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Abstract: Software-Defined Networking (SDN) is a trending architecture that separates controller
and forwarding planes. This improves network agility and efficiency. The proliferation of the Internet
of Things devices has increased traffic flow volume and its heterogeneity in contemporary networks.
Since SDN is a flow-driven network, it requires the corresponding rule for each flow in the flowtable.
However, the traffic heterogeneity complicates the rules update operation due to varied quality
of service requirements and en-route behavior. Some flows are delay-sensitive while others are
long-lived with a propensity to consume network buffers, thereby inflicting congestion and delays
on the network. The delay-sensitive flows must be routed through a path with minimal delay, while
congestion-susceptible flows are guided along a route with adequate capacity. Although several
efforts were introduced over the years to efficiently route flows based on different QoS parameters,
the current path selection techniques consider either link or switch operation during decisions.
Incorporating composite path metrics with flow classification during path selection decisions has not
been adequately considered. This paper proposes a technique based on composite metrics with flow
classification to differentiate congestion-prone flows and reroute them along appropriate paths to
avoid congestion and loss. The technique is integrated into the SDN controller to guide the selection
of paths suitable to each traffic class. Compared to other works, the proposed approach improved the
path load ratio by 25%, throughput by 35.6%, and packet delivery ratio by 31.7%.

Keywords: SDN; path selection; path quality; heterogeneous traffic; elephant flow; mice flow

MSC: 68P20; 68P10; 63E72; 68U15

1. Introduction

Software-Defined Networking (SDN) is a new network architecture consisting of
three separate planes, the application plane (AP), control plane (CP), and data plane
(DP). The CP is in the middle of the architecture and acts as the network’s operating
system (NOS) responsible for managing the network devices at the DP based on the
network policies hosted at the AP. These policies could be for managing various aspects of
the network operations such as routing, QoS provisioning, load balancing, and security.
The communication between AP and CP is performed through a northbound interface
(NBi) while that of the CP and DP is performed through a southbound interface (SBi).
The DP is relieved from all control functions and focuses only on forwarding traffic from
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source to destination based on the CP’s instructions. For that, the CP acquires the network
statistics in real time to formulate the required operational policies and install them as
rules in the flow tables of the devices at the DP. Some of the earliest SBi used in SDN were
Protocol Oblivious Forwarding (POF) [1], Open vSwitch Database (OVSDB) [2], Forwarding
Control Elements (ForCES), and OpenFlow [3]. Many SDN controllers use OpenFlow as
SBi, through a Link Layer Discovery Protocol (LLDP), to discover and build a topology of
the DP switches. The controller maintains a consistent global knowledge of the topology
discovered at all times [4]. Upon the arrival of any flow, it activates a Path Selection
Algorithm (PSA) to compute routing instructions for the flow and install it in the switch’s
flow table. The PSA is always invoked whenever a new flow with no corresponding entry
in the flow table arrives. Another reason could arise from topology changes due to link
or node failure. In both situations, the PSA is required to converge the network with
the new rule to avoid disruptions. The controller keeps tabs on these changes with the
help of a thread monitoring mechanism, which collects network statistics in a constant
cycle. The monitoring mechanism periodically sends a request to the switches. It feeds the
acquired information into the controller for the new rule computation.

Isyaku et al. report in [1] that network rules need to be updated often, in fact, every
1.5 to 5 s on average. The short interval update rate is due to increased traffic volume and
demand for ubiquitous services in contemporary networks. This increase and demand
are influenced by reliance on digitalized lifestyles as the proliferation of the Internet of
Things (IoT) [5] and smart environment applications [6] are on the rise. In addition to
the traffic volume, the traffic flow is heterogeneous as it displays asymmetric patterns
regarding arrival rate, duration, and size. As a result of this heterogeneity, the threats
and vulnerabilities [6], requirements for path quality, and switch flow table space of flows,
among other network resources, are different. In other words, they possess distinctive QoS
requirements and behave differently en route to their destination. For example, large flows,
such as Elephant Flows (EF), demand an exorbitant amount of network resources despite
accounting for only 1 to 10% of overall traffic. These flows are long-lived (LLF) and have
the propensity to consume network buffers rapidly, thereby causing anomalies such as
congestion and queuing delays for most small-sized Mice Flows (MF) [7]. Similarly, despite
being short-lived, the Mice Flows form the majority. They are delay-sensitive, requiring
prompt delivery to their destination. Due to these disparities in behavior, heterogeneous
traffic flows must be treated differently so that each Service-Level Agreement (SLA) may be
satisfied. That is, time-sensitive flows must get to their destination without any significant
delays. In contrast, high-volume traffic flows are directed down routes with adequate
capacity to avoid congestion in the network.

The existing route path selection methods often use a single metric, such as the
shortest path based on hop count [8], latency [9,10], or bandwidth [11], to make decisions
about which paths to take. Other approaches combined the link feature with the switch
update operation to guide the path selection decision to reduce convergence time [12–16].
However, these methods do not differentiate flows according to their unique attributes.
The differentiation is necessary to avoid the congestion that might arise by amalgamating
EF with MF on the same path. The classification is also necessary for ensuring differential
QoS provisioning to the heterogeneous traffic flow. Meanwhile, the techniques such
as [17–19] that attempt to classify the traffic flow for differential handling consider 10%
of link utilization regarding a single flow feature such as size as a baseline threshold for
determining whether a flow is congestion susceptible or not. However, considering a single
flow feature and a fixed threshold value for flow classification might lead to premature,
fake, or unnecessary detections that might cause additional overhead on the controller.
Therefore, the detection approach, in conjunction with the path selection metrics used, is
not an appropriate solution for all types of traffic flows with varying degrees of criticality.
Some flows require high throughput, while others are delay sensitive. Failure to classify
these traffic flows and treat them differently might lead to QoS violations.
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In Software-Defined Networking, the adaptive path selection Algorithm with flow
classification is a crucial mechanism for improving network performance and reliability.
This Algorithm dynamically selects the best path for data transmission based on real-time
network conditions and flow characteristics, such as traffic volume, delay, and bandwidth.
By combining flow classification with composite path selection metrics, SDN can achieve
improved resource utilization, reduce congestion, and enhance the Packet Delivery Ratio
(PDR) and throughput of the network. Thus, this paper proposes an Adaptive Path Selection
Algorithm with Flow Classification (APSAF) by incorporating flow classification features
and composite path metrics (comprising delay, delivery ratio, and residual capacity) to
address the outline issues. The contributions of this paper can be summarized as follows.

• A traffic flow classification module to separate Elephant Flows from Mice Flows.
• Designed a composite path quality estimation vector to evaluate path suitability to

accommodate traffic class.
• The paper designed a differential path selection scheme based on traffic flow propen-

sity to congestion.

The remainder of the paper is structured as follows: Section 2 discusses current path
selection strategies in SDN. Section 3 describes the proposed solution’s design. Section 4
describes the experimental setup and performance evaluation. Lastly, Section 5 concludes
the study and makes recommendations for future research.

2. Related Works

Path Selection Decision (PSD) to route traffic is crucial to the operation of a network.
In SDN, the decision is taken by a controller on the arrival of any flow with no correspond-
ing entries in the switch’s flow table. Traffic volume and heterogeneity necessitate this
activity to occur regularly [1]. The heterogeneities in terms of burst, rate, size, and duration
exhibited by flows make their behavior and demand on network resources en route to
their destination different [20]. Failure to consider these variabilities may lead to the choice
of a non-optimum path that can ultimately violate the requirement of the traffic flows.
For instance, 95% of network traffic emanates from the 1-10% large size (EF) traffic [21].
Although very few, EF traffic flows cause serious congestion problems in a network as they
tend to live long (LL) on their paths en route to their destination [22]. For that reason, these
flows ought to be detected and differentiated from others (MF) and rerouted separately
on an alternate path. Schemes such as [23–27] and [14] overlooked these requirements
while performing flow scheduling. However, detecting these flows and mapping them
to the proper path is challenging. There are three approaches to detecting these flows.
Detection at the Edge Switch (ESD) via polling-based statistic monitoring, detection at
the End-Host (EHD) via host-based monitoring, and Switch Trigger Detection (STD). Past
literature shows several studies have proposed different PSD techniques based on specific
routing parameters.

Famous techniques such as Equal Cost Multiple Path (ECMP) [15] distribute traffic
load among multiple equal cost paths in a network. However, ECMP does not regard the
variabilities of flows while taking the PSD. The mechanism amalgamates multiple flows,
irrespective of their requirements and behavior, on the same path en route to destinations.
This action led to switch buffer overflows, inefficient use of network bandwidth, and
eventual degradation of network performance. To address these issues, Refs. [26,27] used
the STD approach to classify flows in their PSA. However, STDs require a specialized cloned
switch to set up a detection threshold in advance. Furthermore, due to the dynamic nature
of the network environment, it is challenging to formulate a suitable threshold value that
can give precise and accurate detection output. In addition, continuous cloning of the switch
flow table can burden them more. In contrast, the flow rerouting scheme proposed by [13]
used ESD. However, employing ESD makes the proposed solution suffer from late detection
of congestion-prone flows. The detection is not attempted until the flows arrive at an edge
switch. Thus, collision is still experienced. Furthermore, a monitoring overhead because
of per-flow statistics collection is also experienced in addition to the long latency and
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packet drop. Conversely, the alternate approaches by [28,29] used EHD. EHD introduces
an additional layer called SHIM to achieve early detection at the end host. However, the
approach requires a specialized and expensive hardware mechanism modification. As such,
such approaches experienced low adaptation to flow behavior, scalability, and a complex
host operating system modification process. To avoid the dilemma of choosing between
EHD or ESD approaches. Refs. [30,31] proposed an alternative approach using traffic split.
Instead, to detect the flow rate variation, the authors proposed a scheme that splits the
traffic into multiple flow streams and places them simultaneously along multiple paths.
In contrast, these schemes might record fine-grained flow control of congestion but at
the expense of additional overhead of flow reassembling at the destination. Similarly, it
might not work for the adaptation window of transmission control protocol (TCP) flows,
especially when packets of the same flows embark on distinctive paths.

Many approaches such as RPSO [14], DASH [20], MINNIE [32,33], [22] and Baner-
jee and Kannan [34,35], consider the limitation of Ternary Content Addressable Memory
(TCAM) in terms of capacity while designing their PSA. DASH is a hashing-based imple-
mentation of a traffic split designed to prevent memory overflow by matching the hash to
range bounds. The technique is an adaptive weighted traffic partitioning Algorithm that op-
erates in the DP. MINNIE is another rule space reduction approach to select load-balanced
routes. The technique comprises a two-phase solution made up of a compression phase
and a routing phase. Other complementary solutions to MINNIE are proposed by Banerjee
and Kannan [34,35]. Using a Path Tag (PT) and a Flow Tag (FT), the authors devised a
tag-in-tag technique to reduce the number of bits representing a flow within a switch, hence
reducing the size of flow rules (FT). The PT is used for routing the packets while FT is used
to map each packet with its corresponding flow path. However, adding an identifier to
each incoming packet is hard to achieve in the ASICs since this is not a standard operation,
causing the packets to be processed by the CPU (a.k.a. The slow path), strongly penalizing
the performance of a forwarding device and the traffic rate.

In a multipath approach, a Dynamic Multipath Scheduling Protocol (DMSP) for
identifying and isolating congestion-susceptible links in DCN using SDN is demonstrated
in [25]. DMSP splits flow traffic among multiple paths to reduce congestion. However,
the split traffic process is conducted unequally among the available paths. To address
the unequal split problem, Ref. [26] proposed a Globally Optimized Multipath Routing
(GOMR) Algorithm that splits a flow traffic equally among multiple paths using a stochastic
mechanism. GOMR leverages the global knowledge of network topology and traffic
statistics to formulate the problem as linear programming (LP). However, though the
technique distributes the load along multiple paths, it did not classify the traffic according
to their requirements and the burden they introduced to the links. Recently, Kamal and
Taha [27] proposed an adaptive method that computes multipath routes for video traffic
with a reduction time objective while recovering from link failure in SDN. The method,
however, did not consider congestion risks associated with Elephant Flows. HiQoS [36],
ADMPCF [37], TALON [38], and Presto [28] are other PSA for multipath selection using a
Traffic Engineering (TE) tool to guide differential treatment of flows. HiQoS compute the
multipath (at least two constrained pathways) between all pairs in a network, allowing
rapid recovery from link loss. The adaptable and Dynamic Multi-path Computation
Framework (ADMPCF) analyses and extracts information from traffic flows to enhance
resource utilization, alleviate congestion, and guarantee QoS when network events such
as link failure occur. On the hand, TALON is a traffic LB approach with split multi-
paths for high throughput. TALON collects the trajectory information and assigns a
flow capacity per tenant by calculating multiple routes to satisfy the traffic requirement.
However, although TALON enhanced capacity by allocating tenant throughput, it ignored
latency and reliability. While Presto leverages ECMP to optimally balance end-host load in
asymmetric topologies by partitioning each flow into equal flowcells at the edge and equally
distributing them to the network, Presto employs the maximum TCP Segment Offload
(TSO) size (64 KB) as the default flowcell size, allowing fine-grained load balancing at
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10+ Gbps. The mechanism merges out-of-order packets into segments and pushes them up
at the receiver using the GRO algorithm. However, transforming the flows into equal-size
mice might not be adequate despite assigning the flowcells evenly to spanning trees from
each edge switch, because flows coming from discrete soft edge switches are not uniform,
thus, preventing the reordering at the receiver to detect out-of-order packets and missed
packets, which will lead to longer flow latencies. In addition, Presto is suboptimal to handle
asymmetric topologies even if its weighted Algorithm can drive some loads away from
congestion paths. Recently, Yoo et al. [29] presented TeaVisor, the first bandwidth isolation
guarantee framework for SDN virtualization with three components: path virtualization,
bandwidth reservation, and path establishment.

On the other hand, Ref. [30] designed a mechanism that finds a controller’s flow setup
delay. The authors crafted a timestamped Special Ping Packets (SPP) from the controller.
The Round-Trip Time (RTT) of SPP back to the controller is measured and attached to
an individual path to get the total path setup delay. The technique is designed for scCP.
In another work, Ref. [31] introduced a greedy heuristic technique based on Yen’s k-shortest
path algorithm. Multiple metrics such as packet loss, delay, and bandwidth are jointly
considered to formulate a QoS-aware routing problem as Integer Linear Programming (ILP).
They validate the technique using POX [39] on Mininet with D-ITG [32] as an IoT-based
traffic generator. In a similar effort, Ref. [33] study the effects of various optimization
objectives on network performance. Performance metrics that include link usage and
latency are considered constraints in the study. Another constraint considered is the switch
related in terms of TCAM size. The constraint is modeled so that the number of outgoing
flows is less than the maximum number of forwarding table entries. Then, a path selection
technique bounded by these constraints is designed. However, in large networks with
frequent topology changes, the use of the ILP-based method is impractical because it
may slow the convergence of the network routing rules [34]. Ref. [35] improved on [30] to
address CP overhead, scalability, and Single Point Failure (SPOF) by considering distributed
CP with multiple controllers. However, both schemes may experience higher flow table
operation time, affecting path setup switching time. In [40], packet loss and latency were
considered to design a Path Selection Method (PSM) in an SDN-Edge computing integrated
environment. The edge node at the SDN boundary is configured to assign available network
resources, such as bandwidth, according to flow requirements. Flows are re-directed via
a path with lower packet loss, while delay-sensitive flows are routed with minimal delay.
Likewise, Ref. [41] proposed an incremental QoS-aware path selection technique to facilitate
a speedy redirection of real-time applications with time-bound flows. The technique avoids
bottleneck links that were the cause of the scheduling impasse by selecting a path with
enough residual bandwidth from the list of candidates’ paths. The technique involves an
offline pre-routing stage where initial K-paths are formed using Yen’s K-SP [42]. The run
time of this stage is observed to be high. However, the authors attempted to control it by
coupling a Fibonacci Heap with Dijkstra [43] and the [42]. However, EF was not separated
from MF when choosing a path in all these techniques. Flows must be classified accordingly
for a better link choice. Likewise, QoS parameters such as throughput and the link delivery
ratio should also be considered. In a similar technique [43], the data transmission (Tx) and
receive rates (Rx) of a port are observed to help in determining the maximum traffic load
the port can accommodate. Flow statistics are collected and fed to a Floodlight controller
application [44] to define rules that can reroute the flow via a port with Least Loaded Path
(LLP). In validation, the authors used Mininet to emulate OvS and Iperf to generate traffic.
On the other hand, a QoS-driven and SDN-assisted Multipath Selection Scheme (QSMPS)
was proposed [45]. QSMPS addresses the adaptability problem of traditional MPTCP.
The method constantly checks network status using a scalable SDN-assisted technique.
Based on the data, an optimal number of sub-flows is determined and distributed along
routes with negligible differential delays. The authors validate the technique in a custom
topology in Mininet with the Ryu controller framework. However, a regular gathering
of statistics may significantly increase the controller overhead, which will increase flow
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setup latency. Similarly, a best-case scenario based on residual bandwidth might not always
ensure that distinctive flows’ requirements are met, because the scheme did not primarily
classify traffic according to its uniqueness. Other flows can choose a setup latency that is
as short as possible. In addition, high link quality decreases the demand for link change
requests in a network.

Some techniques [46] adopt a fixed load threshold in the detection process of these
flows. The threshold is defined regarding a link bandwidth. Initially, all incoming flows are
routed based on traditional protocols such as ECMP [15]. The ECMP is maintained until
flows increase and grow beyond the predefined threshold. Then, the controller re-computes
an alternate path to reroute the detected flows. However, employing a fixed threshold
value to detect the flows susceptible to congestion is inefficient in highly dynamic traffic
conditions. Depending on the threshold size, the fixed value might not be adaptive to flow
variability and heterogeneity of controllers’ capacities in terms of their flow processing
ability at a particular time. The inflexibility of the fixed threshold value might not correctly
reflect or predict congestion occurrence possibility at a particular time. Therefore, it may
prompt early detection or delayed detection of flows to startup a rerouting action. Controller
overload might occur when the threshold is too low because many flows will be considered
EF. In such circumstances, path re-computation and flow rerouting instance frequency will
increase. On the other hand, if the fixed threshold value is set too high, many high-risk EF
might evade detection and bring about undesirable congestion.

It can be noticed from Table 1 that none of the available research has considered
combining the path quality metrics and flow classification technique in the path selection
decision. Path quality is severely impacted in a dynamically evolving network with
heterogeneous traffic, resulting in congestion. Consequently, it is crucial to consider path
quality and flow categorization while selecting routing paths. It is a non-trivial challenge
since path quality and flow classification provide information regarding the network’s
ability to accommodate increased demand as it evolves. This research proposes an optimum
route path selection strategy based on composite path quality parameters and classification
of flows according to their tendency to cause congestion.
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Table 1. Summary of Related Works.

Existing Approaches
Algorithm Objective

Methods Classification

Result Achieved Weakness
Traffic Flow Path Selection

Routing Algo-
rithm/ApproachClassification Split Link

Quality
Switch
Feature

Reliable Path Finder (RPF)
[8]

To reduce backup path
installation time, number
of rules, and controller’s
overhead during failover

N N N Y Context-Aware NA Ignore flow classification

Q-Learning [47] Optimum path selection N N N Y Q-Learning
Improved bandwidth by 38.10%,

latency by 19.10%, and loss by
10.81%

High memory demand

Sorted-GFF [46] Reduce congestion Y N Y N Global First Fit Improve bisection bandwidth Inefficient flow classification
& prioritization

Flow Setup Latency (FSL)
[30]

To reduce flow setup
latency N N Y N Context-Aware

Reduce median and percentile
latencies to 5.9 and 7 ms,

respectively
High path convergence time

RPA [48] To improve link usage and
traffic distribution Y N Y N Heuristics

Claimed to have improved delay
and packet loss compared to

ECMMP and GFF.

No empirical evidence to
support the claims.

PDMR [49] To Improve network load,
jitter, and packet loss Y N N N Heuristics

Improved network load by 0.075
and 0.173, jitter by 0.191 and 0.407,
and packet loss by 0.020 and 0.049

for QoS and best effort flow,
respectively.

Failure to treat EF separately.

VPSA [10] To improve video QoS
experience Y N N N Holding Times and

SDP
Claimed to have improved

bandwidth High path set up time

Path Switching Time [50] minimizing total path
switching time N N N Y Context-Aware NA Poor validation

TDR [51] optimize aggregate delay
and reliability Y N N Y Ant Colony Not Clear Only suitable for WSN

MCRA [52] minimize congestion and
wasted bandwidth Y N Y N Bellman Ford

Algorithm Improve throughput, delay,
Single Fixed Flows Feature
during classification, not

scalable

RPSO [14] Optimize overhead and
convergence time N N Y Y Context-Aware

Reduce path stretch by 37%,
Latency by 73%, throughput by

55.73%, and PDR by 12.5%

Overlooked flow features
and this affect the QoS of

important flows

MRA [27] To Reduce failover time N N Y Y Depth First Search Achieved failure recovery within
1ms

Ignored congestion-prone
flows

HiQoS [36] For Rapid recovery from
link loss. Y N Y N Dijkstra Reduce delay, and Increase

throughput

Did not consider
congestion-prone traffic such

as EF
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Table 1. Cont.

Existing Approaches
Algorithm Objective

Methods Classification

Result Achieved Weakness
Traffic Flow Path Selection

Routing Algo-
rithm/ApproachClassification Split Link

Quality
Switch
Feature

ADMPCF [37] Integrated resource control N N Y N BGR, kSP

Outperformed H-SPF and W-SPF
on rejected number of requests by

81–83%, SPF and H-SPF in
utilization by 1.4% and 40%,

respectively.

BGR needs additional
memory to store auxiliary

graph

TALON [38] To improve throughput
among tenants N Y Y N ECMP Increased throughput by 2.29 Did not consider latency and

reliability

Presto [28] Load balancing N Y N N GRO

For shuffle synthetic workload,
Presto improved throughput upon
ECMP by 38–72% and MPTCP by

17.28%

Is a proactive approach and
suffers from flowcell

reordering bottleneck. Thus,
it is prone to memory

overflow

TeaVisor [29] Bandwidth reservation N N Y N Context-Aware Achieve 34% throughput
improvementAverage error rate 5%

DASH [20] Flow table load balancing
across multiple paths N Y N Y Hash-based data

structure

Achieved 22.1% and 16.0%
completion time at 80% workload

compared to Hula and ECMP. With
a 20% load balance

Prone to out-of-order packet
delivery.

Tag-in-Tag [34,35] To maximize flow table Y N N Y Context-Aware
accommodates 15×more flow

entries and reduces power
consumption by 80%

Adding an identifier to each
incoming packet is hard to

do in the ASICs

Minnie [21] Efficient memory
utilization N N Y Y Wildcard

Save 50% of memory, decrease the
number of rules by an order of 5,

and 31 for dynamic compression at
2000
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3. Design of the Proposed Solution

The proposed Adaptive Path Selection Algorithm with Flow Classification (APSAF) is
integrated into the SDN controller for routing traffic. APSAF employs a lightweight network
monitoring utility in the controller. The tool gathers and analyses network statistics in real time
to guide the selection of a suitable path for routing traffic while being aware of its demand and
tendency to cause congestion. Based on the statistics, traffic flows are classified into two (2)
categories by considering multiple features (size, rate, duration, and priority) to distinguish
the flows prone to congestion from the others dynamically. Furthermore, APSAF incorporates
multi-facet path features suitability metrics (PSM) to enable path screening and selection based
on the requirements matching each flow’s demands. The working mechanisms of APSAF
involve a Data Plane Elements Discovery Phase (DPEDP), a Flow Classification Phase (FCP),
and a Path Screening and Selection Phase (PSSP). The output of each phase served as an input
to the next phase. The diagram in Figure 1 displays the architectural view of the APSAF in
the SDN framework. Similarly, the description of the proposed Algorithm is provided in
the flowchart shown in Figure 2. Hence, each phase description and detailed operational
procedure are provided in Sections 3.1–3.3.
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3.1. Data Plane Elements Discovery Phase (DPEDP)

The Data Plane (DP) elements represent the network topology, which consists of a collection
of hosts H =

{
h1, h2,h3 . . . . . . h|H|

}
and switches V =

{
s1, s2,s3 . . . . . . s|V|

}
. Their topology

is modeled as a graph G = (V ∪ H, E) where E is a set of links E =
{

e1, e2,e3 . . . . . . e|E|
}

connecting any two switches sij. Each of these links ei,j ∈ E has a capacity C
(
ei,j
)

and
is responsible for carrying traffic flow Tf from a source switch si to destination switch
sj. These elements are discovered and built into a topology using the procedure de-
scribed in DPED of Figure 2 and Algorithm 1. When topology discovery status TDtx = 0,
the SDN controller initiates a Link-Layer Discovery Protocol (LLDP) to discover the net-
work elements’ presence at the DP. Beginning with the initial handshake, the controller
broadcasts a Feature_Request_Message, to which all the available switches respond with
Feature_Reply_Message. The replied messages contain information such as (Swich-ID,
Active-Ports, MAC-Address, and Port-Number) to aid subsequent discovery of links. With
this knowledge, the controller encapsulates and multicasts an LLDP packet to all the Active-
Port of all the switches that responded to the Feature_Request_Message using Packet-Out
message Packet_OutMsg (Line 1–3, Algorithm 1). Suppose S is the total number of switches
that responded to the request in the network. In that case, the network, the total number
of LLDP Packet_OutMsg multicast to all the Active-Ports of the S number of switches
discovered, is given by Equation (1):

Packet_OutMsgTotal =
S

∑
i=1

Active_Porti (1)

Additionally, the Packet_OutMsg is also used to install an initial flow rule entry in the
switches’ flow table to route the LLDP_Packet via a Port_ID of any adjacent switches as
indicated in Type Length Value TLV_ f ield of the LLDP_Packet. Similarly, any switch upon
receiving the LLDP_Packet via a Port_ID not belonging to the controller will compose a
Packet_INMsg to the controller. Hence, the total number of Packet_INMsg is twice the
number of links L as shown in Equation (2).

Packet_INMsgTotal = 2.L (2)

The message contains the switch meta-data info such as Switch_ID, Port_ID, Link_in f o.
This information is updated after pre-set discovery interval TDInterval . (Line 3 Algorithm 1).
Figure 3 illustrates the signaling for these message exchanges.
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Therefore, through this process, the controller at a time TDtx = 1 gets all the infor-
mation required to build the global network topology G = (V ∪ H, E). The information
comprised the list of all adjacent switches si ∈ V ∀ i = 1, 2 . . . .|V|, links e ∈ E, and their
meta-data to store in its local data structure as implemented by (Lines 8–10 Algorithm 1).
Similarly, for each switch si ∈ V, a flow table is maintained that contains a list of all
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its adjacent switches, and all K paths P from si to sj, built with the A* [53] as shown in
(Lines 14–19, Algorithm 1).

Algorithm 1 Data Plane Element Discovery (DPED)

1. Begin

2. Set Discovery Status time TDtx =

{
1 i f G = VE discovered
0 i f G = VE not discored

3. Set Discovery interval DInterval
4. Initiate LLDP to Discover G = VE
5. // Get Topology
6. While ( True):
7. Sleep for TDInterval
8. Get switches s ε V
9. Get links e ε E
10. Get Hosts
11. End While
12. //Build the Topology
13. IF TDtx = 1 Then
14. For s ε V and e ε E
15. Get Adjacent switches.
16. Prepare a FLowtable
17. Build Initial paths Pij using A∗ algorithm.
18. Install Pij in FLowtable
19. End For
20. Else
21. Repeat 6 to 11
22. End IF
23. End

3.2. Flow Classification Phase (FCP)

The Flow Classification Phase’s (FCP) responsibility is to classify traffic flows ac-
cording to their characteristics and tendency to cause congestion. Although, in electronic
communication, a packet is the basic unit of data encapsulating the messages sent from a
source to a destination, because SDN is a flow-based networking framework, the network
traffic is treated in flow teams. Therefore, in this study, a flow is considered a sequence
of packets carrying information from source to destination whose packets share the same
5-tuple. These tuples cover its Protocol (TCP, UDP, ICMP), Source-Destination IP, and
port numbers subjected to the same timeout in a switch flow table. Flow characteristics
in SDN are not uniform regarding arrival rate, size, path use duration, and demands for
resources such as bandwidth. Owing to these irregularities, they posed different congestion
threats, possessed different QoS requirements, and behaved differently en route to their
destinations. The rule for handling each of these flows is stored in the switches’ flow table
using the following format (dpid(match), priority, instruction, counters, timeout cookie ).
The dpid identifies the switch, while the cookie is a distinctive value to identify each flow.
Other fields recorded at the time of entry are priority and timeouts. Additionally, the flow
table provides counters to track the number of packets and bytes handled by each port
and rule. The statistics are encoded using OpenFlow Extensible Stat (OXS), a compact
type-length-value (TLV) format.

Therefore, the FCP Phase, as described in Algorithm 2, acquires and inspects the
characteristics of each traffic flow T fi coming into the network as stored in the flow table
and classifies them into either high congestion risk HCrisk or low congestion risk LCrisk.

The FCP procedure begins upon arrival of any new traffic flow T fi, through any
of the ingress switches of the network G = (V, E). Two containers are created to hold
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only the information related to active traffic flows (Lines 2–3, Algorithm 2). Suppose
T f = {T f1, T f2 . . . . . . .T fN} are the Set of N traffic flows coming into the network. Each
T fi ∈ T f is classified either as a high congestion risk HCrisk or a low congestion risk LCrisk,
based on its size, arrival rate, and path utilization duration. The Algorithm checks whether
the traffic flow is classified in (Lines 8–10, Algorithm 2). Inspired by [54,55], the packet
counts (Pcount) of each T fi are used to quantify the size of the traffic flow T fsize.

To get the traffic flow information for this classification, a Ryu controller inbuilt utility
that gathers individual and aggregate flow statistics from switches is used. Therefore, to
bring out the flow of information, ∀ T fi ∈ { T f1, T f2 . . . . . . .T fN}, an OFPStatsRequest is
sent in synchronous mode at a different time interval. Moreover, a reply is received through
OFPStatsReply messages for each request made. Accordingly, the traffic flow size T fsize
and duration T fduration are extracted from the data obtained (Line 12–13, Algorithm 2)
while the traffic flow arrival rate, T fArrivalRate, is determined by dividing the flow size
T f f size of the transmitted data by the flow duration T fduration. If T fArrivalRate > Th, the flow
is a cheetah and snail otherwise.

T fArrivalRate = T fsize/T fduration (3)

A flow is classified as a high congestion risk if its size and duration are more than
fifteen (15 pkts) packets and eleven (11 ms) milliseconds, respectively. Otherwise, it is clas-
sified as a low congestion risk flow. The procedure is shown in (Lines 16–20, Algorithm 2).

Algorithm 2 Flow Classification Phase (FCP)

1. Begin
Input: a set of all new flows Tf {T f1, T f2 . . . . . . .T fN }
Output: Flow Categories HCrisk [ ], LCrisk [ ]
2. Set HCrisk ← High congestion risk flow.
3. Set LHCrisk ← Low congestion risk flow.
4. IF new Traffic Flow Tf arrived Then
5. Call Algorithm 1
6. Get a set of K path Pij
7. End IF
8. For each new Tf
9. IF Tf , is classified, Then.
10. Find a suitable path (Call Algorithm 3)
11. Else
12. Send_FlowStat request.
13. Extract the T fsize
14. Extract the T fduration
15. Compute link utilization value Luv
16. IF Tf size > 15 and T fduration > 11 Then
17. HCrisk ← Tf
18. Else
19. LCrisk ← Tf
20. End If
21. For each Tf ∈ HCrisk or ∈ LCrisk
22. Find a suitable path (Call Algorithm 3)
23. End For
24. For each Tf ∈ LCrisk
25. Find a suitable path (Call Algorithm 3)
26. End For
27. End IF
28. End For
29. End

3.3. Flow Adaptive Path Selection with Optimized Quality

The Adaptive Path Selection Algorithm with Flow Classification and Optimized Qual-
ity’s (FAPSOQ’s) responsibility is to route the flow traffic from the source si to destination
sj upon arrival of new flow in the network G = (V ∪ H, E). At the arrival of any new flow,
Algorithm 1 will be called upon to return the Set of K candidates paths P

{
pij, pij . . . n

}
and
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Algorithm 2 to classify the flows according to their congestion risk tendency. Algorithms 2
will return the flow classification result as HCrisk and LCrisk, respectively. The procedure is
shown in (Lines 1–7, Algorithm 3).

To route, the flow of traffic classified as high congestion risk and stored in HCrisk.
All the set of candidate paths returned by Algorithms 1 is further screened for the quality-
of-service requirements of congestion-susceptible flows; i.e., for each pij ∈ P

{
pij, pij . . . n

}
,

a composite QoS metric called Path Suitability Metric (PSM) is estimated and appended to
the path accordingly. PSM is a path feature vector defined by the path Minimum Delay
(min pij D), Maximum Delivery Ratio (max pij DR) and Maximum Residual Capacity(

max pij C
)

as shown in (Lines 9–15, Algorithm 3). FAPSOQ selects the path with maximum
PSM and installs the corresponding rules in the switches’ flow table along that path using
a command Finstall to begin routing flows to their destinations (Line 16–17, Algorithm 3)
while for flows classified as low congestion risk and stored in the LCrisk container, they are
routed using the Dijkstra [56] as shown in (Lines 20–23, Algorithm 3). The procedures used
to calculate path Delay (min pij D), Delivery Ratio (max pij DR), and Residual Capacity(
max pij C

)
are as follows:

To calculate the pij D and pij DR, an Open Link Layer Discovery Protocol LLDP [57]
looping method for latency monitoring is used. A timestamped LLDP packet with an
extra Network Specific Type Length Value (TLV) is crafted and sent as a continuous probe
message to measure all links’ latency. Adding the extra TLV in the normal LLDP enables
specifying a 10 bytes Organizational Unique Identifier (UOI) and Defined Subtype (ODS)
TLV to record the timestamp of LLDP packets traversing any link for latency measurement.

The DP switches are connected to the CP in an Out-Band mode. The controller is used
to inject a timestamped LLDP Probe Packet (PP) with TTL = 4 to switch Si designated as
the Link Source Switch LSSi at the DP. On receiving the PP from the controller, switch
LSSi forwards it further downstream to all its adjacent switches Sj , Sk , and Sl called
LDSj via all links connected to its active ports. Depending on the TTL value, a switch can
either be a Link Source Switch LSS or Link Destination Switch LDS. For a switch to know
its role/status, the controller crafted the LLDP PP with TTL = 4 at the beginning.

A PP arriving at any switch with TTL = 4 implies that the LLDP message emanates
from the CP and the switch is an LSS. The switch will decrease the TTL by 1, flood it to
its active ports, and forward it downstream to LDS. Furthermore, the TTL value controls
how the PP loops around a link to enable the calculation of its latency at the LDS; see the
flowchart in Figure 4.
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Figure 4. LLDP Looping Flowchart.

A switch Si is tagged as an LSS, and a switch Sj that received the LDDP probe packet
from Si is tagged as an LDS. At Sj, the probe packet arriving with TTL = 3 signifies that
it is an LDS receiving the packet and is required to record the time it received the packet,
decrease the TTL by one (1) and return the packet to the LSSi . A probe packet arriving at
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any switch with TTL = 2 implies that the LLDP message emanates from the LDSi , and the
switch is an LSSi , receiving the packet for the second time. The switch will decrement the
TTL by 1, flood it to its active ports, and forward it downstream to LSD. On seeing the PP
with TTL = 1, the LDSi LDS will compute the RTT, put it in the TLV, and return it to the
controller. The time it takes for the controller to receive the probe packet from LDS, TLDS−C,
is measured. Therefore, the total delay of a link between the LSS and LDS along any path
is accumulated by the time difference between PP sent time at LSS, and PP received time
at LDS; LSSi ST − LDSj RT and TLDS−C, as shown in Equation(4). Hence, for a path with
multiple links, the total path delay psi−sj D is obtained by taking the summation of all links’
delay along the path, as shown in Equation (5).

LD = TLDS−C −
(

LDSj RT − LSSi ST
)

2
(4)

psi→sj D =
j

∑
i

LD (5)

Similarly, as shown in Equation (6), the lsi→sj DR is computed by taking the ratio of

the total number of LLDP Probe Packets received at sj

(
No. o f PP Recieved sj

)
sent over

the link lsi→sj from the sender si (No. o f PP Sentsi ) at a particular time. The statistics
are collected by sending an OpenFlow Port Starts Request message specifying the port
numbers of the LSS and LDS.

lsi→sj DR =
No. o f PP Recieved sj

No. o f PP Sentsi

(6)

psi→sj DR =
j

∑
i

lsi→sj DR (7)

While the Path Utilization Ratio psi→sj U is determined by using an OpenFlow [58]
Port Starts Request feature to send a request to a LSS at time interval t, the port number
connected to the link of interest is specified in the request to retrieve the number of bytes
transmitted. If ρ is the number of bytes transmitted by LSS over the link lsi→sj to LSS and
δ is the period between the two times at which ρ is polled from LSS, then the utilization of
the link lsi→sj U and psi→sj U is calculated as shown in Equations (8) and (9), respectively.

lsi→sj U =
ρ[t]− ρ[t− 1]

δ
. (8)

psi→sj U =
j

∑
i

lsi→sj U (9)

If the capacity of link si→ sj is C, the Link Residual Capacity and Path Residual
Capacity are calculated by Equations (10) and (11), respectively.

psi→sj rC = Csi→sj − lsi→sj U (10)

psi→sj rC =
j

∑
i

psi→sj rC (11)

Therefore, aggregation of Equations (5), (7) and (11) leads to the formation of composite
Path Suitability Metrics (PSM) as shown in Equation (12)

PSM =
j

∑
i

((
min

(
psi→sj D

))
+
(
min

(
psi→sj DR

))
+
(
max

(
psi→sj rC

)))
(12)
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Algorithm 3 Adaptive Path Selection Algorithm with Flow Classification

1. IF new flow Tf arrived Then
2. Call Algorithm 1
3. Get Set of K paths P

{
pij, pij . . . . . . n

}
4. Call Algorithm 2 to Input
5. Get HCrisk
6. Get LCrisk
7. End IF
8. IF Tf ∈ HCrisk Then
9. For Each pij ∈ P
10. // Compute the values of psi→sj D, psi→sj DR, psi→sj rC and psi→sj lost for PSMsi→sj

11. psi→sj D = ∑
j
i TLDS−C −

( LDSj RT−LSSi ST)
2

12. psi→sj DR = ∑
j
i

No. o f PP Recieved sj
No. o f PP Sentsi

13. psi→sj rC = Csi→sj −∑
j
i

ρ[t]−ρ[t−1]
δ

14. PSM = ∑
j
i
((

min
(

psi→sj D
))

+
(
min

(
psi→sj DR

))
+
(
max

(
psi→sj rC

)))
15. // Evaluate the cost and append to each pij ∈ P
16. Select the Max (PSM)
17. Install the rule in FLowtable
18. End For
19. Else Tf ∈ LCrisk Then
20. For Each pij ∈ P
21. Select a path using Dijkstra.
22. Install the rule in FLowtable
23. End For
24. End IF
25. End

4. Experimentation Setup to Validate APSAF

The experiment is conducted on a simulated environment on an Intel(R) Core (TM)
i7-10750H CPU @ 2.60 GHz 2.59 GHz and 16.0 GB memory. Figure 5 illustrates the basic
architecture of the simulation environment setup and how the various tools used for
the experiment interact together. The tools comprised the controller at the control plane
(CP), communicating with the data plane (DP) switches via NBi using OpenFlow protocol.
A traffic generation tool is used to replicate the workload of internet applications for the
proposed APSAF at the application layer (AP) to select a suitable path to route the traffic
accordingly. See Section 4.1 for more information on these tools.
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4.1. The Experimentation Tools and Data Traffic Model

As summarized in Table 2, a Ryu SDN controller [59] is configured on Oracle virtual
machine (VM) version 6.1.18 with Ubuntu (64bit) to run the APSAF algorithm. FARSA
selects paths to route traffic from a European Reference Network (ERnet) topology, which
has 37 nodes and 57 edges with undirected links [38]. The Ernet topology is created using a
script written in Python. Mininet version 2.3.0 [60] is employed to emulate the topology.
All the Data Plane (DP) switches on the topology are designed with software such as
OpenVswitch 3.0.1 (OVS) [61,62] on the emulator to interact with the Ryu controller using
OpenFlow protocol v1.5.1 [58]. D-ITG utility [63] generates different quantities of TCP and
UDP traffic flows for the experiment. The study models the traffic to follow poison traffic
distribution in terms of Packet Inter Departure Time (PIDT) and Size (PS).

Table 2. Experimentation Tools and Data Traffic Model.

Experimentation
Tools

Control Plane Data Plane Northbound Emulator Flat Form Environment Traffic
Generator

Ryu Controller OpenVswitch OpenFlow Mininetv2.2.2 Ubuntu (64 bit) OracleVM6.1.18 D-ITG

Traffic
Parameters

Traffic Type Inter Departure Time (IDT) Size Values Control Utility
TCP, UDP Constant and Poison distribution pattern 0.1–10, 15, 20 TClink

4.2. Performance Evaluation of APSAF

Selecting a path suitable to route-susceptible congestion traffic flows such as EF with-
out hurting MF, which are delay sensitive, is significant in meeting the QoS of networks.
To this end, APSAF is proposed to provide this solution. An experiment is conducted to
explore how some network performance metrics relevant to the algorithm’s objective are
met. Accordingly, this study adopts three main metrics, which comprise throughput [54],
Packet Delivery Ratio (PDR) [55], and Path Load Ratio (LPR) [12], to carry out the perfor-
mance evaluation. The Path Load Ratio (PLR) will provide information on the traffic load
ratio on a path to the path capacity. The motive is to find out the performance benefits
while using APSAF as the path selection method in SDN. Similarly, APSAF is validated
through comparison with other existing path selection methods in SDN, such as [14], to
assess its effectiveness and the improvement achieved. Finally, a discussion and analysis
are provided in the following subsections.

4.2.1. Throughout

Throughput provides network performance information about the number of data
packets effectively delivered at the destination host over a transmission period sent from a
source host [64]. The metric is relevant in assessing path selection technique performance
on how it responds to network-changing events such as traffic arrival rate or failure [12].
Figure 6 compares the throughputs achieved while selecting a path to route traffic with the
Algorithm proposed in this work, APSAF, and other PSAs proposed in [8,10,12]. As can
be seen from Figure 6, APSAF achieves 11.2%, 38.2%, and 57.6% improvement in terms
of throughput compared to RPSO, FSL, and RPF, respectively. The result indicates that
the adopted methodology of separating large flows from smaller flows to select paths
according to their respective demands facilitates a better path selection decision. This
analysis supports the idea [13] that amalgamating all flows on the same path, irrespective of
their attributes, affects QoS, such as throughput. APSAF exhibits significant path selection
decisions consistently compared to FSL and RPF because of the adopted methodology.
RPSO, on the other hand, closely matches APSAF because it selects a path with few critical
switches to route the traffic flows. The relation pattern between APSAF and RPSO suggests
that combining the flow classification with a switch role in path selection decisions might
improve the throughput.
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Figure 6. Throughput.

4.2.2. Packet Delivery Ratio (PDR)

The Packet Delivery Ratio (PDR) in network performance is defined as the ratio of
successfully delivered data packets at the receiver to the total number of data packets
transmitted at the source by all flows. The result in Figure 7 indicates how APSAF per-
formed compared to RPSO [14], FSL, and RPF. The x and y axes in the graph represent
the percentage of PDR and Packet Inter-Transfer Rate (PITR) per second. PDR is observed
to be inversely proportional to the number of packets dropped. The packet drop might
occur due to the path’s inability to accommodate anomalies and changes such as link
failure, traffic variabilities, or burst flow arrival patterns in the network [64]. Thus, the
metric is crucial in assessing the performance of PSAs because, under the same condition,
the increase or decrease in PDR concerning PITR indicates an improved performance or
otherwise. Therefore, different PITRs are generated to measure PDR in the experiments
conducted. As shown in Figure 7, APSAF demonstrates a steady and better PDR compared
to RPSO [64], FSL, and RPF by 3.3%, 31.8%, and 60.0%, respectively. The performance
benefit is attributed to accurate path quality estimation of flow demand and subsequent
rerouting of the packets through a path with adequate capacity to accommodate the traffic.
Therefore, packet transmission may not be affected even when there is a change in the net-
work, as observed from the significant improvement compared to FSL and RPF. However,
based on the result, APSAF and RPSO move the head to shoulder as in the throughput.
This behavior suggests that considering both flow classification and switch roles in path
selection decisions might improve the PDR in a network. We plan to consider a practical
implementation of this idea in our future research.
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4.2.3. Path Load Ratio (PLR)

The Path Load Ratio (PLR) is the ratio between the traffic load (in the form of the
number of EF) on that path and the path capacity. This metric calculates the percentage
of a path’s capacity used. Therefore, for every given path P

{
pij, pij . . . n

}
, lower PLR

values indicate a more optimal route decision for the current traffic flow [12]. In SDN, the
OVS keeps track of the total number of bytes transmitted and received through each port.
Accordingly, APSAF compiles the recorded statistics encompassing the start and end of the
transmission to compute the bytes transmitted through the port during a particular period
to derive the PLR. Next, we divide the period length by the path capacity to get the port’s
path utilization. Lastly, PLR equals the maximum path utilization across all ports in the
network. This experiment examines the PLR’s performance concerning variations in traffic
flow arrivals. Thus, PLR is observed by gradually increasing the number of flows from 15
to 150,000,000. In Figure 8, the PLR of APSAF is comparable to that of RPSO within 5%;
however, APSAF dramatically reduces the route load ratio by 26% and 44% relative to FSL
and RPF, respectively. APSAF’s performance gain can be traced back to its usage of flow
classification and optimal path selection modules because the modules dynamically route
traffic according to flow characteristics, with the ultimate goal of selecting the path with
the highest PSM aggregate value.
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4.2.4. Average Packet Delay

Figure 9a,b display the results for the average delay incurred while transmitting
Elephant Flows and Mice Flows using APSAF and the result of APSAF in comparison with
three other algorithms such as RPSO, RPF, and FSL while routing traffic coming at different
flow arrival rates per second, respectively. From Figure 9a it can be observed that at the
beginning of the transmission when the flow arrival rate is below 10 flows per second
both traffic flows incurred delays below 1 ms. The delay increased when the arrival rate
of flow increased beyond 20 flows per second. At this stage, the Elephant flow incurred
higher delays than the Mice flow because of consideration of the path selection metrics. On
the other hand, overall, APSAF achieves better average delay performance as compared
to the benchmark algorithms. APSA achieves this result because it implements a thread
monitoring mechanism to detect congestion-prone flows and reroutes them to a path with
an appropriate capacity to accommodate them. Thus, it can guarantee the requirements
of each flow category did not influence one another. As such, the Mice flow selects the
shortest distance path to mitigate the effect of the delay.
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4.2.5. Packet Loss

Figure 10a depicts the result of the packet loss rate experiments. By differentiating
among flows and limiting the Mice Flow to a path whose selection is based on the shortest
distance, the APSAF approach achieved the lowest packet loss rate for the transmission of
Elephant Flows. In addition, APSAF, RPSO, RPF, and FSL are compared and the results
of the experiment of the four strategies are displayed in Figure 10b. Since APSAF uses
path selection measures that take its packet loss rate and delivery ratio into account when
transmitting the Elephant Flows, it significantly lowers the packet loss rate. As shown,
APSAF has the lowest average packet loss rate of the four routing algorithms due to its
usage of the path suitability metric to guide the path selection decision. This is because path
quality metrics such as delay, link residual capacity, and path delivery ratio are completely
accounted for in the cost function. Meanwhile, it is noticed that when the arrival rate
is quite low, there is no substantial difference in the outcomes of the three algorithms.
However, when the flow arrival rate increases, APSAF’s packet loss rate is much lower
than the benchmark algorithms.
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5. Conclusions

Adaptive Path Selection Algorithm with Flow Classification for Software-Defined
Networks is a novel approach to address the challenge of dynamic traffic management
in SDN. This Algorithm utilizes the combination of flow classification and multiple path
selection to improve the network’s ability to handle unpredictable and dynamic traffic.
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The Algorithm has been implemented and evaluated in a laboratory testbed, and the
results demonstrate its effectiveness in terms of increased network performance, reduced
congestion, and improved quality of service. This research presents a route path selection
technique based on flow classification to differentiate congestion-prone flows, such as
EF, from hurting the majority of delay-sensitive MF by rerouting them on paths with
appropriate capacity to avoid congestion and loss in SDN. A route with the highest quality
metrics is chosen using path selection techniques. A composite path quality estimation
vector has been designed to select a path based on the QoS needed by each traffic category,
as determined by the flow classification phase. The flow classification phase makes it
possible for the path selection phase to map flows differently. Based on the experiments,
the proposed solution has reduced the Path Load Ratio (PLR) by 37% while improving the
throughput and packet delivery ratio by 55.73% and 12.5%, compared to the benchmark
works. APSAF envisages leveraging graph theory techniques to evaluate switch roles in the
network to isolate critical switches along a selected path to route any traffic in future work.
The aim is to minimize the controller’s overhead during rule update operations in the
event of any topology change. Thus, the comparison of flow characteristics, path quality,
and switch role can all be taken into account simultaneously to arrive at a path selection
decision. Similarly, to improve the flow classification and prioritization phase, it would be
intriguing to employ machine learning techniques such as deep learning to forecast flow
behavior based on flow history. In the future, the proposed method could be to incorporate
deep learning techniques to further enhance the flow classification process and make the
Algorithm more adaptive to changing network conditions. Another avenue for exploration
could be to integrate the Algorithm with edge computing to better support distributed
applications and services. Additionally, future work could also focus on extending the
Algorithm to support multi-domain SDN and evaluate its performance in real-world
network deployments.
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Abbreviation

SDN Software-Defined Networking
DP Data Plane
CP Control Plane
AP Application Plane
NBi Northbound Interface
SBi Southbound Interface
NOS Network’s Operating System
POF Protocol Oblivious Forwarding
OVSDB Open vSwitch Database
ForCES Forwarding Control Elements
LLDP Link Layer Discovery Protocol
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PP Prove Packet
OUI Organizational Unique Identifier
TTL Time To Live
TLV Type Length Value
LSS Link Source Switch
LDS Link Destination Switch
OXS OpenFlow Extensible Stat
QoS Quality of Service
SLA Service-Level Agreement
TCP Transmission Control Protocol
UDP User Datagram Protocol,
ICMP Internet Control Message Protocol
D-ITG Distributed Internet Traffic Generator
Tx Transmission
Rx Receive
SPP Special Ping Packet
RTT Round-Trip Time
EF Elephant Flow
LLF Long-Lived Flow
MF Mice Flow
SLF Long-Lived Flow
ESD Edge Switch Detection
EHD End-Host Detection
STD Switch Trigger Detection
IoT Internet of Things
SPOF Single Point Failure
LP Linear Programming
ILP Integer Linear Programming
PSD Path Selection Decision
PSA Path Selection Algorithm
PSM Path Selection Method
LLP Least Loaded Path
ECMP Equal Cost Multiple Path
DMSP Dynamic Multipath Scheduling Protocol
GOMR Globally Optimized Multipath Routing
QSMPS QoS Multipath Selection Scheme
RPSO Routh Selection Optimization
FSL Flow Setup latency
RPF Reliable Path Finder
APSAF Adaptive Path Selection Algorithm with Flow Classification
DPED Data Plane Elements Discovery
FCP Flow Classification Phase
PIDT Packet Inter Departure Time
PS Packet Size
PSM Path Suitability Metric
PSSP Path Screening and Selection Phase
ERnet European Reference Network
OVS OpenVswitch
PDR Path Delivery Ratio
PLR Path Load Ratio
PITR Packet Inter-Transfer Rate
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