
Citation: Yusuf, M.N.; Bakar, K.b.A.;

Isyaku, B.; Osman, A.H.; Nasser, M.;

Elhaj, F.A. Adaptive Path Selection

Algorithm with Flow Classification

for Software-Defined Networks.

Mathematics 2023, 11, 1404. https://

doi.org/10.3390/math11061404

Academic Editors: Andrey

Koucheryavy, Ahmed A. Abd El-Latif

and Ammar Muthanna

Received: 5 February 2023

Revised: 28 February 2023

Accepted: 6 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Adaptive Path Selection Algorithm with Flow Classification
for Software-Defined Networks
Muhammed Nura Yusuf 1,2,* , Kamalrulnizam bin Abu Bakar 1, Babangida Isyaku 1,3 , Ahmed Hamza Osman 4 ,
Maged Nasser 5 and Fatin A. Elhaj 6

1 Faculty of Computing, Univerisiti Teknologi Malaysia, Johor 81310, Malaysia
2 Department of Mathematical Science, Abubakar Tafawa Balewa University, Bauchi PMB 0284, Bauchi State, Nigeria
3 Faculty of Computing and Information Technology, Sule Lamido University,

Kafin Hausa PMB 047, Jigawa State, Nigeria
4 Department of Information System, Faculty of Computing and Information Technology in Rabigh, King

Abdulaziz University, Jedda 21911, Saudi Arabia
5 School of Computer Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
6 College of Art, Science and Information Technology, University of Khorfakkan,

Sharjah P.O. Box 18119, United Arab Emirates
* Correspondence: nyusuf@graduate.utm.my or ymnura@atbu.edu.ng

Abstract: Software-Defined Networking (SDN) is a trending architecture that separates controller
and forwarding planes. This improves network agility and efficiency. The proliferation of the Internet
of Things devices has increased traffic flow volume and its heterogeneity in contemporary networks.
Since SDN is a flow-driven network, it requires the corresponding rule for each flow in the flowtable.
However, the traffic heterogeneity complicates the rules update operation due to varied quality
of service requirements and en-route behavior. Some flows are delay-sensitive while others are
long-lived with a propensity to consume network buffers, thereby inflicting congestion and delays
on the network. The delay-sensitive flows must be routed through a path with minimal delay, while
congestion-susceptible flows are guided along a route with adequate capacity. Although several
efforts were introduced over the years to efficiently route flows based on different QoS parameters,
the current path selection techniques consider either link or switch operation during decisions.
Incorporating composite path metrics with flow classification during path selection decisions has not
been adequately considered. This paper proposes a technique based on composite metrics with flow
classification to differentiate congestion-prone flows and reroute them along appropriate paths to
avoid congestion and loss. The technique is integrated into the SDN controller to guide the selection
of paths suitable to each traffic class. Compared to other works, the proposed approach improved the
path load ratio by 25%, throughput by 35.6%, and packet delivery ratio by 31.7%.

Keywords: SDN; path selection; path quality; heterogeneous traffic; elephant flow; mice flow

MSC: 68P20; 68P10; 63E72; 68U15

1. Introduction

Software-Defined Networking (SDN) is a new network architecture consisting of
three separate planes, the application plane (AP), control plane (CP), and data plane
(DP). The CP is in the middle of the architecture and acts as the network’s operating
system (NOS) responsible for managing the network devices at the DP based on the
network policies hosted at the AP. These policies could be for managing various aspects of
the network operations such as routing, QoS provisioning, load balancing, and security.
The communication between AP and CP is performed through a northbound interface
(NBi) while that of the CP and DP is performed through a southbound interface (SBi).
The DP is relieved from all control functions and focuses only on forwarding traffic from

Mathematics 2023, 11, 1404. https://doi.org/10.3390/math11061404 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061404
https://doi.org/10.3390/math11061404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1222-1754
https://orcid.org/0000-0002-3820-3378
https://orcid.org/0000-0002-8512-578X
https://orcid.org/0000-0003-3788-5722
https://doi.org/10.3390/math11061404
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061404?type=check_update&version=2

Mathematics 2023, 11, 1404 2 of 24

source to destination based on the CP’s instructions. For that, the CP acquires the network
statistics in real time to formulate the required operational policies and install them as
rules in the flow tables of the devices at the DP. Some of the earliest SBi used in SDN were
Protocol Oblivious Forwarding (POF) [1], Open vSwitch Database (OVSDB) [2], Forwarding
Control Elements (ForCES), and OpenFlow [3]. Many SDN controllers use OpenFlow as
SBi, through a Link Layer Discovery Protocol (LLDP), to discover and build a topology of
the DP switches. The controller maintains a consistent global knowledge of the topology
discovered at all times [4]. Upon the arrival of any flow, it activates a Path Selection
Algorithm (PSA) to compute routing instructions for the flow and install it in the switch’s
flow table. The PSA is always invoked whenever a new flow with no corresponding entry
in the flow table arrives. Another reason could arise from topology changes due to link
or node failure. In both situations, the PSA is required to converge the network with
the new rule to avoid disruptions. The controller keeps tabs on these changes with the
help of a thread monitoring mechanism, which collects network statistics in a constant
cycle. The monitoring mechanism periodically sends a request to the switches. It feeds the
acquired information into the controller for the new rule computation.

Isyaku et al. report in [1] that network rules need to be updated often, in fact, every
1.5 to 5 s on average. The short interval update rate is due to increased traffic volume and
demand for ubiquitous services in contemporary networks. This increase and demand
are influenced by reliance on digitalized lifestyles as the proliferation of the Internet of
Things (IoT) [5] and smart environment applications [6] are on the rise. In addition to
the traffic volume, the traffic flow is heterogeneous as it displays asymmetric patterns
regarding arrival rate, duration, and size. As a result of this heterogeneity, the threats
and vulnerabilities [6], requirements for path quality, and switch flow table space of flows,
among other network resources, are different. In other words, they possess distinctive QoS
requirements and behave differently en route to their destination. For example, large flows,
such as Elephant Flows (EF), demand an exorbitant amount of network resources despite
accounting for only 1 to 10% of overall traffic. These flows are long-lived (LLF) and have
the propensity to consume network buffers rapidly, thereby causing anomalies such as
congestion and queuing delays for most small-sized Mice Flows (MF) [7]. Similarly, despite
being short-lived, the Mice Flows form the majority. They are delay-sensitive, requiring
prompt delivery to their destination. Due to these disparities in behavior, heterogeneous
traffic flows must be treated differently so that each Service-Level Agreement (SLA) may be
satisfied. That is, time-sensitive flows must get to their destination without any significant
delays. In contrast, high-volume traffic flows are directed down routes with adequate
capacity to avoid congestion in the network.

The existing route path selection methods often use a single metric, such as the
shortest path based on hop count [8], latency [9,10], or bandwidth [11], to make decisions
about which paths to take. Other approaches combined the link feature with the switch
update operation to guide the path selection decision to reduce convergence time [12–16].
However, these methods do not differentiate flows according to their unique attributes.
The differentiation is necessary to avoid the congestion that might arise by amalgamating
EF with MF on the same path. The classification is also necessary for ensuring differential
QoS provisioning to the heterogeneous traffic flow. Meanwhile, the techniques such
as [17–19] that attempt to classify the traffic flow for differential handling consider 10%
of link utilization regarding a single flow feature such as size as a baseline threshold for
determining whether a flow is congestion susceptible or not. However, considering a single
flow feature and a fixed threshold value for flow classification might lead to premature,
fake, or unnecessary detections that might cause additional overhead on the controller.
Therefore, the detection approach, in conjunction with the path selection metrics used, is
not an appropriate solution for all types of traffic flows with varying degrees of criticality.
Some flows require high throughput, while others are delay sensitive. Failure to classify
these traffic flows and treat them differently might lead to QoS violations.

Mathematics 2023, 11, 1404 3 of 24

In Software-Defined Networking, the adaptive path selection Algorithm with flow
classification is a crucial mechanism for improving network performance and reliability.
This Algorithm dynamically selects the best path for data transmission based on real-time
network conditions and flow characteristics, such as traffic volume, delay, and bandwidth.
By combining flow classification with composite path selection metrics, SDN can achieve
improved resource utilization, reduce congestion, and enhance the Packet Delivery Ratio
(PDR) and throughput of the network. Thus, this paper proposes an Adaptive Path Selection
Algorithm with Flow Classification (APSAF) by incorporating flow classification features
and composite path metrics (comprising delay, delivery ratio, and residual capacity) to
address the outline issues. The contributions of this paper can be summarized as follows.

• A traffic flow classification module to separate Elephant Flows from Mice Flows.
• Designed a composite path quality estimation vector to evaluate path suitability to

accommodate traffic class.
• The paper designed a differential path selection scheme based on traffic flow propen-

sity to congestion.

The remainder of the paper is structured as follows: Section 2 discusses current path
selection strategies in SDN. Section 3 describes the proposed solution’s design. Section 4
describes the experimental setup and performance evaluation. Lastly, Section 5 concludes
the study and makes recommendations for future research.

2. Related Works

Path Selection Decision (PSD) to route traffic is crucial to the operation of a network.
In SDN, the decision is taken by a controller on the arrival of any flow with no correspond-
ing entries in the switch’s flow table. Traffic volume and heterogeneity necessitate this
activity to occur regularly [1]. The heterogeneities in terms of burst, rate, size, and duration
exhibited by flows make their behavior and demand on network resources en route to
their destination different [20]. Failure to consider these variabilities may lead to the choice
of a non-optimum path that can ultimately violate the requirement of the traffic flows.
For instance, 95% of network traffic emanates from the 1-10% large size (EF) traffic [21].
Although very few, EF traffic flows cause serious congestion problems in a network as they
tend to live long (LL) on their paths en route to their destination [22]. For that reason, these
flows ought to be detected and differentiated from others (MF) and rerouted separately
on an alternate path. Schemes such as [23–27] and [14] overlooked these requirements
while performing flow scheduling. However, detecting these flows and mapping them
to the proper path is challenging. There are three approaches to detecting these flows.
Detection at the Edge Switch (ESD) via polling-based statistic monitoring, detection at
the End-Host (EHD) via host-based monitoring, and Switch Trigger Detection (STD). Past
literature shows several studies have proposed different PSD techniques based on specific
routing parameters.

Famous techniques such as Equal Cost Multiple Path (ECMP) [15] distribute traffic
load among multiple equal cost paths in a network. However, ECMP does not regard the
variabilities of flows while taking the PSD. The mechanism amalgamates multiple flows,
irrespective of their requirements and behavior, on the same path en route to destinations.
This action led to switch buffer overflows, inefficient use of network bandwidth, and
eventual degradation of network performance. To address these issues, Refs. [26,27] used
the STD approach to classify flows in their PSA. However, STDs require a specialized cloned
switch to set up a detection threshold in advance. Furthermore, due to the dynamic nature
of the network environment, it is challenging to formulate a suitable threshold value that
can give precise and accurate detection output. In addition, continuous cloning of the switch
flow table can burden them more. In contrast, the flow rerouting scheme proposed by [13]
used ESD. However, employing ESD makes the proposed solution suffer from late detection
of congestion-prone flows. The detection is not attempted until the flows arrive at an edge
switch. Thus, collision is still experienced. Furthermore, a monitoring overhead because
of per-flow statistics collection is also experienced in addition to the long latency and

Mathematics 2023, 11, 1404 4 of 24

packet drop. Conversely, the alternate approaches by [28,29] used EHD. EHD introduces
an additional layer called SHIM to achieve early detection at the end host. However, the
approach requires a specialized and expensive hardware mechanism modification. As such,
such approaches experienced low adaptation to flow behavior, scalability, and a complex
host operating system modification process. To avoid the dilemma of choosing between
EHD or ESD approaches. Refs. [30,31] proposed an alternative approach using traffic split.
Instead, to detect the flow rate variation, the authors proposed a scheme that splits the
traffic into multiple flow streams and places them simultaneously along multiple paths.
In contrast, these schemes might record fine-grained flow control of congestion but at
the expense of additional overhead of flow reassembling at the destination. Similarly, it
might not work for the adaptation window of transmission control protocol (TCP) flows,
especially when packets of the same flows embark on distinctive paths.

Many approaches such as RPSO [14], DASH [20], MINNIE [32,33], [22] and Baner-
jee and Kannan [34,35], consider the limitation of Ternary Content Addressable Memory
(TCAM) in terms of capacity while designing their PSA. DASH is a hashing-based imple-
mentation of a traffic split designed to prevent memory overflow by matching the hash to
range bounds. The technique is an adaptive weighted traffic partitioning Algorithm that op-
erates in the DP. MINNIE is another rule space reduction approach to select load-balanced
routes. The technique comprises a two-phase solution made up of a compression phase
and a routing phase. Other complementary solutions to MINNIE are proposed by Banerjee
and Kannan [34,35]. Using a Path Tag (PT) and a Flow Tag (FT), the authors devised a
tag-in-tag technique to reduce the number of bits representing a flow within a switch, hence
reducing the size of flow rules (FT). The PT is used for routing the packets while FT is used
to map each packet with its corresponding flow path. However, adding an identifier to
each incoming packet is hard to achieve in the ASICs since this is not a standard operation,
causing the packets to be processed by the CPU (a.k.a. The slow path), strongly penalizing
the performance of a forwarding device and the traffic rate.

In a multipath approach, a Dynamic Multipath Scheduling Protocol (DMSP) for
identifying and isolating congestion-susceptible links in DCN using SDN is demonstrated
in [25]. DMSP splits flow traffic among multiple paths to reduce congestion. However,
the split traffic process is conducted unequally among the available paths. To address
the unequal split problem, Ref. [26] proposed a Globally Optimized Multipath Routing
(GOMR) Algorithm that splits a flow traffic equally among multiple paths using a stochastic
mechanism. GOMR leverages the global knowledge of network topology and traffic
statistics to formulate the problem as linear programming (LP). However, though the
technique distributes the load along multiple paths, it did not classify the traffic according
to their requirements and the burden they introduced to the links. Recently, Kamal and
Taha [27] proposed an adaptive method that computes multipath routes for video traffic
with a reduction time objective while recovering from link failure in SDN. The method,
however, did not consider congestion risks associated with Elephant Flows. HiQoS [36],
ADMPCF [37], TALON [38], and Presto [28] are other PSA for multipath selection using a
Traffic Engineering (TE) tool to guide differential treatment of flows. HiQoS compute the
multipath (at least two constrained pathways) between all pairs in a network, allowing
rapid recovery from link loss. The adaptable and Dynamic Multi-path Computation
Framework (ADMPCF) analyses and extracts information from traffic flows to enhance
resource utilization, alleviate congestion, and guarantee QoS when network events such
as link failure occur. On the hand, TALON is a traffic LB approach with split multi-
paths for high throughput. TALON collects the trajectory information and assigns a
flow capacity per tenant by calculating multiple routes to satisfy the traffic requirement.
However, although TALON enhanced capacity by allocating tenant throughput, it ignored
latency and reliability. While Presto leverages ECMP to optimally balance end-host load in
asymmetric topologies by partitioning each flow into equal flowcells at the edge and equally
distributing them to the network, Presto employs the maximum TCP Segment Offload
(TSO) size (64 KB) as the default flowcell size, allowing fine-grained load balancing at

Mathematics 2023, 11, 1404 5 of 24

10+ Gbps. The mechanism merges out-of-order packets into segments and pushes them up
at the receiver using the GRO algorithm. However, transforming the flows into equal-size
mice might not be adequate despite assigning the flowcells evenly to spanning trees from
each edge switch, because flows coming from discrete soft edge switches are not uniform,
thus, preventing the reordering at the receiver to detect out-of-order packets and missed
packets, which will lead to longer flow latencies. In addition, Presto is suboptimal to handle
asymmetric topologies even if its weighted Algorithm can drive some loads away from
congestion paths. Recently, Yoo et al. [29] presented TeaVisor, the first bandwidth isolation
guarantee framework for SDN virtualization with three components: path virtualization,
bandwidth reservation, and path establishment.

On the other hand, Ref. [30] designed a mechanism that finds a controller’s flow setup
delay. The authors crafted a timestamped Special Ping Packets (SPP) from the controller.
The Round-Trip Time (RTT) of SPP back to the controller is measured and attached to
an individual path to get the total path setup delay. The technique is designed for scCP.
In another work, Ref. [31] introduced a greedy heuristic technique based on Yen’s k-shortest
path algorithm. Multiple metrics such as packet loss, delay, and bandwidth are jointly
considered to formulate a QoS-aware routing problem as Integer Linear Programming (ILP).
They validate the technique using POX [39] on Mininet with D-ITG [32] as an IoT-based
traffic generator. In a similar effort, Ref. [33] study the effects of various optimization
objectives on network performance. Performance metrics that include link usage and
latency are considered constraints in the study. Another constraint considered is the switch
related in terms of TCAM size. The constraint is modeled so that the number of outgoing
flows is less than the maximum number of forwarding table entries. Then, a path selection
technique bounded by these constraints is designed. However, in large networks with
frequent topology changes, the use of the ILP-based method is impractical because it
may slow the convergence of the network routing rules [34]. Ref. [35] improved on [30] to
address CP overhead, scalability, and Single Point Failure (SPOF) by considering distributed
CP with multiple controllers. However, both schemes may experience higher flow table
operation time, affecting path setup switching time. In [40], packet loss and latency were
considered to design a Path Selection Method (PSM) in an SDN-Edge computing integrated
environment. The edge node at the SDN boundary is configured to assign available network
resources, such as bandwidth, according to flow requirements. Flows are re-directed via
a path with lower packet loss, while delay-sensitive flows are routed with minimal delay.
Likewise, Ref. [41] proposed an incremental QoS-aware path selection technique to facilitate
a speedy redirection of real-time applications with time-bound flows. The technique avoids
bottleneck links that were the cause of the scheduling impasse by selecting a path with
enough residual bandwidth from the list of candidates’ paths. The technique involves an
offline pre-routing stage where initial K-paths are formed using Yen’s K-SP [42]. The run
time of this stage is observed to be high. However, the authors attempted to control it by
coupling a Fibonacci Heap with Dijkstra [43] and the [42]. However, EF was not separated
from MF when choosing a path in all these techniques. Flows must be classified accordingly
for a better link choice. Likewise, QoS parameters such as throughput and the link delivery
ratio should also be considered. In a similar technique [43], the data transmission (Tx) and
receive rates (Rx) of a port are observed to help in determining the maximum traffic load
the port can accommodate. Flow statistics are collected and fed to a Floodlight controller
application [44] to define rules that can reroute the flow via a port with Least Loaded Path
(LLP). In validation, the authors used Mininet to emulate OvS and Iperf to generate traffic.
On the other hand, a QoS-driven and SDN-assisted Multipath Selection Scheme (QSMPS)
was proposed [45]. QSMPS addresses the adaptability problem of traditional MPTCP.
The method constantly checks network status using a scalable SDN-assisted technique.
Based on the data, an optimal number of sub-flows is determined and distributed along
routes with negligible differential delays. The authors validate the technique in a custom
topology in Mininet with the Ryu controller framework. However, a regular gathering
of statistics may significantly increase the controller overhead, which will increase flow

Mathematics 2023, 11, 1404 6 of 24

setup latency. Similarly, a best-case scenario based on residual bandwidth might not always
ensure that distinctive flows’ requirements are met, because the scheme did not primarily
classify traffic according to its uniqueness. Other flows can choose a setup latency that is
as short as possible. In addition, high link quality decreases the demand for link change
requests in a network.

Some techniques [46] adopt a fixed load threshold in the detection process of these
flows. The threshold is defined regarding a link bandwidth. Initially, all incoming flows are
routed based on traditional protocols such as ECMP [15]. The ECMP is maintained until
flows increase and grow beyond the predefined threshold. Then, the controller re-computes
an alternate path to reroute the detected flows. However, employing a fixed threshold
value to detect the flows susceptible to congestion is inefficient in highly dynamic traffic
conditions. Depending on the threshold size, the fixed value might not be adaptive to flow
variability and heterogeneity of controllers’ capacities in terms of their flow processing
ability at a particular time. The inflexibility of the fixed threshold value might not correctly
reflect or predict congestion occurrence possibility at a particular time. Therefore, it may
prompt early detection or delayed detection of flows to startup a rerouting action. Controller
overload might occur when the threshold is too low because many flows will be considered
EF. In such circumstances, path re-computation and flow rerouting instance frequency will
increase. On the other hand, if the fixed threshold value is set too high, many high-risk EF
might evade detection and bring about undesirable congestion.

It can be noticed from Table 1 that none of the available research has considered
combining the path quality metrics and flow classification technique in the path selection
decision. Path quality is severely impacted in a dynamically evolving network with
heterogeneous traffic, resulting in congestion. Consequently, it is crucial to consider path
quality and flow categorization while selecting routing paths. It is a non-trivial challenge
since path quality and flow classification provide information regarding the network’s
ability to accommodate increased demand as it evolves. This research proposes an optimum
route path selection strategy based on composite path quality parameters and classification
of flows according to their tendency to cause congestion.

Mathematics 2023, 11, 1404 7 of 24

Table 1. Summary of Related Works.

Existing Approaches
Algorithm Objective

Methods Classification

Result Achieved Weakness
Traffic Flow Path Selection

Routing Algo-
rithm/ApproachClassification Split Link

Quality
Switch
Feature

Reliable Path Finder (RPF)
[8]

To reduce backup path
installation time, number
of rules, and controller’s
overhead during failover

N N N Y Context-Aware NA Ignore flow classification

Q-Learning [47] Optimum path selection N N N Y Q-Learning
Improved bandwidth by 38.10%,

latency by 19.10%, and loss by
10.81%

High memory demand

Sorted-GFF [46] Reduce congestion Y N Y N Global First Fit Improve bisection bandwidth Inefficient flow classification
& prioritization

Flow Setup Latency (FSL)
[30]

To reduce flow setup
latency N N Y N Context-Aware

Reduce median and percentile
latencies to 5.9 and 7 ms,

respectively
High path convergence time

RPA [48] To improve link usage and
traffic distribution Y N Y N Heuristics

Claimed to have improved delay
and packet loss compared to

ECMMP and GFF.

No empirical evidence to
support the claims.

PDMR [49] To Improve network load,
jitter, and packet loss Y N N N Heuristics

Improved network load by 0.075
and 0.173, jitter by 0.191 and 0.407,
and packet loss by 0.020 and 0.049

for QoS and best effort flow,
respectively.

Failure to treat EF separately.

VPSA [10] To improve video QoS
experience Y N N N Holding Times and

SDP
Claimed to have improved

bandwidth High path set up time

Path Switching Time [50] minimizing total path
switching time N N N Y Context-Aware NA Poor validation

TDR [51] optimize aggregate delay
and reliability Y N N Y Ant Colony Not Clear Only suitable for WSN

MCRA [52] minimize congestion and
wasted bandwidth Y N Y N Bellman Ford

Algorithm Improve throughput, delay,
Single Fixed Flows Feature
during classification, not

scalable

RPSO [14] Optimize overhead and
convergence time N N Y Y Context-Aware

Reduce path stretch by 37%,
Latency by 73%, throughput by

55.73%, and PDR by 12.5%

Overlooked flow features
and this affect the QoS of

important flows

MRA [27] To Reduce failover time N N Y Y Depth First Search Achieved failure recovery within
1ms

Ignored congestion-prone
flows

HiQoS [36] For Rapid recovery from
link loss. Y N Y N Dijkstra Reduce delay, and Increase

throughput

Did not consider
congestion-prone traffic such

as EF

Mathematics 2023, 11, 1404 8 of 24

Table 1. Cont.

Existing Approaches
Algorithm Objective

Methods Classification

Result Achieved Weakness
Traffic Flow Path Selection

Routing Algo-
rithm/ApproachClassification Split Link

Quality
Switch
Feature

ADMPCF [37] Integrated resource control N N Y N BGR, kSP

Outperformed H-SPF and W-SPF
on rejected number of requests by

81–83%, SPF and H-SPF in
utilization by 1.4% and 40%,

respectively.

BGR needs additional
memory to store auxiliary

graph

TALON [38] To improve throughput
among tenants N Y Y N ECMP Increased throughput by 2.29 Did not consider latency and

reliability

Presto [28] Load balancing N Y N N GRO

For shuffle synthetic workload,
Presto improved throughput upon
ECMP by 38–72% and MPTCP by

17.28%

Is a proactive approach and
suffers from flowcell

reordering bottleneck. Thus,
it is prone to memory

overflow

TeaVisor [29] Bandwidth reservation N N Y N Context-Aware Achieve 34% throughput
improvementAverage error rate 5%

DASH [20] Flow table load balancing
across multiple paths N Y N Y Hash-based data

structure

Achieved 22.1% and 16.0%
completion time at 80% workload

compared to Hula and ECMP. With
a 20% load balance

Prone to out-of-order packet
delivery.

Tag-in-Tag [34,35] To maximize flow table Y N N Y Context-Aware
accommodates 15×more flow

entries and reduces power
consumption by 80%

Adding an identifier to each
incoming packet is hard to

do in the ASICs

Minnie [21] Efficient memory
utilization N N Y Y Wildcard

Save 50% of memory, decrease the
number of rules by an order of 5,

and 31 for dynamic compression at
2000

Mathematics 2023, 11, 1404 9 of 24

3. Design of the Proposed Solution

The proposed Adaptive Path Selection Algorithm with Flow Classification (APSAF) is
integrated into the SDN controller for routing traffic. APSAF employs a lightweight network
monitoring utility in the controller. The tool gathers and analyses network statistics in real time
to guide the selection of a suitable path for routing traffic while being aware of its demand and
tendency to cause congestion. Based on the statistics, traffic flows are classified into two (2)
categories by considering multiple features (size, rate, duration, and priority) to distinguish
the flows prone to congestion from the others dynamically. Furthermore, APSAF incorporates
multi-facet path features suitability metrics (PSM) to enable path screening and selection based
on the requirements matching each flow’s demands. The working mechanisms of APSAF
involve a Data Plane Elements Discovery Phase (DPEDP), a Flow Classification Phase (FCP),
and a Path Screening and Selection Phase (PSSP). The output of each phase served as an input
to the next phase. The diagram in Figure 1 displays the architectural view of the APSAF in
the SDN framework. Similarly, the description of the proposed Algorithm is provided in
the flowchart shown in Figure 2. Hence, each phase description and detailed operational
procedure are provided in Sections 3.1–3.3.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 25

Figure 1. Architecture of APSAF.

Figure 2. Flow Chart of the Proposed Algorithm.

3.1. Data Plane Elements Discovery Phase (DPEDP)

The Data Plane (DP) elements represent the network topology, which consists of a

collection of hosts 𝐻 = { ℎ1, ℎ2,ℎ3 … . . ℎ|𝐻|} and switches 𝑉 = { 𝑠1, 𝑠2,𝑠3 … . . 𝑠|𝑉|}. Their to-

pology is modeled as a graph 𝐺 = (𝑉 ∪ 𝐻, 𝐸) where 𝐸 is a set of links 𝐸 =

{ 𝑒1, 𝑒2,𝑒3 … . . 𝑒|𝐸|} connecting any two switches 𝑠𝑖𝑗 . Each of these links 𝑒𝑖,𝑗 ∈ 𝐸 has a ca-

pacity 𝐶(𝑒𝑖,𝑗) and is responsible for carrying traffic flow 𝑇𝑓 from a source switch 𝑠𝑖 to

destination switch 𝑠𝑗. These elements are discovered and built into a topology using the

procedure described in DPED of Figure 2 and Algorithm 1. When topology discovery sta-

tus 𝑇𝐷𝑡𝑥 = 0, the SDN controller initiates a Link-Layer Discovery Protocol (LLDP) to dis-

cover the network elements’ presence at the DP. Beginning with the initial handshake, the

Figure 1. Architecture of APSAF.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 25

Figure 1. Architecture of APSAF.

Figure 2. Flow Chart of the Proposed Algorithm.

3.1. Data Plane Elements Discovery Phase (DPEDP)

The Data Plane (DP) elements represent the network topology, which consists of a

collection of hosts 𝐻 = { ℎ1, ℎ2,ℎ3 … . . ℎ|𝐻|} and switches 𝑉 = { 𝑠1, 𝑠2,𝑠3 … . . 𝑠|𝑉|}. Their to-

pology is modeled as a graph 𝐺 = (𝑉 ∪ 𝐻, 𝐸) where 𝐸 is a set of links 𝐸 =

{ 𝑒1, 𝑒2,𝑒3 … . . 𝑒|𝐸|} connecting any two switches 𝑠𝑖𝑗 . Each of these links 𝑒𝑖,𝑗 ∈ 𝐸 has a ca-

pacity 𝐶(𝑒𝑖,𝑗) and is responsible for carrying traffic flow 𝑇𝑓 from a source switch 𝑠𝑖 to

destination switch 𝑠𝑗. These elements are discovered and built into a topology using the

procedure described in DPED of Figure 2 and Algorithm 1. When topology discovery sta-

tus 𝑇𝐷𝑡𝑥 = 0, the SDN controller initiates a Link-Layer Discovery Protocol (LLDP) to dis-

cover the network elements’ presence at the DP. Beginning with the initial handshake, the

Figure 2. Flow Chart of the Proposed Algorithm.

Mathematics 2023, 11, 1404 10 of 24

3.1. Data Plane Elements Discovery Phase (DPEDP)

The Data Plane (DP) elements represent the network topology, which consists of a collection
of hosts H =

{
h1, h2,h3 h|H|

}
and switches V =

{
s1, s2,s3 s|V|

}
. Their topology

is modeled as a graph G = (V ∪ H, E) where E is a set of links E =
{

e1, e2,e3 e|E|
}

connecting any two switches sij. Each of these links ei,j ∈ E has a capacity C
(
ei,j
)

and
is responsible for carrying traffic flow Tf from a source switch si to destination switch
sj. These elements are discovered and built into a topology using the procedure de-
scribed in DPED of Figure 2 and Algorithm 1. When topology discovery status TDtx = 0,
the SDN controller initiates a Link-Layer Discovery Protocol (LLDP) to discover the net-
work elements’ presence at the DP. Beginning with the initial handshake, the controller
broadcasts a Feature_Request_Message, to which all the available switches respond with
Feature_Reply_Message. The replied messages contain information such as (Swich-ID,
Active-Ports, MAC-Address, and Port-Number) to aid subsequent discovery of links. With
this knowledge, the controller encapsulates and multicasts an LLDP packet to all the Active-
Port of all the switches that responded to the Feature_Request_Message using Packet-Out
message Packet_OutMsg (Line 1–3, Algorithm 1). Suppose S is the total number of switches
that responded to the request in the network. In that case, the network, the total number
of LLDP Packet_OutMsg multicast to all the Active-Ports of the S number of switches
discovered, is given by Equation (1):

Packet_OutMsgTotal =
S

∑
i=1

Active_Porti (1)

Additionally, the Packet_OutMsg is also used to install an initial flow rule entry in the
switches’ flow table to route the LLDP_Packet via a Port_ID of any adjacent switches as
indicated in Type Length Value TLV_ f ield of the LLDP_Packet. Similarly, any switch upon
receiving the LLDP_Packet via a Port_ID not belonging to the controller will compose a
Packet_INMsg to the controller. Hence, the total number of Packet_INMsg is twice the
number of links L as shown in Equation (2).

Packet_INMsgTotal = 2.L (2)

The message contains the switch meta-data info such as Switch_ID, Port_ID, Link_in f o.
This information is updated after pre-set discovery interval TDInterval . (Line 3 Algorithm 1).
Figure 3 illustrates the signaling for these message exchanges.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 25

controller broadcasts a Feature_Request_Message, to which all the available switches re-

spond with Feature_Reply_Message. The replied messages contain information such as

(Swich-ID, Active-Ports, MAC-Address, and Port-Number) to aid subsequent discovery

of links. With this knowledge, the controller encapsulates and multicasts an LLDP packet

to all the Active-Port of all the switches that responded to the Feature_Request_Message

using Packet-Out message 𝑃𝑎𝑐𝑘𝑒𝑡_𝑂𝑢𝑡𝑀𝑠𝑔 (Line 1–3, Algorithm 1). Suppose 𝑆 is the total

number of switches that responded to the request in the network. In that case, the net-

work, the total number of LLDP 𝑃𝑎𝑐𝑘𝑒𝑡_𝑂𝑢𝑡𝑀𝑠𝑔 multicast to all the Active-Ports of the

S number of switches discovered, is given by Equation(1):

𝑃𝑎𝑐𝑘𝑒𝑡_𝑂𝑢𝑡𝑀𝑠𝑔𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑐𝑡𝑖𝑣𝑒_𝑃𝑜𝑟𝑡𝑖

𝑆

𝑖=1

 (1)

Additionally, the 𝑃𝑎𝑐𝑘𝑒𝑡_𝑂𝑢𝑡𝑀𝑠𝑔 is also used to install an initial flow rule entry in

the switches’ flow table to route the 𝐿𝐿𝐷𝑃_𝑃𝑎𝑐𝑘𝑒𝑡 via a 𝑃𝑜𝑟𝑡_𝐼𝐷 of any adjacent switches

as indicated in Type Length Value 𝑇𝐿𝑉_𝑓𝑖𝑒𝑙𝑑 of the 𝐿𝐿𝐷𝑃_𝑃𝑎𝑐𝑘𝑒𝑡. Similarly, any switch

upon receiving the 𝐿𝐿𝐷𝑃_𝑃𝑎𝑐𝑘𝑒𝑡 via a 𝑃𝑜𝑟𝑡_𝐼𝐷 not belonging to the controller will com-

pose a 𝑃𝑎𝑐𝑘𝑒𝑡_𝐼𝑁𝑀𝑠𝑔 to the controller. Hence, the total number of 𝑃𝑎𝑐𝑘𝑒𝑡_𝐼𝑁𝑀𝑠𝑔 is

twice the number of links 𝐿 as shown in Equation (2)

𝑃𝑎𝑐𝑘𝑒𝑡_𝐼𝑁𝑀𝑠𝑔𝑇𝑜𝑡𝑎𝑙 = 2. 𝐿 (2)

The message contains the switch meta-data info such as 𝑆𝑤𝑖𝑡𝑐ℎ_𝐼𝐷 , 𝑃𝑜𝑟𝑡_𝐼𝐷 ,

𝐿𝑖𝑛𝑘_𝑖𝑛𝑓𝑜. This information is updated after pre-set discovery interval 𝑻𝑫𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍. (Line 3

Algorithm 1). Figure 3 illustrates the signaling for these message exchanges.

Figure 3. LLDP Signaling During Topology Discovery.

Therefore, through this process, the controller at a time 𝑻𝑫𝒕𝒙 = 1 gets all the infor-

mation required to build the global network topology 𝐺 = (𝑉 ∪ 𝐻, 𝐸). The information

comprised the list of all adjacent switches 𝑠𝑖 ∈ 𝑉 ∀ 𝑖 = 1,2 … . |𝑉|, links 𝑒 ∈ 𝐸, and their

meta-data to store in its local data structure as implemented by (lines 8–10 Algorithm 1.).

Similarly, for each switch 𝑠𝑖 ∈ 𝑉, a flow table is maintained that contains a list of all its

adjacent switches, and all 𝐾 paths 𝑃 from 𝑠𝑖 𝑡𝑜 𝑠𝑗 , built with the A* [53] as shown in

(Lines 14–19, Algorithm 1).

Algorithm 1: Data Plane Element Discovery (DPED)

1. Begin

2. Set Discovery Status time 𝑻𝑫𝒕𝒙 = {
𝟏 𝒊𝒇 𝑮 = 𝑽𝑬 𝒅𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒆𝒅

 𝟎 𝒊𝒇 𝑮 = 𝑽𝑬 𝒏𝒐𝒕 𝒅𝒊𝒔𝒄𝒐𝒓𝒆𝒅

3. Set Discovery interval 𝑫𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍

4. Initiate LLDP to Discover 𝑮 = 𝑽𝑬

5. // Get Topology

6. While (𝑻𝒓𝒖𝒆):

7. Sleep for 𝑻𝑫𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍

Figure 3. LLDP Signaling During Topology Discovery.

Therefore, through this process, the controller at a time TDtx = 1 gets all the infor-
mation required to build the global network topology G = (V ∪ H, E). The information
comprised the list of all adjacent switches si ∈ V ∀ i = 1, 2|V|, links e ∈ E, and their
meta-data to store in its local data structure as implemented by (Lines 8–10 Algorithm 1).
Similarly, for each switch si ∈ V, a flow table is maintained that contains a list of all

Mathematics 2023, 11, 1404 11 of 24

its adjacent switches, and all K paths P from si to sj, built with the A* [53] as shown in
(Lines 14–19, Algorithm 1).

Algorithm 1 Data Plane Element Discovery (DPED)

1. Begin

2. Set Discovery Status time TDtx =

{
1 i f G = VE discovered
0 i f G = VE not discored

3. Set Discovery interval DInterval
4. Initiate LLDP to Discover G = VE
5. // Get Topology
6. While (True):
7. Sleep for TDInterval
8. Get switches s ε V
9. Get links e ε E
10. Get Hosts
11. End While
12. //Build the Topology
13. IF TDtx = 1 Then
14. For s ε V and e ε E
15. Get Adjacent switches.
16. Prepare a FLowtable
17. Build Initial paths Pij using A∗ algorithm.
18. Install Pij in FLowtable
19. End For
20. Else
21. Repeat 6 to 11
22. End IF
23. End

3.2. Flow Classification Phase (FCP)

The Flow Classification Phase’s (FCP) responsibility is to classify traffic flows ac-
cording to their characteristics and tendency to cause congestion. Although, in electronic
communication, a packet is the basic unit of data encapsulating the messages sent from a
source to a destination, because SDN is a flow-based networking framework, the network
traffic is treated in flow teams. Therefore, in this study, a flow is considered a sequence
of packets carrying information from source to destination whose packets share the same
5-tuple. These tuples cover its Protocol (TCP, UDP, ICMP), Source-Destination IP, and
port numbers subjected to the same timeout in a switch flow table. Flow characteristics
in SDN are not uniform regarding arrival rate, size, path use duration, and demands for
resources such as bandwidth. Owing to these irregularities, they posed different congestion
threats, possessed different QoS requirements, and behaved differently en route to their
destinations. The rule for handling each of these flows is stored in the switches’ flow table
using the following format (dpid(match), priority, instruction, counters, timeout cookie).
The dpid identifies the switch, while the cookie is a distinctive value to identify each flow.
Other fields recorded at the time of entry are priority and timeouts. Additionally, the flow
table provides counters to track the number of packets and bytes handled by each port
and rule. The statistics are encoded using OpenFlow Extensible Stat (OXS), a compact
type-length-value (TLV) format.

Therefore, the FCP Phase, as described in Algorithm 2, acquires and inspects the
characteristics of each traffic flow T fi coming into the network as stored in the flow table
and classifies them into either high congestion risk HCrisk or low congestion risk LCrisk.

The FCP procedure begins upon arrival of any new traffic flow T fi, through any
of the ingress switches of the network G = (V, E). Two containers are created to hold

Mathematics 2023, 11, 1404 12 of 24

only the information related to active traffic flows (Lines 2–3, Algorithm 2). Suppose
T f = {T f1, T f2T fN} are the Set of N traffic flows coming into the network. Each
T fi ∈ T f is classified either as a high congestion risk HCrisk or a low congestion risk LCrisk,
based on its size, arrival rate, and path utilization duration. The Algorithm checks whether
the traffic flow is classified in (Lines 8–10, Algorithm 2). Inspired by [54,55], the packet
counts (Pcount) of each T fi are used to quantify the size of the traffic flow T fsize.

To get the traffic flow information for this classification, a Ryu controller inbuilt utility
that gathers individual and aggregate flow statistics from switches is used. Therefore, to
bring out the flow of information, ∀ T fi ∈ { T f1, T f2T fN}, an OFPStatsRequest is
sent in synchronous mode at a different time interval. Moreover, a reply is received through
OFPStatsReply messages for each request made. Accordingly, the traffic flow size T fsize
and duration T fduration are extracted from the data obtained (Line 12–13, Algorithm 2)
while the traffic flow arrival rate, T fArrivalRate, is determined by dividing the flow size
T f f size of the transmitted data by the flow duration T fduration. If T fArrivalRate > Th, the flow
is a cheetah and snail otherwise.

T fArrivalRate = T fsize/T fduration (3)

A flow is classified as a high congestion risk if its size and duration are more than
fifteen (15 pkts) packets and eleven (11 ms) milliseconds, respectively. Otherwise, it is clas-
sified as a low congestion risk flow. The procedure is shown in (Lines 16–20, Algorithm 2).

Algorithm 2 Flow Classification Phase (FCP)

1. Begin
Input: a set of all new flows Tf {T f1, T f2T fN }
Output: Flow Categories HCrisk [], LCrisk []
2. Set HCrisk ← High congestion risk flow.
3. Set LHCrisk ← Low congestion risk flow.
4. IF new Traffic Flow Tf arrived Then
5. Call Algorithm 1
6. Get a set of K path Pij
7. End IF
8. For each new Tf
9. IF Tf , is classified, Then.
10. Find a suitable path (Call Algorithm 3)
11. Else
12. Send_FlowStat request.
13. Extract the T fsize
14. Extract the T fduration
15. Compute link utilization value Luv
16. IF Tf size > 15 and T fduration > 11 Then
17. HCrisk ← Tf
18. Else
19. LCrisk ← Tf
20. End If
21. For each Tf ∈ HCrisk or ∈ LCrisk
22. Find a suitable path (Call Algorithm 3)
23. End For
24. For each Tf ∈ LCrisk
25. Find a suitable path (Call Algorithm 3)
26. End For
27. End IF
28. End For
29. End

3.3. Flow Adaptive Path Selection with Optimized Quality

The Adaptive Path Selection Algorithm with Flow Classification and Optimized Qual-
ity’s (FAPSOQ’s) responsibility is to route the flow traffic from the source si to destination
sj upon arrival of new flow in the network G = (V ∪ H, E). At the arrival of any new flow,
Algorithm 1 will be called upon to return the Set of K candidates paths P

{
pij, pij . . . n

}
and

Mathematics 2023, 11, 1404 13 of 24

Algorithm 2 to classify the flows according to their congestion risk tendency. Algorithms 2
will return the flow classification result as HCrisk and LCrisk, respectively. The procedure is
shown in (Lines 1–7, Algorithm 3).

To route, the flow of traffic classified as high congestion risk and stored in HCrisk.
All the set of candidate paths returned by Algorithms 1 is further screened for the quality-
of-service requirements of congestion-susceptible flows; i.e., for each pij ∈ P

{
pij, pij . . . n

}
,

a composite QoS metric called Path Suitability Metric (PSM) is estimated and appended to
the path accordingly. PSM is a path feature vector defined by the path Minimum Delay
(min pij D), Maximum Delivery Ratio (max pij DR) and Maximum Residual Capacity(

max pij C
)

as shown in (Lines 9–15, Algorithm 3). FAPSOQ selects the path with maximum
PSM and installs the corresponding rules in the switches’ flow table along that path using
a command Finstall to begin routing flows to their destinations (Line 16–17, Algorithm 3)
while for flows classified as low congestion risk and stored in the LCrisk container, they are
routed using the Dijkstra [56] as shown in (Lines 20–23, Algorithm 3). The procedures used
to calculate path Delay (min pij D), Delivery Ratio (max pij DR), and Residual Capacity(
max pij C

)
are as follows:

To calculate the pij D and pij DR, an Open Link Layer Discovery Protocol LLDP [57]
looping method for latency monitoring is used. A timestamped LLDP packet with an
extra Network Specific Type Length Value (TLV) is crafted and sent as a continuous probe
message to measure all links’ latency. Adding the extra TLV in the normal LLDP enables
specifying a 10 bytes Organizational Unique Identifier (UOI) and Defined Subtype (ODS)
TLV to record the timestamp of LLDP packets traversing any link for latency measurement.

The DP switches are connected to the CP in an Out-Band mode. The controller is used
to inject a timestamped LLDP Probe Packet (PP) with TTL = 4 to switch Si designated as
the Link Source Switch LSSi at the DP. On receiving the PP from the controller, switch
LSSi forwards it further downstream to all its adjacent switches Sj , Sk , and Sl called
LDSj via all links connected to its active ports. Depending on the TTL value, a switch can
either be a Link Source Switch LSS or Link Destination Switch LDS. For a switch to know
its role/status, the controller crafted the LLDP PP with TTL = 4 at the beginning.

A PP arriving at any switch with TTL = 4 implies that the LLDP message emanates
from the CP and the switch is an LSS. The switch will decrease the TTL by 1, flood it to
its active ports, and forward it downstream to LDS. Furthermore, the TTL value controls
how the PP loops around a link to enable the calculation of its latency at the LDS; see the
flowchart in Figure 4.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 25

3.3. Flow Adaptive Path Selection with Optimized Quality

The Adaptive Path Selection Algorithm with Flow Classification and Optimized

Quality’s (FAPSOQ’s) responsibility is to route the flow traffic from the source 𝑠𝑖 to des-

tination 𝑠𝑗 upon arrival of new flow in the network 𝐺 = (𝑉 ∪ 𝐻, 𝐸). At the arrival of any

new flow, Algorithm 1 will be called upon to return the Set of 𝐾 candidates

𝑝𝑎𝑡ℎ𝑠 𝑃{𝑝𝑖𝑗 , 𝑝𝑖𝑗 . . . 𝑛} and Algorithm 2 to classify the flows according to their congestion

risk tendency. Algorithms 2 will return the flow classification result as 𝐻𝐶𝑟𝑖𝑠𝑘 and 𝐿𝐶𝑟𝑖𝑠𝑘,

respectively. The procedure is shown in (Lines 1–7, Algorithm 3).

To route, the flow of traffic classified as high congestion risk and stored in 𝐻𝐶𝑟𝑖𝑠𝑘 . All

the set of candidate paths returned by Algorithms 1 is further screened for the quality-of-

service requirements of congestion-susceptible flows; i.e., for each 𝑝𝑖𝑗 ∈ 𝑃{𝑝𝑖𝑗 , 𝑝𝑖𝑗 . . . 𝑛}, a

composite QoS metric called Path Suitability Metric (𝑃𝑆𝑀) is estimated and appended to

the path accordingly. 𝑃𝑆𝑀 is a path feature vector defined by the path Minimum Delay

(𝑚𝑖𝑛 𝑝𝑖𝑗 𝐷), Maximum Delivery Ratio (𝑚𝑎𝑥 𝑝𝑖𝑗 𝐷𝑅) and Maximum Residual Capacity

(𝑚𝑎𝑥 𝑝𝑖𝑗 𝐶) as shown in (Lines 9–15, Algorithm 3). FAPSOQ selects the path with maxi-

mum 𝑃𝑆𝑀 and installs the corresponding rules in the switches’ flow table along that path

using a command 𝐹𝑖𝑛𝑠𝑡𝑎𝑙𝑙 to begin routing flows to their destinations (Line 16–17, Algo-

rithm 3) while for flows classified as low congestion risk and stored in the 𝐿𝐶𝑟𝑖𝑠𝑘 con-

tainer, they are routed using the Dijkstra [56] as shown in (Lines 20–23, Algorithm 3). The

procedures used to calculate path Delay (𝑚𝑖𝑛 𝑝𝑖𝑗 𝐷), Delivery Ratio (𝑚𝑎𝑥 𝑝𝑖𝑗 𝐷𝑅), and Re-

sidual Capacity (𝑚𝑎𝑥 𝑝𝑖𝑗 𝐶) are as follows:

To calculate the 𝑝𝑖𝑗 𝐷 and 𝑝𝑖𝑗 𝐷𝑅, an Open Link Layer Discovery Protocol LLDP [57]

looping method for latency monitoring is used. A timestamped LLDP packet with an extra

Network Specific Type Length Value (TLV) is crafted and sent as a continuous probe mes-

sage to measure all links’ latency. Adding the extra TLV in the normal LLDP enables spec-

ifying a 10 bytes Organizational Unique Identifier (UOI) and Defined Subtype (ODS) TLV

to record the timestamp of LLDP packets traversing any link for latency measurement.

The DP switches are connected to the CP in an Out-Band mode. The controller is used

to inject a timestamped LLDP Probe Packet (PP) with TTL = 4 to switch 𝑆𝑖 designated as

the Link Source Switch 𝐿𝑆𝑆𝑖 at the DP. On receiving the PP from the controller, switch

𝐿𝑆𝑆𝑖 forwards it further downstream to all its adjacent switches 𝑆𝑗 , 𝑆𝑘 , 𝑎𝑛𝑑 𝑆𝑙 called

𝐿𝐷𝑆𝑗 via all links connected to its active ports. Depending on the TTL value, a switch can

either be a Link Source Switch LSS or Link Destination Switch LDS. For a switch to know

its role/status, the controller crafted the LLDP PP with TTL = 4 at the beginning.

A PP arriving at any switch with TTL = 4 implies that the LLDP message emanates

from the CP and the switch is an LSS. The switch will decrease the TTL by 1, flood it to its

active ports, and forward it downstream to LDS. Furthermore, the TTL value controls how

the PP loops around a link to enable the calculation of its latency at the LDS; see the

flowchart in Figure 4.

Figure 4. LLDP Looping Flowchart.

A switch Si is tagged as an LSS, and a switch Sj that received the LDDP probe packet
from Si is tagged as an LDS. At Sj, the probe packet arriving with TTL = 3 signifies that
it is an LDS receiving the packet and is required to record the time it received the packet,
decrease the TTL by one (1) and return the packet to the LSSi . A probe packet arriving at

Mathematics 2023, 11, 1404 14 of 24

any switch with TTL = 2 implies that the LLDP message emanates from the LDSi , and the
switch is an LSSi , receiving the packet for the second time. The switch will decrement the
TTL by 1, flood it to its active ports, and forward it downstream to LSD. On seeing the PP
with TTL = 1, the LDSi LDS will compute the RTT, put it in the TLV, and return it to the
controller. The time it takes for the controller to receive the probe packet from LDS, TLDS−C,
is measured. Therefore, the total delay of a link between the LSS and LDS along any path
is accumulated by the time difference between PP sent time at LSS, and PP received time
at LDS; LSSi ST − LDSj RT and TLDS−C, as shown in Equation(4). Hence, for a path with
multiple links, the total path delay psi−sj D is obtained by taking the summation of all links’
delay along the path, as shown in Equation (5).

LD = TLDS−C −
(

LDSj RT − LSSi ST
)

2
(4)

psi→sj D =
j

∑
i

LD (5)

Similarly, as shown in Equation (6), the lsi→sj DR is computed by taking the ratio of

the total number of LLDP Probe Packets received at sj

(
No. o f PP Recieved sj

)
sent over

the link lsi→sj from the sender si (No. o f PP Sentsi) at a particular time. The statistics
are collected by sending an OpenFlow Port Starts Request message specifying the port
numbers of the LSS and LDS.

lsi→sj DR =
No. o f PP Recieved sj

No. o f PP Sentsi

(6)

psi→sj DR =
j

∑
i

lsi→sj DR (7)

While the Path Utilization Ratio psi→sj U is determined by using an OpenFlow [58]
Port Starts Request feature to send a request to a LSS at time interval t, the port number
connected to the link of interest is specified in the request to retrieve the number of bytes
transmitted. If ρ is the number of bytes transmitted by LSS over the link lsi→sj to LSS and
δ is the period between the two times at which ρ is polled from LSS, then the utilization of
the link lsi→sj U and psi→sj U is calculated as shown in Equations (8) and (9), respectively.

lsi→sj U =
ρ[t]− ρ[t− 1]

δ
. (8)

psi→sj U =
j

∑
i

lsi→sj U (9)

If the capacity of link si→ sj is C, the Link Residual Capacity and Path Residual
Capacity are calculated by Equations (10) and (11), respectively.

psi→sj rC = Csi→sj − lsi→sj U (10)

psi→sj rC =
j

∑
i

psi→sj rC (11)

Therefore, aggregation of Equations (5), (7) and (11) leads to the formation of composite
Path Suitability Metrics (PSM) as shown in Equation (12)

PSM =
j

∑
i

((
min

(
psi→sj D

))
+
(
min

(
psi→sj DR

))
+
(
max

(
psi→sj rC

)))
(12)

Mathematics 2023, 11, 1404 15 of 24

Algorithm 3 Adaptive Path Selection Algorithm with Flow Classification

1. IF new flow Tf arrived Then
2. Call Algorithm 1
3. Get Set of K paths P

{
pij, pij n

}
4. Call Algorithm 2 to Input
5. Get HCrisk
6. Get LCrisk
7. End IF
8. IF Tf ∈ HCrisk Then
9. For Each pij ∈ P
10. // Compute the values of psi→sj D, psi→sj DR, psi→sj rC and psi→sj lost for PSMsi→sj

11. psi→sj D = ∑
j
i TLDS−C −

(LDSj RT−LSSi ST)
2

12. psi→sj DR = ∑
j
i

No. o f PP Recieved sj
No. o f PP Sentsi

13. psi→sj rC = Csi→sj −∑
j
i

ρ[t]−ρ[t−1]
δ

14. PSM = ∑
j
i
((

min
(

psi→sj D
))

+
(
min

(
psi→sj DR

))
+
(
max

(
psi→sj rC

)))
15. // Evaluate the cost and append to each pij ∈ P
16. Select the Max (PSM)
17. Install the rule in FLowtable
18. End For
19. Else Tf ∈ LCrisk Then
20. For Each pij ∈ P
21. Select a path using Dijkstra.
22. Install the rule in FLowtable
23. End For
24. End IF
25. End

4. Experimentation Setup to Validate APSAF

The experiment is conducted on a simulated environment on an Intel(R) Core (TM)
i7-10750H CPU @ 2.60 GHz 2.59 GHz and 16.0 GB memory. Figure 5 illustrates the basic
architecture of the simulation environment setup and how the various tools used for
the experiment interact together. The tools comprised the controller at the control plane
(CP), communicating with the data plane (DP) switches via NBi using OpenFlow protocol.
A traffic generation tool is used to replicate the workload of internet applications for the
proposed APSAF at the application layer (AP) to select a suitable path to route the traffic
accordingly. See Section 4.1 for more information on these tools.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 25

Figure 5. The architecture of simulation environment.

4.1. The Experimentation Tools and Data Traffic Model

As summarized in Table 2, a Ryu SDN controller [59] is configured on Oracle virtual

machine (VM) version 6.1.18 with Ubuntu (64bit) to run the APSAF algorithm. FARSA

selects paths to route traffic from a European Reference Network (ERnet) topology, which

has 37 nodes and 57 edges with undirected links [38]. The Ernet topology is created using

a script written in Python. Mininet version 2.3.0 [60] is employed to emulate the topology.

All the Data Plane (DP) switches on the topology are designed with software such as

OpenVswitch 3.0.1 (OVS) [61,62] on the emulator to interact with the Ryu controller using

OpenFlow protocol v1.5.1 [58]. D-ITG utility [63] generates different quantities of TCP and

UDP traffic flows for the experiment. The study models the traffic to follow poison traffic

distribution in terms of Packet Inter Departure Time (PIDT) and Size (PS).

Table 2. Experimentation Tools and Data Traffic Model.

Experimentation

Tools

Control Plane Data Plane Northbound Emulator Flat Form Environment
Traffic Gen-

erator

Ryu Controller OpenVswitch OpenFlow
Mininetv2.2.

2
Ubuntu (64 bit) OracleVM6.1.18 D-ITG

Traffic Parame-

ters

Traffic Type Inter Departure Time (IDT) Size Values Control Utility

TCP, UDP Constant and Poison distribution pattern 0.1–10, 15, 20 TClink

4.2. Performance Evaluation of APSAF

Selecting a path suitable to route-susceptible congestion traffic flows such as EF with-

out hurting MF, which are delay sensitive, is significant in meeting the QoS of networks.

To this end, APSAF is proposed to provide this solution. An experiment is conducted to

explore how some network performance metrics relevant to the algorithm’s objective are

met. Accordingly, this study adopts three main metrics, which comprise throughput [54],

Packet Delivery Ratio (PDR) [55], and Path Load Ratio (LPR) [12], to carry out the perfor-

mance evaluation. The Path Load Ratio (PLR) will provide information on the traffic load

ratio on a path to the path capacity. The motive is to find out the performance benefits

while using APSAF as the path selection method in SDN. Similarly, APSAF is validated

Figure 5. The architecture of simulation environment.

Mathematics 2023, 11, 1404 16 of 24

4.1. The Experimentation Tools and Data Traffic Model

As summarized in Table 2, a Ryu SDN controller [59] is configured on Oracle virtual
machine (VM) version 6.1.18 with Ubuntu (64bit) to run the APSAF algorithm. FARSA
selects paths to route traffic from a European Reference Network (ERnet) topology, which
has 37 nodes and 57 edges with undirected links [38]. The Ernet topology is created using a
script written in Python. Mininet version 2.3.0 [60] is employed to emulate the topology.
All the Data Plane (DP) switches on the topology are designed with software such as
OpenVswitch 3.0.1 (OVS) [61,62] on the emulator to interact with the Ryu controller using
OpenFlow protocol v1.5.1 [58]. D-ITG utility [63] generates different quantities of TCP and
UDP traffic flows for the experiment. The study models the traffic to follow poison traffic
distribution in terms of Packet Inter Departure Time (PIDT) and Size (PS).

Table 2. Experimentation Tools and Data Traffic Model.

Experimentation
Tools

Control Plane Data Plane Northbound Emulator Flat Form Environment Traffic
Generator

Ryu Controller OpenVswitch OpenFlow Mininetv2.2.2 Ubuntu (64 bit) OracleVM6.1.18 D-ITG

Traffic
Parameters

Traffic Type Inter Departure Time (IDT) Size Values Control Utility
TCP, UDP Constant and Poison distribution pattern 0.1–10, 15, 20 TClink

4.2. Performance Evaluation of APSAF

Selecting a path suitable to route-susceptible congestion traffic flows such as EF with-
out hurting MF, which are delay sensitive, is significant in meeting the QoS of networks.
To this end, APSAF is proposed to provide this solution. An experiment is conducted to
explore how some network performance metrics relevant to the algorithm’s objective are
met. Accordingly, this study adopts three main metrics, which comprise throughput [54],
Packet Delivery Ratio (PDR) [55], and Path Load Ratio (LPR) [12], to carry out the perfor-
mance evaluation. The Path Load Ratio (PLR) will provide information on the traffic load
ratio on a path to the path capacity. The motive is to find out the performance benefits
while using APSAF as the path selection method in SDN. Similarly, APSAF is validated
through comparison with other existing path selection methods in SDN, such as [14], to
assess its effectiveness and the improvement achieved. Finally, a discussion and analysis
are provided in the following subsections.

4.2.1. Throughout

Throughput provides network performance information about the number of data
packets effectively delivered at the destination host over a transmission period sent from a
source host [64]. The metric is relevant in assessing path selection technique performance
on how it responds to network-changing events such as traffic arrival rate or failure [12].
Figure 6 compares the throughputs achieved while selecting a path to route traffic with the
Algorithm proposed in this work, APSAF, and other PSAs proposed in [8,10,12]. As can
be seen from Figure 6, APSAF achieves 11.2%, 38.2%, and 57.6% improvement in terms
of throughput compared to RPSO, FSL, and RPF, respectively. The result indicates that
the adopted methodology of separating large flows from smaller flows to select paths
according to their respective demands facilitates a better path selection decision. This
analysis supports the idea [13] that amalgamating all flows on the same path, irrespective of
their attributes, affects QoS, such as throughput. APSAF exhibits significant path selection
decisions consistently compared to FSL and RPF because of the adopted methodology.
RPSO, on the other hand, closely matches APSAF because it selects a path with few critical
switches to route the traffic flows. The relation pattern between APSAF and RPSO suggests
that combining the flow classification with a switch role in path selection decisions might
improve the throughput.

Mathematics 2023, 11, 1404 17 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 25

through comparison with other existing path selection methods in SDN, such as [14], to

assess its effectiveness and the improvement achieved. Finally, a discussion and analysis

are provided in the following subsections.

4.2.1. Throughout

Throughput provides network performance information about the number of data

packets effectively delivered at the destination host over a transmission period sent from

a source host [64]. The metric is relevant in assessing path selection technique performance

on how it responds to network-changing events such as traffic arrival rate or failure [12].

Figure 6 compares the throughputs achieved while selecting a path to route traffic with

the algorithm proposed in this work, APSAF, and other PSAs proposed in [8,10,12]. As

can be seen from Figure 6, APSAF achieves 11.2%, 38.2%, and 57.6% improvement in

terms of throughput compared to RPSO, FSL, and RPF, respectively. The result indicates

that the adopted methodology of separating large flows from smaller flows to select paths

according to their respective demands facilitates a better path selection decision. This

analysis supports the idea [13] that amalgamating all flows on the same path, irrespective

of their attributes, affects QoS, such as throughput. APSAF exhibits significant path selec-

tion decisions consistently compared to FSL and RPF because of the adopted methodol-

ogy. RPSO, on the other hand, closely matches APSAF because it selects a path with few

critical switches to route the traffic flows. The relation pattern between APSAF and RPSO

suggests that combining the flow classification with a switch role in path selection deci-

sions might improve the throughput.

Figure 6. Throughput.

4.2.2. Packet Delivery Ratio (PDR)

The Packet Delivery Ratio (PDR) in network performance is defined as the ratio of

successfully delivered data packets at the receiver to the total number of data packets

transmitted at the source by all flows. The result in Figure 7 indicates how APSAF per-

formed compared to RPSO [14], FSL, and RPF. The x and y axes in the graph represent the

percentage of PDR and Packet Inter-Transfer Rate (PITR) per second. PDR is observed to

be inversely proportional to the number of packets dropped. The packet drop might occur

due to the path’s inability to accommodate anomalies and changes such as link failure,

traffic variabilities, or burst flow arrival patterns in the network [64]. Thus, the metric is

crucial in assessing the performance of PSAs because, under the same condition, the in-

crease or decrease in PDR concerning PITR indicates an improved performance or other-

wise. Therefore, different PITRs are generated to measure PDR in the experiments con-

ducted. As shown in Figure 7, APSAF demonstrates a steady and better PDR compared

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

10 30 50 70 90 110130150170190210230250270290

T
h

ro
u

g
h

p
u

t[
P

P
S

]

Packet Inter Arrival Time[PS]

APSAF

RPSO

FSL

RPF

Figure 6. Throughput.

4.2.2. Packet Delivery Ratio (PDR)

The Packet Delivery Ratio (PDR) in network performance is defined as the ratio of
successfully delivered data packets at the receiver to the total number of data packets
transmitted at the source by all flows. The result in Figure 7 indicates how APSAF per-
formed compared to RPSO [14], FSL, and RPF. The x and y axes in the graph represent
the percentage of PDR and Packet Inter-Transfer Rate (PITR) per second. PDR is observed
to be inversely proportional to the number of packets dropped. The packet drop might
occur due to the path’s inability to accommodate anomalies and changes such as link
failure, traffic variabilities, or burst flow arrival patterns in the network [64]. Thus, the
metric is crucial in assessing the performance of PSAs because, under the same condition,
the increase or decrease in PDR concerning PITR indicates an improved performance or
otherwise. Therefore, different PITRs are generated to measure PDR in the experiments
conducted. As shown in Figure 7, APSAF demonstrates a steady and better PDR compared
to RPSO [64], FSL, and RPF by 3.3%, 31.8%, and 60.0%, respectively. The performance
benefit is attributed to accurate path quality estimation of flow demand and subsequent
rerouting of the packets through a path with adequate capacity to accommodate the traffic.
Therefore, packet transmission may not be affected even when there is a change in the net-
work, as observed from the significant improvement compared to FSL and RPF. However,
based on the result, APSAF and RPSO move the head to shoulder as in the throughput.
This behavior suggests that considering both flow classification and switch roles in path
selection decisions might improve the PDR in a network. We plan to consider a practical
implementation of this idea in our future research.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 25

to RPSO [64], FSL, and RPF by 3.3%, 31.8%, and 60.0%, respectively. The performance

benefit is attributed to accurate path quality estimation of flow demand and subsequent

rerouting of the packets through a path with adequate capacity to accommodate the traf-

fic. Therefore, packet transmission may not be affected even when there is a change in the

network, as observed from the significant improvement compared to FSL and RPF. How-

ever, based on the result, APSAF and RPSO move the head to shoulder as in the through-

put. This behavior suggests that considering both flow classification and switch roles in

path selection decisions might improve the PDR in a network. We plan to consider a prac-

tical implementation of this idea in our future research.

Figure 7. Packet Delivery Ratio.

4.2.3. Path Load Ratio (PLR)

The Path Load Ratio (PLR) is the ratio between the traffic load (in the form of the

number of EF) on that path and the path capacity. This metric calculates the percentage of

a path’s capacity used. Therefore, for every given path 𝑃{𝑝𝑖𝑗 , 𝑝𝑖𝑗 … 𝑛}, lower PLR values

indicate a more optimal route decision for the current traffic flow [12]. In SDN, the OVS

keeps track of the total number of bytes transmitted and received through each port. Ac-

cordingly, APSAF compiles the recorded statistics encompassing the start and end of the

transmission to compute the bytes transmitted through the port during a particular period

to derive the PLR. Next, we divide the period length by the path capacity to get the port’s

path utilization. Lastly, PLR equals the maximum path utilization across all ports in the

network. This experiment examines the PLR’s performance concerning variations in traf-

fic flow arrivals. Thus, PLR is observed by gradually increasing the number of flows from

15 to 150,000,000. In Figure 8, the PLR of APSAF is comparable to that of RPSO within 5%;

however, APSAF dramatically reduces the route load ratio by 26% and 44% relative to

FSL and RPF, respectively. APSAF’s performance gain can be traced back to its usage of

flow classification and optimal path selection modules because the modules dynamically

route traffic according to flow characteristics, with the ultimate goal of selecting the path

with the highest PSM aggregate value.

10 20 30 40 50 60 70 80 90 100110120130140150

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Packet Inter Arrival Rate

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 %

APSAF

RPSO

FSL

RPF

Figure 7. Packet Delivery Ratio.

Mathematics 2023, 11, 1404 18 of 24

4.2.3. Path Load Ratio (PLR)

The Path Load Ratio (PLR) is the ratio between the traffic load (in the form of the
number of EF) on that path and the path capacity. This metric calculates the percentage
of a path’s capacity used. Therefore, for every given path P

{
pij, pij . . . n

}
, lower PLR

values indicate a more optimal route decision for the current traffic flow [12]. In SDN, the
OVS keeps track of the total number of bytes transmitted and received through each port.
Accordingly, APSAF compiles the recorded statistics encompassing the start and end of the
transmission to compute the bytes transmitted through the port during a particular period
to derive the PLR. Next, we divide the period length by the path capacity to get the port’s
path utilization. Lastly, PLR equals the maximum path utilization across all ports in the
network. This experiment examines the PLR’s performance concerning variations in traffic
flow arrivals. Thus, PLR is observed by gradually increasing the number of flows from 15
to 150,000,000. In Figure 8, the PLR of APSAF is comparable to that of RPSO within 5%;
however, APSAF dramatically reduces the route load ratio by 26% and 44% relative to FSL
and RPF, respectively. APSAF’s performance gain can be traced back to its usage of flow
classification and optimal path selection modules because the modules dynamically route
traffic according to flow characteristics, with the ultimate goal of selecting the path with
the highest PSM aggregate value.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 25

Figure 8. Packet Load Ratio.

4.2.4. Average Packet Delay

Figure 9a,b display the results for the average delay incurred while transmitting El-

ephant Flows and Mice Flows using APSAF and the result of APSAF in comparison with

three other algorithms such as RPSO, RPF, and FSL while routing traffic coming at differ-

ent flow arrival rates per second, respectively. From Figure 9a it can be observed that at

the beginning of the transmission when the flow arrival rate is below 10 flows per second

both traffic flows incurred delays below 1 ms. The delay increased when the arrival rate

of flow increased beyond 20 flows per second. At this stage, the Elephant flow incurred

higher delays than the Mice flow because of consideration of the path selection metrics.

On the other hand, overall, APSAF achieves better average delay performance as com-

pared to the benchmark algorithms. APSA achieves this result because it implements a

thread monitoring mechanism to detect congestion-prone flows and reroutes them to a

path with an appropriate capacity to accommodate them. Thus, it can guarantee the re-

quirements of each flow category did not influence one another. As such, the Mice flow

selects the shortest distance path to mitigate the effect of the delay.

(a) (b)

Figure 9. (a) Average Packet Delay; (b) Average Packet Delay.

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

14.000%

16.000%

Flow Arrival Rate (fps)

P
at

h
 L

o
ad

 R
at

io
 %

RPF

FSL

RPSO

APSAF

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

Flow Arrival Rate (per second

 Mice Flow

Elephant Flow

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

A
v

er
ag

e
P

ac
k

et
 D

el
ay

(m
s)

Flow Arrival Rate(per second)

 APSAF

 RPSO

 FSL

 RPF

Figure 8. Packet Load Ratio.

4.2.4. Average Packet Delay

Figure 9a,b display the results for the average delay incurred while transmitting
Elephant Flows and Mice Flows using APSAF and the result of APSAF in comparison with
three other algorithms such as RPSO, RPF, and FSL while routing traffic coming at different
flow arrival rates per second, respectively. From Figure 9a it can be observed that at the
beginning of the transmission when the flow arrival rate is below 10 flows per second
both traffic flows incurred delays below 1 ms. The delay increased when the arrival rate
of flow increased beyond 20 flows per second. At this stage, the Elephant flow incurred
higher delays than the Mice flow because of consideration of the path selection metrics. On
the other hand, overall, APSAF achieves better average delay performance as compared
to the benchmark algorithms. APSA achieves this result because it implements a thread
monitoring mechanism to detect congestion-prone flows and reroutes them to a path with
an appropriate capacity to accommodate them. Thus, it can guarantee the requirements
of each flow category did not influence one another. As such, the Mice flow selects the
shortest distance path to mitigate the effect of the delay.

Mathematics 2023, 11, 1404 19 of 24

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 25

Figure 8. Packet Load Ratio.

4.2.4. Average Packet Delay

Figure 9a,b display the results for the average delay incurred while transmitting El-

ephant Flows and Mice Flows using APSAF and the result of APSAF in comparison with

three other algorithms such as RPSO, RPF, and FSL while routing traffic coming at differ-

ent flow arrival rates per second, respectively. From Figure 9a it can be observed that at

the beginning of the transmission when the flow arrival rate is below 10 flows per second

both traffic flows incurred delays below 1 ms. The delay increased when the arrival rate

of flow increased beyond 20 flows per second. At this stage, the Elephant flow incurred

higher delays than the Mice flow because of consideration of the path selection metrics.

On the other hand, overall, APSAF achieves better average delay performance as com-

pared to the benchmark algorithms. APSA achieves this result because it implements a

thread monitoring mechanism to detect congestion-prone flows and reroutes them to a

path with an appropriate capacity to accommodate them. Thus, it can guarantee the re-

quirements of each flow category did not influence one another. As such, the Mice flow

selects the shortest distance path to mitigate the effect of the delay.

(a) (b)

Figure 9. (a) Average Packet Delay; (b) Average Packet Delay.

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

14.000%

16.000%

Flow Arrival Rate (fps)

P
at

h
 L

o
ad

 R
at

io
 %

RPF

FSL

RPSO

APSAF

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

Flow Arrival Rate (per second

 Mice Flow

Elephant Flow

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

A
v

er
ag

e
P

ac
k

et
 D

el
ay

(m
s)

Flow Arrival Rate(per second)

 APSAF

 RPSO

 FSL

 RPF

Figure 9. (a) Average Packet Delay; (b) Average Packet Delay.

4.2.5. Packet Loss

Figure 10a depicts the result of the packet loss rate experiments. By differentiating
among flows and limiting the Mice Flow to a path whose selection is based on the shortest
distance, the APSAF approach achieved the lowest packet loss rate for the transmission of
Elephant Flows. In addition, APSAF, RPSO, RPF, and FSL are compared and the results
of the experiment of the four strategies are displayed in Figure 10b. Since APSAF uses
path selection measures that take its packet loss rate and delivery ratio into account when
transmitting the Elephant Flows, it significantly lowers the packet loss rate. As shown,
APSAF has the lowest average packet loss rate of the four routing algorithms due to its
usage of the path suitability metric to guide the path selection decision. This is because path
quality metrics such as delay, link residual capacity, and path delivery ratio are completely
accounted for in the cost function. Meanwhile, it is noticed that when the arrival rate
is quite low, there is no substantial difference in the outcomes of the three algorithms.
However, when the flow arrival rate increases, APSAF’s packet loss rate is much lower
than the benchmark algorithms.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 25

4.2.5. Packet Loss

Figure 10a depicts the result of the packet loss rate experiments. By differentiating

among flows and limiting the Mice Flow to a path whose selection is based on the shortest

distance, the APSAF approach achieved the lowest packet loss rate for the transmission

of Elephant Flows. In addition, APSAF, RPSO, RPF, and FSL are compared and the results

of the experiment of the four strategies are displayed in Figure 10b. Since APSAF uses

path selection measures that take its packet loss rate and delivery ratio into account when

transmitting the Elephant Flows, it significantly lowers the packet loss rate. As shown,

APSAF has the lowest average packet loss rate of the four routing algorithms due to its

usage of the path suitability metric to guide the path selection decision. This is because

path quality metrics such as delay, link residual capacity, and path delivery ratio are com-

pletely accounted for in the cost function. Meanwhile, it is noticed that when the arrival

rate is quite low, there is no substantial difference in the outcomes of the three algorithms.

However, when the flow arrival rate increases, APSAF’s packet loss rate is much lower

than the benchmark algorithms.

(a) (b)

Figure 10. (a) Packet Loss. (a). Packet Loss.

5. Conclusions

Adaptive Path Selection Algorithm with Flow Classification for Software-Defined

Networks is a novel approach to address the challenge of dynamic traffic management in

SDN. This algorithm utilizes the combination of flow classification and multiple path se-

lection to improve the network’s ability to handle unpredictable and dynamic traffic. The

algorithm has been implemented and evaluated in a laboratory testbed, and the results

demonstrate its effectiveness in terms of increased network performance, reduced con-

gestion, and improved quality of service. This research presents a route path selection

technique based on flow classification to differentiate congestion-prone flows, such as EF,

from hurting the majority of delay-sensitive MF by rerouting them on paths with appro-

priate capacity to avoid congestion and loss in SDN. A route with the highest quality met-

rics is chosen using path selection techniques. A composite path quality estimation vector

has been designed to select a path based on the QoS needed by each traffic category, as

determined by the flow classification phase. The flow classification phase makes it possi-

ble for the path selection phase to map flows differently. Based on the experiments, the

proposed solution has reduced the Path Load Ratio (PLR) by 37% while improving the

throughput and packet delivery ratio by 55.73% and 12.5%, compared to the benchmark

works. APSAF envisages leveraging graph theory techniques to evaluate switch roles in

the network to isolate critical switches along a selected path to route any traffic in future

work. The aim is to minimize the controller’s overhead during rule update operations in

0 20 40 60 80 100 120 140 160 180 200 220 240

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

A
v

er
ag

e
P

ac
k

et
 L

o
ss

(%
)

Time(s)

 Mice Flow

 Elephant Flow

0 20 40 60 80 100 120 140 160 180 200 220 240
0.0

0.1

0.2

0.3

0.4

0.5

A
v

er
ag

e
P

ac
k

et
 L

o
ss

(%
)

Flow Inter Arrival Time(s)

 APSAF

 RPSO

 RPF

 FSL

Figure 10. (a) Packet Loss. (a). Packet Loss.

5. Conclusions

Adaptive Path Selection Algorithm with Flow Classification for Software-Defined
Networks is a novel approach to address the challenge of dynamic traffic management
in SDN. This Algorithm utilizes the combination of flow classification and multiple path
selection to improve the network’s ability to handle unpredictable and dynamic traffic.

Mathematics 2023, 11, 1404 20 of 24

The Algorithm has been implemented and evaluated in a laboratory testbed, and the
results demonstrate its effectiveness in terms of increased network performance, reduced
congestion, and improved quality of service. This research presents a route path selection
technique based on flow classification to differentiate congestion-prone flows, such as
EF, from hurting the majority of delay-sensitive MF by rerouting them on paths with
appropriate capacity to avoid congestion and loss in SDN. A route with the highest quality
metrics is chosen using path selection techniques. A composite path quality estimation
vector has been designed to select a path based on the QoS needed by each traffic category,
as determined by the flow classification phase. The flow classification phase makes it
possible for the path selection phase to map flows differently. Based on the experiments,
the proposed solution has reduced the Path Load Ratio (PLR) by 37% while improving the
throughput and packet delivery ratio by 55.73% and 12.5%, compared to the benchmark
works. APSAF envisages leveraging graph theory techniques to evaluate switch roles in the
network to isolate critical switches along a selected path to route any traffic in future work.
The aim is to minimize the controller’s overhead during rule update operations in the
event of any topology change. Thus, the comparison of flow characteristics, path quality,
and switch role can all be taken into account simultaneously to arrive at a path selection
decision. Similarly, to improve the flow classification and prioritization phase, it would be
intriguing to employ machine learning techniques such as deep learning to forecast flow
behavior based on flow history. In the future, the proposed method could be to incorporate
deep learning techniques to further enhance the flow classification process and make the
Algorithm more adaptive to changing network conditions. Another avenue for exploration
could be to integrate the Algorithm with edge computing to better support distributed
applications and services. Additionally, future work could also focus on extending the
Algorithm to support multi-domain SDN and evaluate its performance in real-world
network deployments.

Author Contributions: Conceptualization, M.N.Y. and B.I.; methodology, M.N.Y., K.b.A.B. and B.I.;
validation, M.N.Y., K.b.A.B. and B.I.; writing—original draft preparation, M.N.Y.; writing—review
and editing, A.H.O. and M.N.; supervision, K.b.A.B.; funding acquisition, A.H.O., M.N. and F.A.E.
All authors have read and agreed to the published version of the manuscript.

Funding: King Abdulaziz University-Institutional Funding Program for Research and Development-
Ministry of Education: IFPIP: 464-830-1443.

Data Availability Statement: Not applicable.

Acknowledgments: This research work was funded by Institutional Fund Projects under grant
no. (IFPIP:464-830-1443). The authors gratefully acknowledge the technical and financial support
provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviation

SDN Software-Defined Networking
DP Data Plane
CP Control Plane
AP Application Plane
NBi Northbound Interface
SBi Southbound Interface
NOS Network’s Operating System
POF Protocol Oblivious Forwarding
OVSDB Open vSwitch Database
ForCES Forwarding Control Elements
LLDP Link Layer Discovery Protocol

Mathematics 2023, 11, 1404 21 of 24

PP Prove Packet
OUI Organizational Unique Identifier
TTL Time To Live
TLV Type Length Value
LSS Link Source Switch
LDS Link Destination Switch
OXS OpenFlow Extensible Stat
QoS Quality of Service
SLA Service-Level Agreement
TCP Transmission Control Protocol
UDP User Datagram Protocol,
ICMP Internet Control Message Protocol
D-ITG Distributed Internet Traffic Generator
Tx Transmission
Rx Receive
SPP Special Ping Packet
RTT Round-Trip Time
EF Elephant Flow
LLF Long-Lived Flow
MF Mice Flow
SLF Long-Lived Flow
ESD Edge Switch Detection
EHD End-Host Detection
STD Switch Trigger Detection
IoT Internet of Things
SPOF Single Point Failure
LP Linear Programming
ILP Integer Linear Programming
PSD Path Selection Decision
PSA Path Selection Algorithm
PSM Path Selection Method
LLP Least Loaded Path
ECMP Equal Cost Multiple Path
DMSP Dynamic Multipath Scheduling Protocol
GOMR Globally Optimized Multipath Routing
QSMPS QoS Multipath Selection Scheme
RPSO Routh Selection Optimization
FSL Flow Setup latency
RPF Reliable Path Finder
APSAF Adaptive Path Selection Algorithm with Flow Classification
DPED Data Plane Elements Discovery
FCP Flow Classification Phase
PIDT Packet Inter Departure Time
PS Packet Size
PSM Path Suitability Metric
PSSP Path Screening and Selection Phase
ERnet European Reference Network
OVS OpenVswitch
PDR Path Delivery Ratio
PLR Path Load Ratio
PITR Packet Inter-Transfer Rate

References
1. Isyaku, B.; Zahid, M.S.M.; Kamat, M.B.; Bakar, K.A.; Ghaleb, F.A. Software Defined Networking Flow Table Management of

OpenFlow Switches Performance and Security Challenges: A Survey. Future Internet 2020, 12, 147. [CrossRef]
2. Kreutz, D.; Ramos, F.M.V.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A

comprehensive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

http://doi.org/10.3390/fi12090147
http://doi.org/10.1109/JPROC.2014.2371999

Mathematics 2023, 11, 1404 22 of 24

3. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow. ACM
SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

4. Yusuf, M.N.; Bakar, K.B.A.; Isyaku, B.; Mukhlif, F. Distributed Controller Placement in Software-Defined Networks with
Consistency and Interoperability Problems. J. Electr. Comput. Eng. 2023, 2023, 6466996. [CrossRef]

5. Muthanna, M.S.A.; Alkanhel, R.; Muthanna, A.; Rafiq, A.; Abdullah, W.A.M. Towards SDN-Enabled, Intelligent Intrusion
Detection System for Internet of Things (IoT). IEEE Access 2022, 10, 22756–22768. [CrossRef]

6. Al Razib, M.; Javeed, D.; Khan, M.T.; Alkanhel, R.; Muthanna, M.S.A. Cyber Threats Detection in Smart Environments Using
SDN-Enabled DNN-LSTM Hybrid Framework. IEEE Access 2022, 10, 53015–53026. [CrossRef]

7. Lin, C.Y.; Chen, C.; Chang, J.W.; Chu, Y.H. Elephant Flow Detection in Datacenters Using OpenFlow-Based Hierarchical Statistics
Pulling. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp.
2264–2269. [CrossRef]

8. Malik, A.; Aziz, B.; Bader-El-Den, M. Finding Most Reliable Paths for Software Defined Networks. In Proceedings of the 2017
13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp.
1309–1314. [CrossRef]

9. Jamali, S.; Badirzadeh, A.; Siapoush, M.S. On the use of the genetic programming for balanced load distribution in software-
defined networks. Digit. Commun. Netw. 2019, 5, 288–296. [CrossRef]

10. Khalili, R.; Despotovic, Z.; Hecker, A. Flow Setup Latency in SDN Networks. IEEE J. Sel. Areas Commun. 2018, 36, 2631–2639.
[CrossRef]

11. Chooprateep, A.; Somchit, Y. Video Path Selection for Traffic Engineering in SDN. In Proceedings of the 2019 11th International
Conference on Information Technology and Electrical Engineering (ICITEE), Pattaya, Thailand, 10–11 October 2019. [CrossRef]

12. Isyaku, B.; Bakar, K.A.; Zahid, M.S.M.; Alkhammash, E.H.; Saeed, F.; Ghaleb, F.A. Route path selection optimization scheme
based link quality estimation and critical switch awareness for software defined networks. Appl. Sci. 2021, 11, 9100. [CrossRef]

13. Qi, W.; Song, Q.; Kong, X.; Guo, L. A traffic-differentiated routing Algorithm in Flying Ad Hoc Sensor Networks with SDN cluster
controllers. J. Frankl. Inst. 2019, 356, 766–790. [CrossRef]

14. Jiawei, W.; Xiuquan, Q.; Chen, J. PDMR: Priority-based dynamic multi-path routing Algorithm for a software defined network.
IET Commun. 2019, 13, 179–185. [CrossRef]

15. Gotani, K.; Takahira, H.; Hata, M.; Guillen, L.; Izumi, S.; Abe, T.; Suganuma, T. Design of an SDN Control Method Considering
the Path Switching Time under Disaster Situations. In Proceedings of the 2018 5th International Conference on Information and
Communication Technologies for Disaster Management (ICT-DM), Sendai, Japan, 4–7 December 2018; pp. 1–4. [CrossRef]

16. Yu, C.; Zhao, Z.; Zhou, Y.; Zhang, H. Intelligent Optimizing Scheme for Load Balancing in Software Defined Networks.
In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 5–9.
[CrossRef]

17. Rashid, J.A. Sorted-GFF: An efficient large flows placing mechanism in software defined network datacenter. Karbala Int. J. Mod.
Sci. 2018, 4, 313–331. [CrossRef]

18. Hao, J.; Shi, Y.; Sun, H.; Sheng, M.; Li, J. Rerouting Based Congestion Control in Data Center Networks. In Proceedings of the 2019
IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019. [CrossRef]

19. Qin, K.; Fu, B.; Chen, P.; Huang, J. MCRA : Multicost Rerouting Algorithm in SDN. J. Adv. Comput. Intell. Intell. Inform. 2020, 24,
728–737. [CrossRef]

20. Lan, K.C.; Heidemann, J. A measurement study of correlations of Internet flow characteristics. Comput. Netw. 2006, 50, 46–62.
[CrossRef]

21. Wang, H.; Xu, H.; Qian, C.; Ge, J.; Liu, J.; Huang, H. PrePass: Load balancing with data plane resource constraints using
commodity SDN switches. Comput. Netw. 2020, 178, 107339. [CrossRef]

22. Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2010), San
Jose, CA, USA, 28–30 April 2010; pp. 281–295.

23. Ongaro, F.; Cerqueira, E.; Foschini, L.; Corradi, A.; Gerla, M. Enhancing the Quality Level Support for Real-Time Multimedia
Applications in Software-Defined Networks. In Proceedings of the 2015 International Conference on Computing, Networking
and Communications (ICNC), Garden Grove, CA, USA, 16–19 February 2015; pp. 505–509. [CrossRef]

24. Sahhaf, S.; Tavernier, W.; Colle, D.; Pickavet, M. Adaptive and reliable multipath provisioning for media transfer in SDN-based
overlay networks. Comput. Commun. 2017, 106, 107–116. [CrossRef]

25. Guo, Z.; Xu, Y.; Liu, R.; Gushchin, A.; Chen, K.-Y.; Walid, A.; Chao, H.J. Balancing flow table occupancy and link utilization in
software-defined networks. Futur. Gener. Comput. Syst. 2018, 89, 213–223. [CrossRef]

26. Sminesh, C.N.; Kanaga, E.G.M.; Ranjitha, K. A proactive flow admission and re-routing scheme for load balancing and mitigation
of congestion propagation in SDN data plane. Int. J. Comput. Netw. Commun. 2018, 10, 117–134. [CrossRef]

27. Guo, Y.; Luo, H.; Wang, Z.; Yin, X.; Wu, J. Routing optimization with path cardinality constraints in a hybrid SDN. Comput.
Commun. 2021, 165, 112–121. [CrossRef]

28. Benson, T.; Anand, A.; Akella, A.; Zhang, M. MicroTE: Fine grained traffic engineering for data centers. In Proceedings of the 7th
Conference on Emerging Networking Experiments and Technologies, Tokyo, Japan, 6–9 December 2011. [CrossRef]

http://doi.org/10.1145/1355734.1355746
http://doi.org/10.1155/2023/6466996
http://doi.org/10.1109/ACCESS.2022.3153716
http://doi.org/10.1109/ACCESS.2022.3172304
http://doi.org/10.1109/GLOCOM.2014.7037145
http://doi.org/10.1109/IWCMC.2017.7986474
http://doi.org/10.1016/j.dcan.2019.10.002
http://doi.org/10.1109/JSAC.2018.2871291
http://doi.org/10.1109/ICITEED.2019.8929978
http://doi.org/10.3390/app11199100
http://doi.org/10.1016/j.jfranklin.2017.11.012
http://doi.org/10.1049/iet-com.2018.5212
http://doi.org/10.1109/ICT-DM.2018.8636384
http://doi.org/10.1109/VTCSpring.2017.8108541
http://doi.org/10.1016/j.kijoms.2018.06.003
http://doi.org/10.1109/ICCW.2019.8757147
http://doi.org/10.20965/jaciii.2020.p0728
http://doi.org/10.1016/j.comnet.2005.02.008
http://doi.org/10.1016/j.comnet.2020.107339
http://doi.org/10.1109/ICCNC.2015.7069395
http://doi.org/10.1016/j.comcom.2017.03.002
http://doi.org/10.1016/j.future.2018.06.011
http://doi.org/10.5121/ijcnc.2018.10607
http://doi.org/10.1016/j.comcom.2020.11.004
http://doi.org/10.1145/2079296.2079304

Mathematics 2023, 11, 1404 23 of 24

29. Curtis, A.R.; Kim, W.; Yalagandula, P. Mahout: Low-Overhead Datacenter Traffic Management Using End-Host-Based Elephant
Detection. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1629–1637. [CrossRef]

30. Cheung, C.M.; Leung, K.C. DFFR: A flow-based approach for distributed load balancing in Data Center Networks. Comput.
Commun. 2018, 116, 1–8. [CrossRef]

31. Rottenstreich, O.; Kanizo, Y.; Kaplan, H.; Rexford, J. Accurate Traffic Splitting on SDN Switches. IEEE J. Sel. Areas Commun. 2018,
36, 2190–2201. [CrossRef]

32. Rifai, M.; Huin, N.; Caillouet, C.; Giroire, F.; Lopez-Pacheco, D.; Moulierac, J.; Urvoy-Keller, G. Too Many SDN Rules ? COMPRESS
them with MINNIE To cite this version : HAL Id : Hal-01203020 Too Many SDN Rules ? Compress them with M INNIE.
In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015.

33. Braun, W.; Menth, M. Wildcard Compression of Inter-Domain Routing Tables for OpenFlow-Based Software-Defined Networking.
In Proceedings of the 2014 Third European Workshop on Software Defined Networks, Budapest, Hungary, 1–3 September 2014;
Volume 12307, pp. 25–30. [CrossRef]

34. Kannan, K.; Banerjee, S. Compact TCAM: Flow entry compaction in TCAM for power aware SDN. Lect. Notes Comput. Sci. 2013,
7730, 439–444. [CrossRef]

35. Banerjee, S.; Kannan, K. Tag-In-Tag: Efficient flow table management in SDN switches. In Proceedings of the 10th International
Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 17–21 November 2014; pp.
109–117. [CrossRef]

36. Hopps, C. Analysis of an Equal-Cost Multi-Path Algorithm; The Internet Society: Reston, VA, USA, 2000; pp. 130–139.
37. Curtis, A.R.; Mogul, J.C.; Tourrilhes, J.; Yalagandula, P.; Sharma, P.; Banerjee, S. DevoFlow: Scaling flow management for

high-performance networks. Comput. Commun. Rev. 2011, 41, 254–265. [CrossRef]
38. Tang, F.; Zhang, H.; Yang, L.T.; Chen, L. Elephant Flow Detection and Differentiated Scheduling with Efficient Sampling and

Classification. IEEE Trans. Cloud Comput. 2019, 9, 1022–1036. [CrossRef]
39. Hsu, K.F.; Tammana, P.; Beckett, R.; Chen, A.; Rexford, J.; Walker, D. Adaptive weighted traffic splitting in programmable data

planes. In Proceedings of the SOSR 2020—Proceedings of the Symposium on SDN Research, San Jose, CA, USA, 3 March 2020;
pp. 103–109. [CrossRef]

40. Hussain, S.A.; Akbar, S.; Raza, I. A Dynamic Multipath Scheduling Protocol (DMSP) for Full Performance Isolation of Links
in Software Defined Networking (SDN). In Proceedings of the 2017 2nd Workshop on Recent Trends in Telecommunications
Research (RTTR), Palmerston North, New Zealand, 10 February 2017. [CrossRef]

41. Farrugia, N.; Buttigieg, V.; Briffa, J.A. A Globally Optimised Multipath Routing Algorithm Using SDN. In Proceedings of the 2018
21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 19–22 February 2018; pp.
1–8. [CrossRef]

42. Kakahama, H.K.; Taha, M. Adaptive Software-defined Network Controller for Multipath Routing based on Reduction of Time.
UHD J. Sci. Technol. 2020, 4, 107–116. [CrossRef]

43. Yan, J.; Zhang, H.; Shuai, Q.; Liu, B.; Guo, X. HiQoS: An SDN-based multipath QoS solution. China Commun. 2015, 12, 123–133.
[CrossRef]

44. Luo, M.; Zeng, Y.; Li, J.; Chou, W. An adaptive multi-path computation framework for centrally controlled networks. Comput.
Netw. 2015, 83, 30–44. [CrossRef]

45. Jin, H.; Yang, G.; Yu, B.Y.; Yoo, C. TALON: Tenant Throughput Allocation Through Traffic Load-Balancing in Virtualized Software-
Defined Networks. In Proceedings of the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur,
Malaysia, 9–11 January 2019; pp. 233–238. [CrossRef]

46. He, K.; Rozner, E.; Agarwal, K.; Felter, W.; Carter, J.; Akella, A. Presto. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 465–478.
[CrossRef]

47. Yoo, Y.; Yang, G.; Lee, J.; Shin, C.; Kim, H.; Yoo, C. TeaVisor: Network Hypervisor for Bandwidth Isolation in SDN-NV. In IEEE
Transactions on Cloud Computing; IEEE: Piscataway, NJ, USA, 2022. [CrossRef]

48. Saha, N.; Misra, S.; Bera, S. Sway: Traffic-Aware QoS Routing in Software-Defined IoT. In IEEE Transactions on Emerging Topics in
Computing; IEEE: Piscataway, NJ, USA, 2018.

49. Prete, L.R.; Shinoda, A.A.; Schweitzer, C.M.; De Oliveira, R.L.S. Simulation in an SDN Network Scenario Using the POX Controller.
In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 4–6
June 2014. [CrossRef]

50. Botta, A.; Dainotti, A.; Pescapé, A. A tool for the generation of realistic network workload for emerging networking scenarios.
Comput. Netw. 2012, 56, 3531–3547. [CrossRef]

51. Perner, C.; Carle, G. Comparison of Optimization Goals for Resilient Routing. In Proceedings of the 2019 IEEE International
Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [CrossRef]

52. Malik, A.; de Fréin, R.; Aziz, B. Rapid restoration techniques for software-defined networks. Appl. Sci. 2020, 10, 3411. [CrossRef]
53. Ravuri, H.K.; Vega, M.T.; Wauters, T.; Da, B.; Clemm, A.; De Turck, F. An Experimental Evaluation of Flow Setup Latency in

Distributed Software Defined Networks. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris,
France, 24-28 June 2019; pp. 432–437. [CrossRef]

54. Isyaku, B.; Bakar, K.A.; Zahid, M.S.M.; Yusuf, M.N. Adaptive and Hybrid Idle–Hard Timeout Allocation and Flow Eviction
Mechanism Considering Traffic Characteristics. Electronics 2020, 9, 1983. [CrossRef]

http://doi.org/10.1109/INFCOM.2011.5934956
http://doi.org/10.1016/j.comcom.2017.11.001
http://doi.org/10.1109/JSAC.2018.2869949
http://doi.org/10.1109/EWSDN.2014.23
http://doi.org/10.1007/978-3-642-35668-1_32
http://doi.org/10.1109/CNSM.2014.7014147
http://doi.org/10.1145/2043164.2018466
http://doi.org/10.1109/TCC.2019.2901669
http://doi.org/10.1145/3373360.3380841
http://doi.org/10.1109/RTTR.2017.7887866
http://doi.org/10.1109/ICIN.2018.8401633
http://doi.org/10.21928/uhdjst.v4n2y2020.pp107-116
http://doi.org/10.1109/CC.2015.7112035
http://doi.org/10.1016/j.comnet.2015.02.004
http://doi.org/10.1109/ICOIN.2019.8717976
http://doi.org/10.1145/2829988.2787507
http://doi.org/10.1109/TCC.2022.3225915
http://doi.org/10.1109/ColComCon.2014.6860403
http://doi.org/10.1016/j.comnet.2012.02.019
http://doi.org/10.1109/ICCW.2019.8756842
http://doi.org/10.3390/app10103411
http://doi.org/10.1109/NETSOFT.2019.8806624
http://doi.org/10.3390/electronics9111983

Mathematics 2023, 11, 1404 24 of 24

55. Dijkstra, E.W. Dijkstra.Pptx. Numer. Math. 1959, 271, 269–271. [CrossRef]
56. Yen, J.Y. Finding the K Shortest Loopless Paths in a Network. Manag. Sci. 1971, 17, 712–716. [CrossRef]
57. Rangkuty, M.F.; Muslim, R.; Ahmad, T.; Al-Hooti, M.H.A. Path Selection in Software Defined Network Data Plane Using Least

Loaded Path. In Proceedings of the 2020 International Conference on Advanced Computer Science and Information Systems
(ICACSIS), Depok, Indonesia, 17–18 October 2020; pp. 135–140. [CrossRef]

58. Morales, L.V.; Murillo, A.F.; Rueda, S.J. Extending the Floodlight Controller. In Proceedings of the 2015 IEEE 14th International
Symposium on Network Computing and Applications, Cambridge, MA, USA, 28–30 September 2015; pp. 126–133. [CrossRef]

59. Gao, K.; Xu, C.; Qin, J.; Yang, S.; Zhong, L.; Muntean, G.M. QoS-driven Path Selection for MPTCP: A Scalable SDN-assisted
Approach. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco,
15–18 April 2019. [CrossRef]

60. Xu, X.; Hu, L.; Lin, H.; Fan, Z. An Adaptive Flow Table Adjustment Algorithm for SDN. In Proceedings of the 2019 IEEE 21st
International Conference on High Performance Computing and Communications, IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August
2019; pp. 1779–1784. [CrossRef]

61. Maximets, I. [ovs-announce] Open vSwitch 3. 2022. Available online: https://mail.openvswitch.org/pipermail/ovs-announce/
2022-October/000300.html (accessed on 11 July 2022).

62. Botta, A.; De Donato, W.; Dainotti, A.; Avallone, S.; Pescap, A. D-ITG § VERSION § Manual; University of Naples Federico II:
Naples, Italy, 2019; pp. 1–35.

63. Afek, Y.; Bremler-Barr, A.; Feibish, S.L.; Schiff, L. Detecting heavy flows in the SDN match and action model. Comput. Networks
2018, 136, 1–12. [CrossRef]

64. Liao, L.; Leung, V.C.M.; Chen, M. An Efficient and Accurate Link Latency Monitoring Method for Low-Latency Software-Defined
Networks. IEEE Trans. Instrum. Meas. 2018, 68, 377–391. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01386390
http://doi.org/10.1287/mnsc.17.11.712
http://doi.org/10.1109/ICACSIS51025.2020.9263120
http://doi.org/10.1109/NCA.2015.11
http://doi.org/10.1109/WCNC.2019.8885585
http://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00244
https://mail.openvswitch.org/pipermail/ovs-announce/2022-October/000300.html
https://mail.openvswitch.org/pipermail/ovs-announce/2022-October/000300.html
http://doi.org/10.1016/j.comnet.2018.02.018
http://doi.org/10.1109/TIM.2018.2849433

	Introduction
	Related Works
	Design of the Proposed Solution
	Data Plane Elements Discovery Phase (DPEDP)
	Flow Classification Phase (FCP)
	Flow Adaptive Path Selection with Optimized Quality

	Experimentation Setup to Validate APSAF
	The Experimentation Tools and Data Traffic Model
	Performance Evaluation of APSAF
	Throughout
	Packet Delivery Ratio (PDR)
	Path Load Ratio (PLR)
	Average Packet Delay
	Packet Loss

	Conclusions
	References

