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Abstract: One of the most undesirable consequences induced by blasting in open-pit mines and
civil activities is flyrock. Furthermore, the production of oversize boulders creates many problems
for the continuation of the work and usually imposes additional costs on the project. In this way,
the breakage of oversize boulders is associated with throwing small fragments particles at high
speed, which can lead to serious risks to human resources and infrastructures. Hence, the accurate
prediction of flyrock induced by boulder blasting is crucial to avoid possible consequences and its’
environmental side effects. This study attempts to develop an optimized artificial neural network
(ANN) by particle swarm optimization (PSO) and jellyfish search algorithm (JSA) to construct the
hybrid models for anticipating flyrock distance resulting in boulder blasting in a quarry mine. The
PSO and JSA algorithms were used to determine the optimum values of neurons’ weight and biases
connected to neurons. In this regard, a database involving 65 monitored boulders blasting for
recording flyrock distance was collected that comprises six influential parameters on flyrock distance,
i.e., hole depth, burden, hole angle, charge weight, stemming, and powder factor and one target
parameter, i.e., flyrock distance. The ten various models of ANN, PSO–ANN, and JSA–ANN were
established for estimating flyrock distance, and their results were investigated by applying three
evaluation indices of coefficient of determination (R2), root mean square error (RMSE) and value
accounted for (VAF). The results of the calculation of evaluation indicators revealed that R2, values of
(0.957, 0.972 and 0.995) and (0.945, 0.954 and 0.989) were determined to train and test of proposed
predictive models, respectively. The yielded results denoted that although ANN model is capable
of anticipating flyrock distance, the hybrid PSO–ANN and JSA–ANN models can anticipate flyrock
distance with more accuracy. Furthermore, the performance and accuracy level of the JSA–ANN
predictive model can estimate better compared to ANN and PSO–ANN models. Therefore, the
JSA–ANN model is identified as the superior predictive model in estimating flyrock distance induced
from boulder blasting. In the final, a sensitivity analysis was conducted to determine the most
influential parameters in flyrock distance, and the results showed that charge weight, powder factor,
and hole angle have a high impact on flyrock changes.

Keywords: flyrock; blasting; soft computing; ANN; jellyfish research algorithm; particle swarm

MSC: 68T20; 68T01

1. Introduction

Blasting works typically involve applying the intensity of an explosion to rock masses
in order to break them apart and displace them. Some of the explosives’ strength is
employed in these operations to accomplish the targeted objectives, and a considerable
amount of them is wasted [1]. In addition, blasting energies have an effect on a wide
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variety of places in the surrounding blasting area, the majority of which are undesired and
ruinous. The wasted blasting energy is applied to release undesirable environmental and
destructive side effects such as flyrock, dust emission, toxic gas pollution, ground vibration,
backbreaks, toe problems, boulders, etc. [2–5].

The term “fly rock” describes the egregious fragmentation that produces under ran-
dom status at the place beyond the intended explosion-safe boundary [6]. This undesirable
problem of blasting poses a significant risk, particularly when machinery and buildings
are positioned near the locations of the blasting sites [7]. The boulders that are formed as a
result of blasting are referred to as “oversize boulders” in the mining industry. Only specific
transportation machines and crusher tools can manage the large fragmentation (oversize
boulders) in any way, including loading, transporting, or loading operations. When viewed
from a more pragmatic perspective, oversize boulders are considered fragmented sizes
that must undergo repeated blasting and breakage to be processed further—this process is
named secondary blasting. Due to the difference in types of transportation and crushing
machinery utilized varies from one activity to the other, it is difficult and impractical to
assign a dimension or range of measurements of the oversize boulders [8]. The appropriate
rock particles to standard and optimum equipment’s loading and hauling cause enhance
the productivity and effectiveness of the transporting machines and crushers and reduce
the practical costs of processing. Furthermore, the best import rock sizes into a crusher are
the size that decrements its maximum efficiency, power consumption, and the amount of
wear and tear due to crushing rocks.

Oversize boulders may cause a variety of effects on the efficiency of operational mining
processes, including the necessity for supplemental time required for separating chunks,
inadequate loading works, secondary blasting, the imposition of additional costs, addi-
tional wear on transportation machines and their possible destruction, and incrementing
in the amortization of the trucks, shovels and crushes. The formation of oversize boul-
ders in mine and quarry sites will actually occur based on different factors, which can be
divided into the following four categories (Figure 1): (1) geologically associated circum-
stances; (2) blasting design pattern parameters; (3) type and characteristics of explosive; and
(4) human-related factors [9].

Figure 1. Factors to produce blast-induced oversize boulders.

One of the most significant parameters that affect the production of oversized boulders
is the descriptive geology situation. Geological conditions play a crucial role in the genera-
tion of blast-induced oversize boulders, not just near the blasting faces but additionally
from inside the shot. Nevertheless, controlling geological conditions during designing and
performing blasting operations is impossible because it is classified as a group of uncon-
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trollable parameters [10]. Blasting pattern design parameters are an additional category of
important parameters that are used for producing oversize boulders. These parameters
should be adjusted optimally to generate appropriate fragment size distribution.

Some of the blasting pattern design factors, including stemming, hole depth, hole
diameter, burden, and spacing, are illustrated in Figure 2, and categorized in the controllable
parameters of blasting rounds and can be determined by the designer and mine engineers
to obtain optimum rock fragmentation.

Figure 2. A view of blasting bench and pattern design parameters.

The characteristics of explosives are discussed in the third category. The widest ex-
plosives used in mine blasting are dynamite, water gel, and ANFO, which have different
densities, resistivities, and specific charges. Therefore, these parameters also have consid-
erable effects on oversize boulders due to bench blasting [9]. Mistakes that were caused
by human intervention in the designing and carrying out of blasting activities are other
affecting parameters on oversize boulders. The blasting team constantly maintains control
over the performance of the blasting designs and ensures that they are finished [11].

Over the past several decades, there have been numerous experimental and empirical
systems proposed with the intention of forecasting the particle size distribution and flyrock
produced by bench blasting [11–13]. On the other hand, because of the present complicated
circumstances of the blast design process, the findings of the proposed experimental sys-
tems were not satisfactory [14]. As a result, presenting a unique empirical model for the
purpose of predicting flyrock and rock fragmentation is unacceptable and unexpected [15].
In addition to empirical approaches, many studies developed statistical models and for-
mulas to determine the flyrock and fragment rock sizes (see Table 1). Nonetheless, using
statistically based methods to solve a highly non-linear issue such as flyrock and rock
fragmentation can be a challenging and difficult endeavor. Many attempts are conducted
to solve engineering problems by using artificial intelligence and soft computing tech-
niques [16–25]. Therefore, the application of intelligent machine learning, such as artificial
intelligence (AI) and soft computing (SC), could have relevance and benefit when attempt-
ing to solve issues related to this type. These methods have successfully been applied to
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effectively apply in a variety of disciplines of engineering, and the conclusions drawn from
those applications have been advocated as solutions to real-world issues (see Table 1). In
the last decade, numerous attempts have been conducted to model blast-induced flyrock
phenomena in mines and predict its’ distance utilizing artificial intelligence techniques
(Table 1).

Table 1. Some studies conducted in the field of flyrock prediction.

Reference Year Inputs AI Algorithm

[1] 1975 HD Empirical
[26] 1981 HD, SC Empirical
[2] 1988 ST/B Empirical
[27] 2005 B, ST, HD Empirical
[15] 2009 HD, Fs Empirical
[28] 2010 HD, ST, BS, SD, PF, Qmax, N, RD ANN
[7] 2011 B, S, HD, ST, SD, PF, Qmax, RD FIS, SM
[8] 2011 B, S, HD, ST, PF, Qmax, BI, RMR ANN
[9] 2011 d, B, HD, ST, BS, SD, PF, Qmax, BI ANN
[29] 2012 B, S, HD, ST, SD, PF, Qmax, RMR ANN-GA
[10] 2012 PF, HD, SD, S, d, B, ST ANN, SVM
[30] 2012 B, S, ST, HD, HD, SC, Q Empirical
[31] 2013 HD, S, B, d, Qmax ANN
[32] 2013 HD, S, B, ST, PF, SD SVM
[13] 2014 B, S, CPM, Q, σc, RQD MVRA
[14] 2014 PF, S, HD, ST, B, Qmax FIS, ANN
[33] 2015 d, B, S, HD, Q, CPM, σc, RQD ANN, ANFIS
[34] 2016 BDF, EDF, RMR Empirical
[35] 2016 B, S, CPM, PF, σc, RQD MVRA, BPNN
[36] 2018 B/S, H/B, SD, PF, Qmax RD LS-SVM, SVR
[37] 2019 B/d, S/B, ST/B, H/B, PF, Xb MDA
[38] 2020 B, S, ST, PF RD ELM
[39] 2020 B, S/B, ST/B, H/B, d, B/d, PF, Qmax, VoD RMR, BI FRES
[6] 2022 B, S, ST, PF, Q Z-FCM-ANN
[3] 2022 N, HD, B, S, ST, BRH, PF, Q ANN
[40] 2022 ST, Q, PF ANN
[41] 2022 d, HD, S, PF, B/S, ST, Qmax ANFIS, HGSO-ANFIS
[42] 2023 HD, S, B, ST, PF DT, XGBoost, AdaBoost

According to the abovementioned literature and Table 1, although a precise and smart
model for estimating oversize boulders and flyrock is of relevance in mining operations,
there is no research that considers the resulting flyrock from boulder blasting. Hence,
this study focuses on structuring a smart system for the accurate prediction of flyrock
after boulder blasting. The phase of proposing a predictive model is organized using the
present optimized multi-layer perception neural network by three optimization algorithms,
i.e., PSO and jellyfish search algorithm (JSA). The method employed in this research to
anticipate flyrock after oversize boulder blasting is transferable to the solution of various
unwelcome problems that can arise from blasting operations in mine and quarry sites. The
remainder of the paper is organized as follows: Section 2 provides Methods and Materials.
The description of the case study and analysis of the required data are presented in Section 3.
The model development and performance of developed models in this study are presented
in Section 4. Section 5 addresses the results and discussions. Finally, the obtained results
are concluded in Section 6.

2. Methods and Materials
2.1. Jellyfish Search

Chou and Truong [43] presented an Artificial Jellyfish Search (JSA) algorithm in 2021
by modeling it after the predatory procedures carried out by jellyfish, which comprises
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three involvement of behaviors: (i) jellyfish generally observe a single regulating point,
which may be the ocean current or the movement of individuals within the group, as well
as a temporal control mechanism, (ii) jellyfish are more interested in locations in which
there is a greater quantity of food available, and (iii) the quantity of food is allotted, and
the fitness function for it is calculated in accordance with the allocation.

2.1.1. Population Initialization

The initializing of the individuals in JSA is performed using the information on a
logical diagram [44], which removes the adverse impacts of randomly generated initial
values commonly approved by conventional metaheuristics, such as a minimal convergence
speed and a local optimum that can present a fall hazard as a consequence of an absence of
the jellyfish variety. The following is an expression of the JSA-based rational diagram [43]:

Xi+1 = ϑXi(1− Xi) , 0 ≤ X0 ≤ 1 (1)

in which Xi signifies the chaotic position values of the ith jellyfish, X0 indicates the initially
generated jellyfish, and the ϑ is equal to 4.0 [43].

2.1.2. Ocean Current

Ocean currents that include significant quantities of nutrients attract jellyfish to a
location and update their position based on the trend that ocean currents are moving in.
The following equation can serve as a model for it:

Xi(t + 1) = Xi(t) + rand(0, 1)× (X∗ − β× rand(0, 1)× µ) (2)

where X* indicates the populations of jellyfish optimal position, µ denotes the average
location of the jellyfish swarm, and β stands for the distribution-related factor, which
number is fixed to 3.

2.1.3. Jellyfish Swarm

There are two categories of jellyfish motion in swarms: passive and active motions.
Throughout repetitions, the position of a particular jellyfish is updated as follows:

Xi(t + 1) = Xi(t) + γ× rand(0, 1)× (Ub − Lb) (3)

where Ub and Lb stand the upper and lower bounds of the search area, and c refers to the
motion-related factor, which is fixed at 0.1.

The following equation simulates the jellyfish in the swarm’s active motion:

Xi(t + 1) = Xi(t) + rand(0, 1)×
→

direction (4)

A jellyfish swarm perpetually proceeds in the path in which there is a greater supply
of food, which displays the direction of the motions of jellyfish within the population. The
following objective function (OF) equation is used to determine the motions direction of
individual jellyfish:

→
direction =

{
i f f

(
Xj
)
≥ f (Xi) Xj(t)− Xi(t)

i f f
(
Xj
)
< f (Xi) Xi(t)− Xj(t)

(5)

where f is the OF related to location X.

2.1.4. Time Control Mechanism

The timing control scheme in JSA has been modified such that it may be used to direct
the motion of jellyfish in response to ocean currents and among swarms of jellyfish. The
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execution of JSA is heavily reliant on the timing regulating function c(t), which arbitrarily
vacillates between the range of 0–1 and may be represented as follows:

c(t) =
∣∣∣∣(1− k

kmax

)
× (2× rand(0, 1)− 1)

∣∣∣∣ (6)

where k represents the total number of repetitions, kmax signifies the maximum number
of iterations, and Figure 3 presents the flowchart of JSA. The pseudocode of the jellyfish
search algorithm is shown in Figure 4.

Figure 3. Algorithmic flowchart of the jellyfish search algorithm.

2.2. Particle Swarm Optimization

Particle swarm optimization, abbreviated as PSO, is a metaheuristic algorithm that
was first introduced by Kennedy and Eberhart [45]. The accumulated behavior of particles
served as motivation for the development of PSO. PSO has a significantly higher learning
performance and uses much less memory than the other algorithms, such as the genetic
algorithm. These are just two of the many benefits of adopting PSO. This algorithm
uses a population of particles to search for the best personal (pbest) and best global (gbest)
coordinates in order to determine the optimal location. In other words, throughout every
repetition of the process, the particles advance in the direction of discovering the optimal
places. The following are the formulas that can be used to calculate the speed and location
of the particles:

Vnew = w×V + C1 · r1(pbest − X) + C2 · r2(gbest − X) (7)

Xnew = X + Vnew (8)

in which V is the first velocity, X denotes the particles’ positions, C1 and C2 indicate
the constants related to positive acceleration, Vnew signifies the new velocity, Xnew rep-
resents the location of particles, w is the inertial weight, and r1 and r2 stand the ran-
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dom numbers in the range of (0, 1). The diagram and flowchart of PSO are illustrated
in Figures 5 and 6, respectively.

Figure 4. Pseudocode of the jellyfish search algorithm.

Figure 5. The diagram of the PSO algorithm.
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Figure 6. The flowchart of the PSO algorithm.

2.3. Artificial Neural Network

Artificial neural networks (ANN) originate from the structure of human brains in
information processing. In the human brain, first, the information is imported and then
proceed by neurons. Finally, the output information is output to execute commands. In the
processing step, a training process is performed by neurons to obtain accurate and correct
information. This process is also conducted for neural networks. ANNs comprise the main
three layers involving inputs, output(s), and hidden layers. The main role of each layer is to
keep the neurons (binding components) together in each layer and connect them through
the weights. The neurons pass the information received from the input source to the next
level (layers) [46]. The available data are transmitted from the input neurons to the hidden
neurons and, subsequently, to the output neurons (last layer). This data transfer from
one layer to another is associated with oscillation (strengthening or weakening), which
is controlled by the weights in each layer. However, the main core of neural network
processing is the neural computations performed in each layer; meanwhile, in the first
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step, the imported data into the system is weighted. Then, the linear or sigmoid transfer
function is utilized to pass data to the first hidden layer. Finally, the new data generated in
the hidden layer are transferred to the output layer based on a similarly expressed process.
It is noteworthy that the important components in the ANNs are the neurons’ number
in layers because the neurons affect the network performances [47]. Based on this, the
number of input and output neurons is equal to the number of imported input and outputs
to the system, respectively. However, the hidden neurons are determined according to
a trial–error procedure. In the mentioned explanation, the data processing is conducted
based on the available training algorithms, in which the feedforward-backpropagation (BP)
algorithm is widely applied in network training because of its accuracy and speed.

It should be noted that the weighting of neurons during transmitting data is performed
randomly; the random weights and biases are generated and modified in the training step.
The design of the network structure and the calculation of the appropriate weight are the
two primary components that constitute the ANN modeling process. The BP training
method applies adjustments to the network weights in order to minimize error levels by
using those values. The values that are acquired at each step are compared with the values
that are wanted for the output at the end of the process. In the event that the errors are
undesirable, the procedure should be repeated to obtain the required values and bring the
system error to an acceptable level.

2.4. Hybrid System

Several studies have been conducted in the field of engineering applications to improve
the capabilities of ANNs models by using optimization techniques (Table 1). It is possible
that the ANN model can also provide unacceptable predictions due to the fact that BP is not
really that efficient at locating the precise global minimum. However, the ANN technique
has a greater propensity to get stuck in local minima, whereas optimization algorithms, by
adjusting the weight and bias of ANNs, can overcome this problem. In the current research,
a JSA as a novel metaheuristic algorithm is combined with the ANN, named the JSA–ANN
hybrid system, to predict flyrock distance from boulder blasting. Then, the prediction
result of JSA–ANN was compared to the PSO algorithm. The hybrid systems search a
global minimum, and then ANN selects the method that has the potential to provide the
highest accuracy.

3. Case Study and Data Analysis

For access to the required datasets, the Ulu Tiram quarry mine was considered, which
is explored in the Johor site in Malaysia. The geographical location of the Ulu Tiram quarry
mine is at a latitude of 1◦36′41′ ′ N and a longitude of 103◦49′0′ ′ E. The main ore extraction
in this mine is granite, with rock strength ranging from 50–90 MPa. The production rate of
Ulu Tiram quarry mine for each month is 15,000–35,000 tons, which is supplied through
the implementation of blasting operations. The boulder production-induced mine blasting
was regarded as one of the most significant ecological challenges in the aforementioned
locations. Normally, after several blasting (i.e., primary blasting), there is a need to blast
the boulders produced by these primary blasts. The site’s regular hauling and crushing
equipment are unable to manage the enormous boulder in any way, including loading,
transporting, or handling it. From a more pragmatic standpoint, an oversize boulder can be
thought of as a fragment size that must first be subjected to secondary blasting and fracture
before any further processing can take place. It is not possible to assign a size or set of
dimensions to the oversize boulder since the method of loading, transferring, and crushing
the rock varies from one operation to the next. In the mentioned quarry, a total number of
20 boulders with a volume ranging between 2.1–3.8 m3 were investigated, and the relevant
information, together with their flyrock values, were measured.

In total, sixty-five blast datasets were gathered, with each containing information on
the hole diameter, hole depth, burden, hole angle, charge weight, stemming, powder factor,
and boulder distance as an output. Ammonium nitrate and fuel oil (ANFO) were charged
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as explosives in blasting rounds. The maximum and minimum blast-hole diameters of 2.95
and 5.9 inches, respectively, were used in various procedures. The effective parameters
of boulder blasting and corresponding ranges are reported in Table 2. In addition, the
distribution plot of effective parameters listed in Table 2 is depicted in Figure 7.

Table 2. The range of effective parameters on flyrock distance.

Input Output

Parameters Hole Depth Burden Hole Angle Charge
Weight Stemming Powder

Factor
Flyrock
Distance

Sign HD B HA CW St PF Flyrock

Unit (cm) (cm) (◦) (kg) (cm) (kg/m3) (m)

Min 71 57 22 2.7 31 0.6 157
Average 86.91 77.18 27.46 3.41 39.80 0.79 227.66
Max 101 96 33 4.3 49 1.01 300
Standard
Deviation 7.11 10.63 2.95 0.40 5.41 0.10 37.54

Figure 7. The histogram plot of effective parameters on flyrock distance.

Two video cameras were installed to capture the maximum distance of fragmented
boulder pieces. The prepared benched for performing blasting rounds were colored to
indicate the spaces between blasted boulders. Utilizing the aforementioned cameras, the
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pieces of boulders could be distinguished after the explosion. The maximum distance of
fragmented boulder pieces was then determined to be the horizontal separation of pieces
at their greatest. It is noteworthy that the data collected in this research have not been
used in the research literature before, and for the first time in this research, the prediction
of the maximum distance of fragmented boulder pieces is addressed. Figure 8 shows the
production of a large number of boulders that require secondary blasting to be fragmented
into portable sizes. Furthermore, the drilling of holes with a diameter of 8.9 cm in boulders
is shown in Figure 9.

Figure 8. Oversize boulders in the case study.

Figure 9. The drilled hole in the oversize boulder for charging and blasting operation.
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4. Model Development

In this paper, the modeling and estimation of flyrock distance due to oversize boulder
blasting were performed by the ANN model and hybrid systems of PSO–ANN and JSA–
ANN. To do this, the four main steps were considered; (1) the available 65 datasets that
were collected in a quarry mine in Malaysia were randomly classified into two phases
training data (80% of whole data, 52 datasets) and testing data (20% of whole data, 13
datasets). (2 All of the data, including six influential parameters and flyrock data, were
converted to normalized values in the range of [−1,1] utilizing the following equation [5]:

xn =
xi − xmin

xmax − xmin
(9)

in which xn, xi, xmin, and xmax are the normalized values, measured data, and minimum
and maximum of datasets, respectively. (3) The capabilities of the developed models were
assessed using three evaluation metrics, including R2, RMSE, and VAF, which can be
calculated as follows [48]:

R2 = 1−


n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Pi − Pi)

2

 (10)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (11)

VAF = 100 ·
(

1− var(Oi − Pi)

var(Oi)

)
(12)

where Oi and Pi indicate actual and anticipated values, respectively; is the average of
the anticipated amounts, and n stands the number of data. (4) The determined statistical
metrics were rated by a rating system proposed by Zorlu et al. [49], and a color intensity
system was used to validate the results of the rating system.

4.1. ANN

In this study, the examination of flyrock distance was the main emphasis. In order
to obtain the structure that has the highest efficiency and is capable of forecasting flyrock
distance accurately and to the best degree of accuracy, a variety of network models were
developed using a variety of hidden neuron sizes and transfer functions. To pass the data
from the structured layer to the next layer in an architecture, transfer functions including
“LOGSIGMOID”, “TANSIGMOID”, and “PURELIN” were used, along with a variety
of training techniques, including, among others, “trainlm”, “trainoss”, and “traingdx”.
This evaluation was the assignment that was provided to the rating approach that was
developed by Zorlu et al., and the R2 and RMSE metrics were the metrics utilized in order
to evaluate and choose the optimal architecture among the models that were run with high
efficiency and precision. Using this method, the R2 and RMSE values for the training and
testing parts are calculated, and the scores for those quantities are determined. According
to this ranking method, the ranking of the architecture is considered to be better when
both the values of R2 and VAF are larger and when the value of RMSE is smaller. Table 3
provides a rundown of the results of these computations in summary form.

It is important to highlight that the outcomes were evaluated using a technique known
as color intensity rating (CIR), and the outcomes of both were examined. The CIR technique
is a creative and quantitative tool for the problem of selecting the best ANN architecture.
Within this approach, the architectures are each allocated a particular coloring (for example,
blue), and the model that has a greater rating shows a higher color temperature.
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Table 3. Different topology of ANN models in anticipating flyrock distance.

Model
No.

Training Testing Training Rates Testing Rates Total
Rate Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 0.880 13.106 65.783 0.848 11.256 83.126 1 1 1 1 1 1 6 10
2 0.938 8.194 98.110 0.931 7.509 92.166 7 9 9 9 9 9 52 2
3 0.916 10.542 97.858 0.894 10.303 89.412 3 2 8 6 2 8 29 6
4 0.940 8.235 93.983 0.879 9.821 86.232 9 8 4 3 5 4 33 5
5 0.957 7.392 99.472 0.945 7.473 93.961 10 10 10 10 10 10 60 1
6 0.917 9.934 91.989 0.864 10.027 85.595 4 4 3 2 4 3 20 9
7 0.905 10.215 93.983 0.882 9.055 88.025 2 3 4 4 7 6 26 8
8 0.919 9.559 96.439 0.909 8.771 88.772 5 6 7 7 8 7 40 3
9 0.939 8.544 91.989 0.885 10.130 85.588 8 7 2 5 3 2 27 7
10 0.928 9.611 93.983 0.928 9.699 87.771 6 5 4 8 6 5 34 4

The yellow color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.

On the other hand, the lower the rate of models, the lower their color temperature
becomes, resulting in it becoming almost completely white. All of the numbers in Table 3
have been given the appropriate shading in light of these explanations and the procedure
that has been presented. Table 3 presents ten distinct topologies, of which only one was
deemed suitable for inclusion in the study as a candidate for the best ANN topology.
Among the ten different topologies of ANN, only ANN5, which had received the highest
rate possible, i.e., 60, was chosen to serve as the ideal architecture since it performed better
than the other models. Furthermore, according to the mentioned scoring tool, the color
that was designated to the ANN5 was used to have the maximum intensity. This indicates
that all approaches are equivalent and provide very accurate results when selecting the
best topology. Because of this, the ANN5 was chosen as the best available ANN model
to predict flyrock distance. It has a structure of 6-4-10-1 (with two hidden layers), and
the activation function of the input, hidden, and output layers are respectively “tansig”,
“tansig”, and “purelin” type. Figure 10 shows the identified topology that was selected as
well as the architecture that was produced by the toolbox of the MATLAB program.

As can be seen in Figure 10, the activation function of all layers was a sigmoid type.
Figure 10 also demonstrates that a variable known as “bias” was used in all levels of
the network, with the exception of the input layer. As a result, the prediction of the
flyrock distance was carried out using the data collected from 65 boulder blasting, which
were classified into train and test. The effectiveness of the ANN architectures that were
constructed is compared in Table 3. The results indicated that the ANN model presents the
R2 values of 0.957 and 0.945 for the training and testing parts, respectively.

4.2. Hybrid Models

There are instances whenever the algorithms/models/techniques outperform other
models when it involves estimating. Therefore, in this case, it could be advantageous for
the modeling that was conducted better to be more heavily involved in the optimized
hybrid models. The hybrid models are based on the concept that optimized models with
more competence ought to have a greater influence on the results. This is accomplished
by optimizing the weight and biases in the ANN structures. There are several ways
to find these weights and biases. One of these suggestions is the use of metaheuristic
optimization algorithms. This section addresses the development of hybrid models, i.e.,
PSO–ANN and JSA–ANN, for predicting flyrock-induced boulder blasting in open-pit
mines. The controllable parameters applied in adjusting PSO and JSA are fixed in the
optimization framework to yield the highest performance degree and accuracy level for
flyrock estimation.
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Figure 10. The designed ANN topology for predicting flyrock distance.

4.3. PSO–ANN

As aforementioned in PSO methodology, this metaheuristic algorithm is controlled by
various parameters involving a number of particles, inertia weight, and velocity equation’s
coefficient that the iteration number managed error reduction. These parameters apply
a considerable effect on the PSO. In this study, the inertia weight and velocity equation’s
coefficients are set at 2 and 0.25, respectively, due to the suggestion of previously con-
ducted research [42] that obtained accurate prediction results. Hence, the inertia weight
of 2 and the velocity equation’s coefficient of 2.5 was employed in PSO–ANN modeling
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process. Furthermore, the iteration number is considered as 1000 repetitions. Nevertheless,
the parameter of the number of particles should be determined by the trial-and-error ap-
proach. Therefore, the swarm is defined as various populations, including 50 particles to
500 particles, and the RMSE function is used for evaluating the performance of PSO.

The obtained results of PSO in optimizing weights of neurons and biased values are
depicted in Figure 11 and Table 4. Figure 11 illustrates the RMSE value obtained for each
PSO swarm size. It can be found that the RMSE values of the PSO–ANN model converge
for all swarm sizes in iteration 475. The different PSO–ANN systems were structured for
anticipating flyrock distance based on various swarm sizes, as presented in Table 4, and
then the best PSO–ANN system was chosen among the ten presented models. For better
choosing, Zorlu’s rating system was used, as shown in Table 4. The PSO–ANN with swarm
sizes of 200 and a total rate of 41 was the superior model compared to other presented
PSO–ANN models. The statistical metrics related to this model were the R2 of (0.972 and
0.954), RMSE of (5.533 and 7.751), and VAF of (99.680 and 93.608), for the training and test
phases, respectively.

Figure 11. PSO–ANN models with different swarm sizes.

Table 4. Various swarm sizes of PSO in anticipating flyrock distance.

Model
No.

Swarm
Size

Training Testing Training Rates Testing Rates Total
Rate Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 50 0.956 7.389 97.116 0.952 6.164 94.832 1 3 2 9 9 10 34 6
2 100 0.961 7.184 95.692 0.946 6.457 93.871 6 6 1 3 5 4 25 9
3 150 0.964 6.963 99.430 0.942 6.906 93.155 7 8 5 1 3 2 26 8
4 200 0.972 5.533 99.680 0.954 7.751 93.608 10 10 7 10 1 3 41 1
5 250 0.957 7.204 99.430 0.944 7.066 92.908 3 4 5 2 2 1 17 10
6 300 0.960 7.192 99.858 0.950 6.385 94.059 5 5 8 8 7 5 38 3
7 350 0.957 7.178 98.255 0.949 6.325 94.287 2 7 3 7 8 7 34 6
8 400 0.957 7.672 100.000 0.948 6.076 94.656 4 1 10 5 10 9 39 2
9 450 0.965 6.587 98.255 0.949 6.427 94.175 8 9 3 6 6 6 38 3
10 500 0.966 7.442 99.964 0.947 6.469 94.628 9 2 9 4 4 8 36 5

The green color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.
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4.4. JSA–ANN

To obtain the optimum value of neuron weights and biases in the ANN architecture
(6-4-10-1) that was designed in the previous section, the JAS algorithm was used. Nev-
ertheless, the controllable parameters of JSA should first be adjusted and implemented
to achieve the most accurate results. In this regard, the selected topology was employed
in developing all hybrid systems. As described in the JSA methodology, the number of
populations is considered a controllable parameter of JSA. To specify the best number of
jellyfish, several JSA-ANN–ANN models with different populations, i.e., 25, 50, 75, 100, 125,
150, 175, 200, 225, and 250, were trained. The revealed results in Figure 12, the parametric
investigation indicated that the number of jellyfish of 200 could achieve the best accuracy
and higher system capacity.

Figure 12. JAS–ANN models with different swarm sizes.

In the present research, the JSA optimization was implemented to identify the ANN
model’s optimum weights and biases. The JSA algorithm initializes by the originally
created initial solution, similar to the existing evolutionary computing algorithms.

The JS algorithm searches the optimum values following the four main stages.
Stage 1. The initial population of the artificial jellyfish, Xi (i = 1, 2, . . . , n), is generated

using the chaotic map operation:
In the search space, the jellyfish serve as a model. The study’s maximum iterations

and the population size of the jellyfish are set at 1000 and 250, respectively.
Based on the trial-and-error procedure, beta and gamma have respective values of 4.5

and 0.09.
Stage 2. Finding the X*:
In this study, the RMSE values are calculated to find the fitness function as shown in

the following equation:

Ff =

√√√√√√√


n
∑

i=1

(
XO

i − XE
i
)2

ns

 (13)

in which XO
i , XE

i and n are the measured flyrock, obtained flyrock by the model, and a
number of datasets, respectively. An artificial jellyfish with the lowest fitness function is
given to the X* by the algorithm.

Stage 3. Continue as follows until the maximum number of iterations has been reached:
Utilizing Equation (6), ascertain the time control function, c(t).
Perform a local or global search for artificial jellyfish.
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Examine the produced values and, when they do not fall inside the given ranges,
replace them with new ones.

Considering the new values, and if the fitness function’s value is the lowest, add it
to X*.

Here, the JSA method is used to find the weights that will be used to construct the
basic models for the JSA–ANN model. Hence, a value between [0, 1] should be selected

at random to preserve the
n
∑

i=1
Wi = 1. The RMSE works as the cost function in this

minimization process.
For selecting the best value for the number of jellyfish, the different JSA–ANN models

with different populations were designed, and the results were evaluated based on the
RMSE function, as illustrated in Figure 12. Based on Figure 12, RMSE changes are fixed after
500 iterations. Therefore, the JSA–ANN model with the number of jellyfish of 200, beta of
4.5 and gamma of 0.09 was constructed. The various generated results were compared and
evaluated using the statistical metrics, i.e., R2, RMSE, and VAF, as shown in Table 5. Similar
to the evaluation of PSO–ANN, the developed JSA–ANN models were evaluated based on
the rating system to choose the best JSA–ANN system with a high level of accuracy and
acceptable performance prediction level.

Table 5. Different swarm sizes of JSA in anticipating flyrock distance.

Model
No.

Swarm
Size

Training Testing Training Rates Testing Rates Total
Rate Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 25 0.988 3.788 99.964 0.990 4.368 98.706 1 1 8 9 2 9 30 6
2 50 0.988 3.629 98.718 0.971 4.197 96.525 2 2 4 2 4 3 17 9
3 75 0.991 3.425 97.721 0.978 4.261 96.460 6 4 3 5 3 2 23 8
4 100 0.990 3.299 99.110 0.979 3.573 97.597 4 5 5 6 6 5 31 5
5 125 0.990 3.214 99.430 0.976 3.453 97.649 5 6 7 4 7 6 35 4
6 150 0.989 3.587 97.116 0.964 4.796 96.313 3 3 2 1 1 1 11 10
7 175 0.995 2.791 99.964 0.992 3.282 98.664 9 9 8 10 8 8 52 2
8 200 0.995 2.449 100.000 0.990 2.602 98.832 10 10 10 8 10 10 58 1
9 225 0.992 3.095 99.110 0.983 3.101 98.300 8 8 5 7 9 7 44 3
10 250 0.992 3.150 96.439 0.975 3.700 97.298 7 7 1 3 5 4 27 7

The blue color indicates the intensity of statistical metrics and their rates. Bold row indicates the best model.

5. Results and Discussion

The purpose of the current research is to propose a precise model for modeling and
predicting flyrock distance due to oversize boulder blasting in a quarry mine located in
Malaysia. The most effective parameters were six numbers identified and imported into
the modeling process. Based on the available data, the ANN model, as well as the two
hybrid PSO–ANN and JSA–ANN systems, were developed to determine the superior
predictive flyrock model between other proposed models. The obtained results relevant to
the considered best models of ANN, PSO–ANN, and JSA–ANN based on R2, RMSE, and
VAF metrics in anticipating flyrock are shown in Table 6—these predictive models train well
as a result of their high achievements in terms of the training data. The generated model
achieves a high precision level among testing dataset indicates because it is well-developed.

Table 6. Results of the ANN and hybrid models in estimating flyrock distance.

Developed
Model

Train Test Train Rating Test Rating Total
Rate Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

ANN 0.957 7.392 91.989 0.945 7.473 93.961 1 1 1 1 2 2 8 3
PSO–
ANN 0.972 5.533 99.680 0.954 7.751 93.608 2 2 2 2 1 1 10 2

JSA–ANN 0.995 2.791 99.964 0.989 2.896 98.872 3 3 3 3 3 3 18 1
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Although all of the predictive models have the ability to predict flyrock, the JSA–ANN
predictive model has the potential to deliver greater performance capabilities in terms of
R2 values throughout the training phase as well as the testing phase. According to these
findings, the JSA–ANN model has the potential to achieve the lowest overall system error
of all the models that have been applied. Figure 13 depicts the anticipated values for flyrock
together with the measured values obtained from the application of the ANN, PSO–ANN,
and JSA–ANN prediction models. The anticipated findings for both the training dataset
and test phases are provided here in this figure. Based on this figure, despite the fact that all
models have adequately performed the estimation of flyrock distance, the JSA–ANN model
has the potential to establish itself as a novel hybrid system in this field. Table 7 illustrates
the results that we have acquired about the effectiveness indicators of the developed model.
The information presented in Table 7 shows a comparison between the prediction precision
and capability level of our suggested method and that of a number of the most recent
studies. According to the findings, the JSA–ANN model provides a higher performance
ability in the modeling and prediction of flyrock than the other techniques.

Figure 13. The results of developed models in predicting flyrock distance.
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Table 7. Comparative analysis of the precision of our suggested method with that of other research.

Author Year Method R2

[38] 2020 Extreme Learning Machine 0.955
[39] 2020 FRES 0.981
[6] 2022 Z-FCM–ANN 0.991
[3] 2022 ANN 0.982
[41] 2022 HGSO-ANFIS 0.924
[50] 2022 Ensemble model 0.974
[42] 2023 AdaBoost 0.99

Proposed technique
ANN 0.945

PSO–ANN 0.954
JSA–ANN 0.989

6. Sensitivity Analysis

For assessing the impact of all of the influential factors on flyrock, an analysis of
sensitivity was conducted employing the cosine amplitude (CA) method (Equation (14))
introduced by Yang and Zhang [51]:

rij =

l
∑

k=1
gik · gjk√(

l
∑

k=1
g2

ik

)
·
(

m
∑

k=1
g2

jk

) (14)

in which gik and gjk indicate the inputs and output(s), respectively. k reveals the number
of datasets. Noteworthy, a higher value of rij signifies inputs that matter most. Figure 14
shows the effect of each parameter on flyrock. The values of 0.993, 0.992, and 0.991 for
the effectiveness of charge weight, powder factor, and hole angle demonstrated that this
parameter had the highest effect on flyrock intensity; moreover, the burden with the rij
value of 0.973 had the least effect on flyrock intensity. Furthermore, insignificant charge
weight changes cause considerable flyrock changes.

Figure 14. The effectiveness of considered variables on flyrock intensity.
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7. Conclusions

This research focuses on the development of an innovative hybrid system for flyrock
prediction in a quarry mines. To do this, the most influential variables on the flyrock
distance-induced boulder blasting were identified from available literature and imported
to the ANN model. The neurons’ weights and biases were optimized by two optimization
algorithms of PSO and JSA. The JSA–ANN model was first presented for estimating flyrock.
For each ANN, PSO–ANN, and JSA–ANN model, the different models with various
structures and swarm sizes were designed, and the evaluation indices of R2, RMSE, and
VAF were calculated for them.

To choose the best predictive model, a rating system was employed, and the model
with the highest rate was introduced as the superior model. The evaluation of the achieved
predictions indicated that both the PSO–ANN and JSA–ANN hybrid models are able to
present precise results in estimating flyrock distance. However, the JSA–ANN model yields
a higher accuracy prediction level and lower error. The R2 values of (0.957, 0.972, and 0.995)
and (0.945, 0.954, and 0.989) were determined to train and test the ANN, PSO–ANN and
JSA–ANN predictive models, respectively. Moreover, the RMSE values of (7.392, 5.533,
and 2.791) and (7.473, 7.751, and 2.896) were used to train and test the ANN, PSO–ANN
and JSA–ANN models, respectively. These findings reveal the highest capability of the
JSA–ANN hybrid model compared to the others.

It can be concluded that a hybrid JSA–ANN system is identified as the best predictive
model to estimate flyrock distance if a predictive model with the highest accuracy and
lowest error is required. It is worth noting that the results of sensitivity analysis indicated
that the largest and smallest impact parameters on flyrock distance were charge weight
and burden, respectively.

The current study has some limitations; thus, the following further examinations are
suggested as possible next steps. Firstly, the data that was utilized may be extended to
incorporate more full data with further blasting that was captured. Second, there is a desire
to strengthen both the predictive and optimizing capabilities of the system. Third, since the
number of data samples is relatively low, artificial data augmentation techniques can be
used to increase the size and diversity of the dataset.

In light of the fact that the estimation and optimization models used in this inves-
tigation have room for development, it has been concluded that the utilization of novel
approaches that enable the utilize hybrid combinations is the most effective method for
improving both the estimation and optimization settings. Based on practical applications,
the provided framework can be modified to apply to various sectors of engineering, particu-
larly mining and building engineering. Nevertheless, the ensemble soft computing method
can be used to boost the performance capacity of estimation objectives and enhance the
accuracy level of soft computing approaches. These suggested techniques can be employed
to conduct an analysis of safety data and locate possible dangers, blasting safety regions,
and risks associated with blasting activities. The flyrock distance can be anticipated when
the blasting activities begin in order to monitor for any possible problems or damages that
could happen to the personnel, equipment, and residential area that is close to a safe area.
If the anticipated outcomes are higher than those specified in the literature or standards,
the blasting pattern or structure can be revised once again such that the anticipated flyrock
values remain inside the safe limits that have been advised. In general, soft computing
techniques can be applied to evaluate the data related to the environment and analyze the
influence of mining activities on the surrounding ecosystem.
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