS, Var2-SIS and LASSO
on the following metrics :

1. Proportions of important input variables before applying
LASSO,

2. Proportions of important input variables after applying
LASSO,

3. Median of final model size, and

4. Average test error

The comparisons were summarised in Table 2 to Table 5.

Table 2 shows the results of the seven methods, Van-
ANOVA-SIS, Var1-ANOVA-SIS, Var2-ANOVA-SIS, Van-SIS,
Var1-SIS, Var2-SIS and LASSO for scenario 1. In this sce-
nario Van-ANOVA-SIS and Van-SIS recorded almost equiva-
lent proportions in including important input variables before
and after applying LASSO, i.e 80% and 81% respectively from
100 simulations. Similarly, the average test errors from the 100
simulations are respectively 0.0883 and 0.0878 while the me-
dian final model size of each method is 7. It can be said that
the performance of Van-ANOVA-SIS method is at par with the
Van-SIS method in scenario 1.

Var1-SIS performed poorly among all methods in scenario 1.
Only 2% of the simulations included all important input vari-
ables both before and after applying LASSO, and an average
test error of 0.2440. Median final model size is only 3 missing
many important input variables. This is because the splitting of
the data into halves has reduced the number of samples, hence
the power of learning by the method in selecting the important
input variables is reduced. Comparatively the Var1-ANOVA-
SIS method which does the variable selection by choosing in-
put variables that overlap from both SIS and ANOVA, recorded
a proportion of 80% in including the important input variables
both before and after ap- plying LASSO and average test error
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of 0.0885. Here, Var1-ANOVA-SIS provides two advantages.
First, the number of samples does not require to be halved
hence better learning from samples available in hand. This is
particularly pertinent when dealing with limited sample sizes,
as is often the case with high-dimensional data [23]. Second,
selecting overlap variables from two different variable selec-
tion methods i.e SIS and ANOVA, increases the probability of
the selected variable as the important variable.

Var2-ANOVA-SIS recorded a higher proportion of 98% in
including the important input variables before and after apply-
ing LASSO as a result of the increase in size d, double the size
d of Var1-ANOVA-SIS method. Thus, the median final model
size for Var2-ANOVA-SIS was higher at 18 relative to Var1-
ANOVA-SIS. However, the average test error remained the
same for both methods, indicating that a model with more vari-
ables does not necessarily make a good model. The LASSO
method recorded 100% in including important variables in the
final model, but included many other unimportant input vari-
ables. Median final model size for LASSO is 41 versus only 5
correct input variables. Here selecting an optimal size for d is
important in ensuring a higher chance of capturing true impor-
tant variables in the model and at the same time, unimportant
variables are reduced.

Table 3 summarises the performance of the seven methods
based on scenario 2. Except for LASSO which produces simi-
lar results as in scenario 1, all other 6 methods have shown im-
provement in including the correct input variables in the final
model. The Var2-ANOVA-SIS method showed an improve-
ment with 99% for including important variables in the selected
model, however, the median final model size increased from
18 in scenario 1 to 19 in scenario 2. Similarly, the average
test error increased from 0.0885 to 0.1033. It is observed that
models with input variables that are jointly multivariate nor-
mal and with fewer unimportant variables, the probability of
selecting relevant input variables increases significantly. This
is followed by a lower average test error.

From Table 4 and Table 5, except for the LASSO method, all
six methods performance has deteriorated. This is due to corre-
lated input variables in scenario 3 and scenario 4. In scenario 3,
Van-ANOVA-SIS and Van-SIS again produced almost similar
results. Var1-ANOVA-SIS recorded 1% in including all the in-
put variables from the 100 simulations, but Var1-SIS recorded
0%. As the size d in Var2-ANOVA-SIS increased relative to
Var1-ANOVA-SIS, 6% of the simulations included the rele-
vant input variables. On the other hand, the Var2-SIS method
recorded 0%, meaning this method fails to include all the im-
portant variables even at least for once. Scenario 4, which has
input variables much more correlated compared to scenario 3,
has failed in including all important input variables for the six
methods except for LASSO. However, average test error im-
proved significantly for all six methods except for the LASSO
method, with an increased average test of 0.1275 in scenario 4
compared with 0.1140 in scenario 3.

The LASSO method was able to include all pertinent in-
put variables in all 4 scenarios. Interestingly the median final
model size was reduced in the presence of correlated input vari-
ables, while the average test error was significantly affected.
This indicates that the LASSO method is a very useful method

of variable selection in the presence of correlated input vari-
ables.

Based on the numerical studies the proposed methods pro-
duced better results when comparing pair-wise, i.e. Van-
ANOVA-SIS with Van-SIS, Var1-ANOVA-SIS with Var1-SIS
and Var2-ANOVA-SIS with Var2-SIS. In the presence of cor-
related input variables, ANOVA-assisted SIS variable selection
has a higher probability of including the true model as evi-
denced in Table 3 compared with variable selection with the
SIS method alone.

4 Real data examples

As an illustration of application on real data, the proposed
methods are applied on SRBCT microarray dataset reported in
Khan et al. [24]. The dataset reports the classification of chil-
dren’s cancer to the small round blue cell tumours (SRBCT)
into four categories of cancer known as neuroblastoma(NB),
rhabdomysarcoma(RMS),non-Hodgkin lymphoma (NHL),
and the Ewing family of tumours (EWS) using gene expression
profiles. There are 2308 genes in 83 samples in this data collec-
tion. There were 29 cases of EWS, 11 cases of NHL, 18 cases
of NB, and 25 cases of RMS, all of which were classed as 0
through 3 respectively. The data which initially made available
on http://research.nhgri.nih.gov/microarray/Supplement/
(now no longer available ) was copied from
https://rdrr.io/cran/plsgenomics/man/SRBCT.html.

All input variables are normalised to have zero mean and a
variance of one. Response variable recoded with number val-
ues between 0 to 3. Data were split into train data and test
data with 80 : 20 ratio, resulting in 66 samples for training
and 17 samples for testing. Table 6 provides the summary of
the results. Initial training and testing were conducted with
d = ⌊n/4 log n⌋ as recommended for logistic regression mod-
els by Fan et al. [20]. However, this has produced very high
test error due to possible missing of important genes in train-
ing the models. Upon increasing the number of input variables
to d = ⌊n/2 log n⌋, Van-ANOVA-SIS test error reduced dra-
matically with only 7 genes included in the model. Further
increase of d = ⌊n/ log n⌋, improved Van-SIS test error as
equivalent to Van-ANOVA-SIS with 12 genes selected in the fi-
nal model. Therefore, the proposed Van-ANOVA-SIS method
has performed better than the Van-SIS method. By increasing
value of d to 35, both Van-ANOVA-SIS and Van-SIS recorded
zero test error with each selecting 16 genes for the final model.

5 Conclusions

ANOVA is comparable to SIS as a variable screening tool
for uncorrelated input variables in the case of high-dimensional
data with multi categorical response variables. A set of input
variables from intersection of variables selected separately by
ANOVA and SIS methods, increases the probability of such
variables as important variables in the model. In correlated
high-dimensional data, variable screening with both ANOVA
and SIS, has higher probability in picking the true model. Mod-
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els selected with both ANOVA and SIS demonstrated better
accuracy in classification versus models selected with SIS.

The proposed method in this paper is limited to be used for
data with categorical responses and with no outliers. Future
research can be extended to include outliers in both input vari-
ables and response variable.
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Table 2. Scenario 1

Prop. incl models Prop. incl final models Median final model size Average test error
Van-ANOVA-SIS 0.8 0.8 7 0.0883
Var1-ANOVA-SIS 0.8 0.8 7 0.0885
Var2-ANOVA-SIS 0.98 0.98 18 0.0885
Van-SIS 0.81 0.81 7 0.0878
Var1-SIS 0.02 0.02 3 0.244
Var2-SIS 0.27 0.27 4 0.1658
LASSO N/A 1 41 0.1038

Table 3. Scenario 2

Prop. incl models Prop. incl final models Median final model size Average test error
Van-ANOVA-SIS 0.97 0.97 7 0.0785
Var1-ANOVA-SIS 0.97 0.97 7 0.0795
Var2-ANOVA-SIS 0.99 0.99 19 0.1033
Van-SIS 0.97 0.97 7 0.0797
Var1-SIS 0.07 0.07 3.5 0.2355
Var2-SIS 0.49 0.49 5 0.1362
LASSO N/A 1 41 0.116

Table 4. Scenario 3

Prop. incl models Prop. incl final models Median final model size Average test error
Van-ANOVA-SIS 0.01 0.01 7 0.2923
Var1-ANOVA-SIS 0.01 0.01 6 0.3005
Var2-ANOVA-SIS 0.06 0.06 17 0.246
Van-SIS 0.01 0.01 7 0.29
Var1-SIS 0 0 2 0.3505
Var2-SIS 0 0 3 0.3255
LASSO N/A 1 33.5 0.114

Table 5. Scenario 4

Prop. incl models Prop. incl final models Median final model size Average test error
Van-ANOVA-SIS 0 0 7 0.2123
Var1-ANOVA-SIS 0 0 6 0.2132
Var2-ANOVA-SIS 0 0 12.5 0.184
Van-SIS 0 0 7 0.212
Var1-SIS 0 0 2 0.3302
Var2-SIS 0 0 3 0.2588
LASSO N/A 1 29 0.1275



100 ANOVA Assisted Variable Selection in High-dimensional Multicategory Response Data

Table 6. SRBCT Dataset

d=n/4logn = 3 d=n/2logn = 7 d=n/logn = 15 d=35
Test error # Vars Test error # Vars Test error # Vars Test error # Vars

Van-SIS 0.3529 3 0.2941 6 0.0588 12 0 16
Var1-SIS 0.7058 0 0.4706 1 0.2353 3 0.2353 9
Var2-SIS Test error = 0.2941, # Vars = 6, (d=n/logn)
Van-ANOVA-SIS 0.2353 3 0.0588 7 0.0588 12 0 16
Var1-ANOVA-SIS 0.5882 1 0.2353 2 0.2941 6 0.2353 11
Var2-ANOVA-SIS Test error = 0.2941, # Vars = 6 , (d=n/logn)
LASSO Test error = 0, # Vars = 29

#

Vars = Number of variables selected


