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Abstract: Vehicular ad hoc networks have emerged as the main building block for the future coop-
erative intelligent transportation system (cITS) to improve road safety and traffic efficiency and to
provide passenger comfort. However, vehicular networks are decentralized, characterized by high
mobility and dynamicity, and vehicles move in a hostile environment; such characteristics make
VANET applications suffer many security and communication issues. Recently, blockchain has been
suggested to solve several VANET issues including the dissemination of trustworthy life-threatening
information. However, existing dissemination schemes are inefficient for safety messages and are
vulnerable to malicious nodes and rely on the majority of honest assumptions. In the VANET context,
adversaries may collude to broadcast false information causing serious safety threats. This study
proposes an intelligent proof-of-trustworthiness-based secure safety message dissemination scheme
(PoTMDS) to efficiently share only trustworthy messages. The consistency and plausibility of the mes-
sage were evaluated based on a predictive model developed using a convolutional neural network
and signal properties such as the received signal strength and angle of arrival. A blockchain-based
data dissemination scheme was developed to share critical messages. Each vehicle calculates the
proof of trustworthiness of the disseminated messages by comparing the received message with the
output of the prediction model. The results showed that the proposed scheme reduced the consensus
delay by 58% and improved the detection accuracy by 7.8%. Therefore, the proposed scheme can
have an important role in improving the applications of future cITS.

Keywords: blockchain; consensus; convolutional neural network; Kalman filter; VANET

MSC: 68-00

1. Introduction

Vehicular ad hoc networks (VANETs) are a promising technology to enhance road
safety, traffic efficiency, and enhance passenger comfort for future intelligent transportation
systems. According to the World Health Organization (WHO) [1], millions of people lose
their lives and possessions every year as a result of traffic accidents. Accidents lead to
the loss of billions of dollars in treatment costs, property damage, wasted time in traffic,
increased fuel consumption, and pollution [2]. These problems have a direct or indirect
impact on economic activity and sustainability [3]. Studies have shown that more than 90%
of road accidents are attributed to human errors and most of these accidents can be avoided
if drivers are warned a few seconds before the collision [4–7]. VANETs are considered a
key enabler for future intelligent transportation systems (ITS) applications, as it extends
the range of awareness beyond that of the driver and conventional sensors. Numerous
VANET applications have been developed and investigated, including but not limited
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to cooperative active safety systems (CASS) [8], cooperative collision warning systems
(CCWS) [7], and driver assistance systems (ADAS) [9].

VANETs have unique characteristics compared to other wireless network technologies
in terms of mobility, scalability, security, message descriptions, and types of equipment.
With the high mobility and density of vehicles, many VANET applications required that the
data produced by vehicle sensors needs to be shared with the neighboring vehicles. Thus,
vehicles in VANETs are equipped with several hundred sensors controlled by on-board
units (OBUs). The OBUs provide vehicles the ability to sense information related to car
status, driving situation, and road features and status and communicate this information
with the neighboring vehicles. Vehicles use the dedicated short-range communication pro-
tocol (DSRC) and the Wireless access in vehicular environments (WAVE) architecture [10]
to share safety and traffic information such as (e.g., traffic jams, accidents, and natural
disasters) with other vehicles. The OBU can communicate with road side units (RSU)
for disseminating information to extended areas. Vehicles also broadcast real-time traffic
messages such as (speed, location, braking, etc.) with nearby vehicles. However, due to the
sparse and disconnected environment, VANET applications assume an honest majority of
participants. Unfortunately, such an assumption may not be always true in the presence of
malicious vehicles which send false information. Thus, the trustworthiness of the infor-
mation shared in VANETs is a major security concern. There are many solutions that try
to disseminate trustworthiness information in VANETs based on data-centric approaches
by checking the consistency and plausibility of information such as those in [5,11,12] or
based on entity-centric approaches which solely depend on entity trust using cryptographic
techniques such as those in [13]. Cryptographic techniques are essential for message in-
tegrity [14,15]. However, a compromised vehicle can send false yet authenticated messages.
Both entity- and content-centric approaches either apply basic security checks that assume
an honest majority or are based on static trust values. Both approaches are ineffective
in hostile VANET environments where the colluded vehicles can spread fake informa-
tion related to its status, road conditions, or traffic situations causing serious life safety
threats. Accordingly, disseminating trustworthiness information is challenging due to the
VANET’s unique requirements in terms of distribution, scale, mobility, density, and hostile
environments for a reliable communication and trustworthiness messages.

Recently, blockchain has been used in various fields related to VANETs due to its ex-
ceptional characteristics such as distribution, decentralization, tamper-resistance, immutabil-
ity, availability, and transparency which fit VANET application requirements [16–19]. A
blockchain is a decentralized ledger that allows transactions to be securely recorded in
a trustworthy environment, without the need for a central authority [20,21]. Jiang and
Fang [22] suggested using blockchain to achieve decentralization, data security, and privacy
in VANETs. The authors in [23] proposed a trust model based on blockchain for preserving
vehicles’ privacy. A pseudonym public key was suggested to achieve anonymity while the
trustworthiness messages were evaluated based on the entity’s reputation which is stored
in the blockchain. In [24], blockchain is recommended as a solution for privacy preservation
and efficient database management in railway vehicles. One of the ways blockchain is
also being used is for storing and distributing messages and event information. Zhang
and Chen [25] employed a consortium blockchain to store critical data including the po-
sition, direction, location, and authentication information of vehicles. According to [26],
blockchain and VANETs can potentially result in secure and reliable vehicle-to-vehicle
(V2V) communication.

In a VANET-based blockchain, the main challenge is the selection of a consensus
algorithm that ensures that the validity of the message as a false message can disrupt any
VANET potential application and is a threat to people’s lives. Consensus algorithms can
be used for massage validation, distribution, and security preservation. Before adding a
transaction to the blockchain, nodes go through a validation procedure, which is referred
to as “consensus”. In the blockchain, the nodes that participate in this consensus are called
the mining nodes, and the node that successfully creates a block is called the “leader” [27].
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Proof of work (PoW) is a popular consensus algorithm in which mining nodes compete to
find a nonce that solves the hash puzzle. The node that finds the solution first generates
the block and receives the incentive. However, PoW is not suitable for VANET-critical
applications because it needs around 10 min to solve the hash puzzle [26]. Proof of stake
(PoS) is another consensus algorithm that is proposed to reduce the consensus time [28]. In
PoS, the node which has the highest trust value called the stack should generate the block
and receive the incentives. However, PoS does not provide fairness as the nodes with high
trust values always win. Proof of elapsed time (PoET) was proposed to improve fairness.
PoET requires nodes to perform a busy-waiting operation for a randomly generated period.
Due to the randomness of PoET, nodes may need to wait for a significant amount of time
before generating proof. In VANETs, where fast communication is often critical, this can
lead to increased latency, which can be problematic for applications that require low latency
such as safety applications. In addition, PoET is not secure against malicious nodes. The
practical Byzantine fault-tolerant (PBFT) [29] consensus algorithm determines the number
of nodes needed to reach an agreement in presence of malicious nodes. However, PBFT
requires a significant amount of message exchanges between nodes, which can result in
high message overhead. A proof-of-quality-factor (PoQF) [26] consensus algorithm uses
a voting mechanism to validate the message. However, PoQF has a high verification
delay and assumes an honest majority. Several other blockchain solutions have been
proposed [25,30,31] for permissioned blockchains. Most of these solutions have high
validation delays and are vulnerable to colluding attacks.

Although many consensus algorithms have been proposed for data dissemination in
VANETs [25,27–31], most of these algorithms suffer in terms of security and efficiency. That
is, most of the algorithms assume an honest majority assumption among vehicles. This is
not a valid assumption because malicious vehicles can collide and create non-existing events
causing leader vehicles to endorse false information and add to the blockchain. However,
many existing dissemination schemes rely on consensus algorithms that use basic checks
to validate the message resulting in consensus on uncertain trustworthiness information.
This study proposes an intelligent proof of trustworthiness-based secure safety message
dissemination scheme (PoTMDS). A consensus algorithm called proof of trustworthiness
in which the trustworthiness of the messages neither relies only on the majority nor the
trust value given to a vehicle in the past is used. Alternatively, the mobility information of
vehicles is validated by fusing sensor information received from sender vehicles with their
signal properties such as received signal strength and angle of arrival using the Kalman filter
algorithm. The innovation error of the Kalman filter which represents the inconsistencies of
the information was used to train a deep learning event prediction model. A convolutional
neural network (CNN)-based prediction model was designed and developed to assist
vehicles at the event location to autonomously detect the event. Vehicles at the event
location extract the proof of the event based on the mobility patterns of the vehicles passing
the event location. The proposed consensus algorithm allows vehicles at the event location
to compete validating the event based on the plausibility and consistency of the event
as witnessed by the neighboring vehicles. The results show that the proposed consensus
algorithm is robust against malicious vehicles which share false mobility information or
event messages. The results also show that the proposed solution outperforms the related
work in terms of consensus time, verification delay, and communication overhead. The
contributions made in this study can be summarized as follows:

• A proof of trustworthiness (PoT) consensus method is proposed, where the mining
nodes compete to validate the trustworthiness of the event. Instead of relying on a
voting algorithm, nodes independently validate the messages based on the properties
of the event message signal (physical evidence) collected by the miner nodes.

• A CNN-based prediction model was designed and developed to autonomously iden-
tify the events on the road and used as evidence of the message’s correctness. The
distribution of innovation errors of the Kalman filter was used to represent traffic
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status. An image like grid cells containing the accumulative errors of the vehicles in
each cell was used as proof of the event.

• A blockchain-based message dissemination scheme called PoTMDS is proposed to
securely share critical messages that are effective and efficient for VANET applica-
tion requirements.

The remainder of this paper is organized as follows. Section 2 presents the related work.
Section 3 describes the proposed solution. The procedures of validation and evaluation
are presented in Section 4. The results and performance analysis are discussed in Section 5
while Section 6 concludes the paper.

2. Related Work

Disseminating safety information in VANETs has been a major concern of researchers
in the last few years [11,12,26,32–35]. A misbehaving vehicle can generate false mobility
patterns and disseminate wrong safety messages. Many researchers use blockchain in
various fields related to VANETs because of its exceptional characteristics such as distri-
bution, decentralization, tamper-resistance, immutability, availability, and transparency
which meet VANET application requirements [16,19,36–43]. Zhang et al. in [25] used a
consortium blockchain to store important information about vehicles such as their position,
direction, location, and authentication information. Similarly, Javaid et al. in [44] utilized a
blockchain to store registration information and vehicle status. Akhter, Ahmed [45] also
used a blockchain to store authentication information and ensure vehicle privacy. It is a
common belief that blockchains and VANETs can potentially result in secure and reliable
vehicle-to-vehicle (V2V) communications [9]. However, in a VANET-based blockchain, the
main challenge is the selection of a consensus algorithm that ensures the validity of the
message as a false message and can disrupt any potential VANET application and threats
to people’s lives.

Many studies have utilized blockchains to validate and disseminate safety messages
in VANETs [18,25–27,32–35,38,40,43,46,47]. Most of these studies rely on an extended
version of the existing consensus algorithms proposed for conventional blockchains. For
permission-less (or public) blockchains, proof of work (PoW), proof of stack (PoS), and proof
of elapsed time (PoET) are commonly suggested for VANETs. The consensus algorithms
can be categorized into two approaches: proof-based or voting-based. The proof-based
approach tries to find proof of either action or situation such as PoW and PoS while the
voting-based tries to validate the message based on the entity voting such as in the practical
Byzantine fault tolerance (PBFT) [36]. In [17], PoS is compared to PoW and recommended
as a promising consensus algorithm for VANETs due to its computational complexity
and reduced time delay. Meanwhile, the authors in [33] proposed a blockchain-based
approach for message dissemination in vehicular ad hoc networks (VANETs) which uses
edge computing and PoW. This approach achieves a reduction in block generation latency
by offloading complex computations to capable edge devices. The blockchain in this
approach is used to store the trust values of nodes, which are updated based on the validity
of the messages initiated by each node. In [48], Khan et al. proposed a blockchain to store
trust values and message ratings, where RSUs perform hash computations. However,
Wagner and Mcmillin [49] demonstrated that implementing a completely distributed peer-
to-peer (P2P) blockchain in VANETs with minimal reliance on RSUs and infrastructure
is not possible with PoW and that an RSU-dependent network would be expensive. To
address this, ref. [50] proposed a joint PoW and PoS consensus managed by RSUs to store
trust values and evaluate message credibility based on the sender’s trust value while Liu,
Teng [51] used deep reinforcement learning (DRL) to address these technical difficulties by
adjusting the block size and interval.

Xie, Ding [52] proposed a message dissemination scheme based on software-defined
networks and blockchains. The SDN is used for improving network connectivity while the
blockchain is used for decentralization. However, PoW and PoS mechanisms were used
for consensus; such mechanisms are inefficient for time-critical applications. Chukwuocha,
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Thulasiraman [46] proposed a blockchain-based message exchange scheme for VANETs.
The trustworthiness of a message is calculated based on the prior event distribution in
the event location. The vehicle trust value is obtained from a hyperledger constructed to
hold the trust values of vehicles. A smart contract was developed to query and update
vehicle trust values in the hyperledger. However, it is not clear what the consensus is about
adding a new block to the blockchain. Moreover, the proposed scheme is vulnerable to the
bogus messages that originate in the subject vehicles’ OBUs by malicious software. Haddaji,
Ayed [53] constructed a blockchain to prevent and detect Sybil attacks. Sybil vehicles
are detected using three trust-based mechanisms, namely horizontal trust management
(HTM), vertical Trust Management (VTM), and distributed trust management (DTM). In
the HTM, vehicles are classified using the support vector machines algorithm (SVM) into
malicious or benign. In the VTM, each vehicle sends the classification results to the RSU,
and based on the majority voting scheme, the malicious vehicles are identified. Meanwhile,
in the DTM, an RSUs-based blockchain is constructed that contains a smart contract to
exchange the decision about the vehicles. The proof of work (PoW) consensus mechanism
was used to mine and add transactions to the blockchain. However, a predefined and static
threshold was used to classify the vehicles into malicious or benign which does not hold
for the dynamic vehicular environment. In addition, the proposed blockchain depends on
the infrastructure RSU which is impractical for realistic deployment. The authors in [54]
proposed a message validation scheme based on a blockchain-enabled trust establishment.
However, the Byzantine fault-tolerant consensus mechanism was used for validation. Such
mechanisms are vulnerable to colluding attacks.

Shrestha, Bajracharya [33] proposed a message dissemination scheme based on a public
blockchain to store the trustworthiness of nodes and their messages in a distributed ledger.
However, the proposed scheme assumes the availability of RSUs in the communication
range of the vehicles which requires heavy infrastructures costs. Ahmed, Moustafa [40]
proposed a message transmission protocol based on the Ethereum blockchain. A local
location database is suggested to store the proof of presence. However, the proposed
protocol assumes the availability of a centralized server to store the location information of
the vehicles to protect against malicious nodes which generate false positioning information.
In addition, the mechanisms of the evaluation of the validity of the message have not
been discussed. The server may store false location information regarding a vehicle.
Table 1 summarizes the consensus mechanisms, trustworthiness assessment methods, and
limitations of the existing solutions.

Table 1. Summary of the related solutions.

Scheme Consensus Verification Method Limitations

[33] PoW Proof of the location • High latency due to the use of PoW

[48] PoW Entity-centric trust
• Vulnerable to compromised vehicles and RSUs
• High latency due to the use of PoW

[50] PoW & PoS Distance-based voting

• Heavily depends on the RSUs
• Vulnerable to malicious attack
• High latency

[51] PBFT Majority voting
• (Two/three) of replicas are honest
• Crypto-based message validation

[52] PoS Entity-centric trust
• The large message size relies on a centralized trusted authority
• Crypto-based message validation
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Table 1. Cont.

Scheme Consensus Verification Method Limitations

[46] Voting consensus Bayesian-based inference
• Relies on the voting scheme with a majority honest
• No validation of the message content was proposed

[53] PoW Distance and spead
consistency

• Heavily depends on the infrastructure
• Basic consistency and plausibility checks
• High latency

[54] PBFT Witness scheme
• Heavily depends on the infrastructure
• Vulnerable to colluding attacks

[40] PoS Proof of presence
• Relay in a centralized server
• No content validation

Although there are many solutions proposed for validating and disseminating safety
messages in VANETs, these solutions have several drawbacks. As can be seen in Table 1,
most of the current solutions suffer from two main concerns: vulnerability to colluding
attacks and inefficiency in safety message dissemination. Due to the honest majority as-
sumption, a misbehaving vehicle can create and disseminate false safety messages. The
existing consensus algorithms use basic security checks for validating the correctness of the
safety message. These basic checks can be bypassed by misbehaving vehicles. In addition,
most of the existing mechanisms are inefficient in terms of consensus time or require heavy
communication overhead for consensus. In VANETs, where fast communication is often
critical, this can lead to increased latency, which can be problematic for applications that
require low latency. To this end, this study proposes an efficient yet secure event message
dissemination scheme for VANETs that is based on blockchain technology and convolu-
tional neural network techniques. A new consensus method, named PoT, is developed,
which includes several proofs, such as proof of location, proof of mobility, and proof of the
event, to verify the accuracy of the emergency message before adding it to the blockchain.
A proof of event is created using a convolutional-neural-network-based prediction model
that is trained by correlating the mobility pattern extracted from the cooperative aware-
ness messages with the event occurrence using the Kalman filter algorithm. A detailed
description of the proposed scheme is presented in the subsequent section.

3. Proposed Scheme

The components of the proposed intelligent proof-of-trustworthiness-based secure
safety message dissemination scheme (PoTMDS) are illustrated in Figure 1. The proposed
scheme consists of three main parts: the event ledger blockchain, the trust ledger blockchain,
and the on-board units (OBU) and roadside units (RSU) nodes. A detailed description of
each part is in the following subsections.
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3.1. Event Ledger Blockchain

The distributed event ledger is created and managed by the traffic management center.
It stores the event message information. VANET applications can use smart contracts to
trigger actions related to road safety, traffic efficiency, and passenger comfort. An event
such as traffic congestion, accidents, road hazards, slippery roads, etcetera can be stored
in the event ledger. Vehicles continuously check the blockchain for any new block added
to the area of interest. As vehicles move, the area of interest is updated and thus the
related emergency messages will be considered. Because all the messages added to the
blockchain are trusted vehicles, it just needs to verify the integrity and origin of the message
by validating the certificate and the signature of the message.

3.2. Trust Ledger Blockchain

Similar to [44], this ledger is created to hold the registration information of the vehicles
with their trust values. It is created and managed by the transportation authority. Vehicles
and RSUs are registered and the initial trust value is given based on the trustworthiness
of the messages broadcasted by the vehicles. The trust value of the vehicle is inherited
from the trust value given to the owner of the vehicle. If the owner has multiple vehicles,
then the trust values are aggregated. Vehicles obtain their pair of public and private keys
with pseudonyms IDs. Vehicles use pseudonymous IDs to hide their privacy from pairs.
Only trusted RSUs or authorities can resolve the pseudonym ID to the public key of the
vehicle. Vehicles request to change their pseudonyms in specific areas and situations such
as mix-zone. Thus, vehicles are anonymous but all the important information can be
retrieved by pairs from the trust blockchain using a trust-based smart contract.
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3.3. RSU/OBU Nodes

The OBU/RSU comprises five modules, namely, a traffic data collection module,
a CAMs verifications module, an event message detection module, a block generation
module, and a consensus module.

3.3.1. Traffic Data Collection Module

The purpose of this module is to collect the mobility information of the neighboring
vehicles. In VANETs, vehicles receive a continuous update of recent mobility information
from neighboring vehicles in a range of two kilometers in the form of cooperation awareness
messages (CAMs). The CAM messages are essential for safety applications and traffic data
collection. They play an important role in validating the event messages because they
contain the mobility patterns needed to validate the event [55]. The CAM message contains
information that includes vehicle position (e.g., GPS coordinates), speed, acceleration, and
direction. According to the IEEE standard, CAMs are broadcasted every 100 ms (10 Hz) [10].
Thus, vehicles can autonomously predict and detect any road events, autonomously by
analyzing the mobility information of the neighboring vehicles in terms of time and space.
However, misbehaving vehicles which share false mobility information can cause high
false alarms and low detection rates and lead to serious safety threats. Therefore, CAMs
should be evaluated before they are stored in the local mobility dataset. To evaluate the
correctness of the CAM messages, the following steps are suggested based on our previous
studies:

1. CAMs Acquisition: In every 100 ms, each vehicle acquires mobility information from
onboard sensors and forms its CAM message.

2. CAMs Noise Removing: The vehicle uses the Kalman filter algorithm to fuse sensor
information to achieve accuracy. Because vehicle sensors are independent of each
other’s, e.g., GPS, speedometer, and gyroscope, the Kalman filter is effective noise
removal to obtain unified but accurate CAMs. The Kalman filter has been used to fuse
information from different sensors to obtain accurate information [56,57].

3. CAMs Broadcasting: A vehicle broadcasts its mobility information to neighboring
vehicles. Because CAMs messages contain information regarding vehicle mobility,
CAMs are highly predictable. Thus, to reduce communication overhead, vehicles
broadcast CAMs messages only if necessaryt, e.g., during maneuvering, acceleration,
or deceleration. More precisely, vehicles predict their future CAMs using a vehicle
mobility model, and based on the prediction error of the broadcasting, a decision is
made [3,58].

3.3.2. CAMs Verifications Module

Once a CAM message is received by neighboring vehicles, vehicles evaluate the cor-
rectness of the information using pliability and consistency models such as those proposed
in [5]. To detect sophisticated false message attacks, sent by misbehaving vehicles, a ve-
hicle uses physical evidence such as the received signal strength indicator of the received
CAM Kalman and signal direction to check the validity of the CAM message [59]. The
Kalman filter algorithm is used to fuse the signal properties with CAM information and
the innovation error of the Kalman filter is used as an indicator of false messages. Because
signal strength can be noisy in high-density scenarios, the noise covariance of the RSSI
can be dynamic by aggregating uncertainties of neighbouring vehicles to reduce the false
alarm rate. The RSSI is measured by the antennas using the antennas array. RSSIs from
different sensors are averaged to remove the noise and obtain more accurate readings. The
distance between the receiving and sending vehicles (physical evidence) is calculated using
Equation (1):

ϕk = 10(δ−ω)/10n (1)

where δ denotes the antenna gain, ω denotes the RSSI value, and n denotes n to the
propagation constant or path-loss exponent (this study assumes free space with n = 2). The
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predicted distance between the receiving and sending vehicles ϕ̂k is calculated using the
position information of the received CAM message (as claimed by the sender) as shown in
Equation (2):

ϕ̂k =

√(
xs(k) − xr(k)

)2
−
(

ys(k) − yr(k)

)2
(2)

where xs(k) and xr(k) denote the latitude of the sending and receiving vehicles at time
epoch k, respectively. ys(k) and yr(k) are the longitude of the sending and receiving vehicles,
respectively. The angle of arrival θk of vehicle CAM at time k is calculated using array
antennas occupied in the receiver vehicle (at least two antennas) as shown in Equation (3):

θk = sin−1 ϕ2 − ϕ1

α
(3)

where ϕ1 and ϕ2 denote the distance between receiving and sending vehicles as received
by the first and second antennas, respectively, while α denotes the distance between the
antennas in the receiving vehicle. The predicted angle of arrival θ̂k can also be calculated
using the following formula.

θ̂k = tan−1
xs(k) − xr(k)

ys(k) − yr(k)
(4)

The measurements vector of the Kalman filter is represented as shown in Equation (5):

CAM =
[

xs(k) ys(k) vxs(k) vys(k) θk dk

]
→ fk (5)

where xs(k), ys(k), vxs(k), and vys(k), denote the position and speed of the sender vehicle in
both the latitudal and longitudal direction at time epoch k, while θk and dk are the angle of
arrival and the distance between sending and receiving vehicles as measured using array
antennas and RSSI, respectively. The transition matrix of the Kalman filter Fk|k−1 which
holds the prediction models used to predict the upcoming CAM message at time k from the
CAMs estimated at the previous time epoch k− 1 is formulated as shown in Equation (6):

Fk|k−1 =



xs(k) + Tvxs(k) +
T2axS(k)

2

ys(k) + Tvys(k) +
T2ayS(k)

2
vxs(k) + TaxS(k)

vys(k) + TayS(k)

tan−1 xs(k)−xr(k)
ys(k)−yr(k)√(

xs(k) − xr(k)

)2
−
(

ys(k) − yr(k)

)2


(6)

where T denotes the broadcasting rate of the sender vehicle in the second while axs(k) and
ays(k) are the acceleration of the sender vehicle. Thus, for each time epoch, the receiving

vehicle predicts the ĈAM messages of all neighboring vehicles using Fk|k−1 and once the
actual CAM message is obtained. The innovation error Z of the Kalman filter can be
calculated using Equation (7):

Zk = CAM− ĈAM (7)

The innovation error of the Kalman filter is used to update the CAM message in the
update phase of the Kalman filter. However, in this study, Zk is used to measure how
consistent the information sent by the sender vehicle is with the information perceived by
the receiver vehicle using the signal properties. If the discrepancy between the actual CAM
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and the predicted ĈAM between cannot be tolerated, the message is considered false. The
box and whisker plot technique was used to detect the outliers as follows:

Ik = Q75% −Q25% (8)

where Ik is the inter quartile range while Q25%, and Q75% denote to the 25th and the 75th
percentile of the innovation sequence, respectively. Let β and γ denote the upper and lower
bounds of the innovation sequence error, respectively. The detection rule is formulated as
follows:

CAMStatusk =

{
true γ< zk < β
f alse β < zk or γ > zk

(9)

The upper bound β and lower bound γ of the box plot can be calculated as follows:

γk = Q25% − 1.5Ik (10)

βk = Q75% + 1.5Ik (11)

Each vehicle stores the true CAMs messages received from neighbouring vehicles in
the local database (LDB); additional information such as Kalman filter innovation errors
are attached with each CAM.

3.3.3. Event Message Detection Module

The event message is generated based on traffic anomalies by analysing the local
database collected in the data collection phase. Mobility information (or CAMs) patterns
can be used as evidence of the event happening [60]. Each vehicle v has an innovation error
associated with specific road position p(i, j) and time epoch k. As shown in Figure 2, the
road is represented as a grid. The grid consists of square cells with each square equipped
with an area size of one meter squared. The road event area is represented by a sub-grid
consisting of m× n where m is the width length in meters and n is the event area length in
meters. In this study, the event area is represented by 10× 30 m2 and each meter squared is
represented by a position coordinate p(x, y). When a vehicle zv(k) passes the cell p(x, y),
its Kalman innovation error is aggregated with the innovation error of the other vehicles
which have passed the same position. The aggregated innovation error of each position
p(x, y) in time window w is calculated as follows:

zt,p(i,j) =
w

∑
t=k

zv(k) (12)
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To detect road events, a deep learning classifier based on a convolutional neural net-
work was designed and developed for detecting traffic anomalies. CNNs can effectively
capture the patterns and structures in the data, making them useful for identifying anoma-
lies. They can automatically learn and extract features from the input data, which can
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be useful in identifying anomalies [61]. CNNs can capture the hierarchical structure in
the input data, such as patterns and shapes, by using convolutional and pooling layers.
This is useful in anomaly detection as anomalies often have different shapes and patterns
compared to normal data [62]. The CNNs are also robust to noise and can handle missing
values, making them well suited for real-world anomaly detection tasks where data can be
noisy and incomplete such as VANET environments. Figure 3 shows the architecture layers
of the proposed classifier. The normal data were collected by simulating vehicle movement
using SUMO traffic simulation. The mobility information was generated and stored in the
database using Traci in the Python programming environment. The grid of size 10× 30 is
represented by a two-dimensional array in the Python programming language and stored
in the form of images. The traffic anomalies were generated by simulating hard deceleration
and stopping in the middle of the road. To represent misbehaving vehicles that send false
mobility information, 15% of the vehicles were designed to send false mobility information.
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To autonomously detect traffic anomalies, a classifier was trained based on the innova-
tion errors of the Kalman filter. As shown in Figure 2, the innovation errors in specific time
windows are represented as grid images and thus used as instances for the CNN model
to learn from. The normal grid images were constructed for normal traffic scenarios to
represent normal situations while the event grid images were constructed during the events
to represent the traffic anomalies. The event grid image encompasses information before
the event and during the event. The traffic event is centralized in the grid image. That is, the
grid image is the aggregated innovation errors of Kalman filters of vehicles before the event
until some period after the event happens. The classifiers should learn how to distinguish
between grid images that represent normal situations from the grid images that represent
traffic anomalies. The hypothesis is that the distribution of the innovation error during the
normal event may follow a uniform distribution while there will be a spike at the event
position which leads to disturbance in the uniform. The following example demonstrates
how innovation errors are utilized as an indicator of traffic anomalies. If a vehicle stops
in the middle of the road, other vehicles will slow down and change their lanes. This
disturbance in traffic causes the prediction model to wrongly estimate the feature position
of the vehicle which leads to high innovation error. The error will be gradually reduced
as the vehicles leave the event area. Thus, the change in the error distribution indicates
a traffic event. Figure 4 shows the disturbance of the innovation errors during the ideal
traffic events: (a) deceleration and stopping, (b) congestion, and (c) normal traffic situations.
Figure 5 shows the disturbance of the errors during the ideal traffic events: (a) 1 s, (b) 5 s,
and (c) 10 s.
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3.3.4. Block Generation Module

Upon detection of a traffic anomaly, an event message is generated. The message
comprises the following information:

1. Block Header: The header contains the previous hash in the blockchain.
2. Block ID: A random number
3. Vehicle Certificate: The certificate contains the temporal public key of the vehicle

which generated the message signed by the certificate authority.
4. Time Stamp: Date and time.
5. Position Coordinate: Position where the event happened.
6. Grid Event Image: This contains a grid of the probability distribution of the Kalman

filter innovation error zt,p(i,j).
7. Witnesses List: List of surrounding vehicles that are potential witnesses. The list

contains the temporal public keys of the witnesses.
8. Location Certificate: Once a vehicle approaches an RSU or a special vehicle, the

vehicle requests a certificate of location. The certificate of location is used to prove
the trustworthiness of the vehicle on the road. The certificate is valid for a specific
period. An RSU uses a CAMs verification module to evaluate the trustworthiness of
the location information of the vehicle.
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9. Message Hash: RSA-1024 is used for the message signature. According to the studies
in [40,63], ECDSA needs around 10.8 ms for signing and verification while RSA-1024
requires less than 3.10 ms. Due to the availability of mobility information of a vehicle
n, vehicles in the area will generate the event message. However, none of the vehicles
will add the event message to the blockchain. Thus, the vehicles share the event
message with RSUs, special vehicles such as police vehicles, or public vehicles such
as public buses. If there are no public trusted vehicles within the event area, a vehicle
with the highest trust value will generate the block.

3.3.5. Consensus Module

Upon generating the event message, the vehicle broadcasts the generated block. Each
vehicle collects a list of event messages produced by neighboring vehicles in the event
location. Then, a collective mining process is performed where all neighboring vehicles try
to validate the correctness of the message in parallel. Then, each vehicle in the event area
(the region of interest) should sign and then broadcast the predicted event message to the
vehicles in its vicinity. Each vehicle validates the trustworthiness of the message according
to the consensus method presented in Figure 6. Vehicles start to verify the integrity and
authenticity of the message by validating the signature of the event message with the
help of the temporary certificate obtained from RSUs. If the certificate is not valid or the
signature is not true, then the message will be discarded. Otherwise, the vehicles verify
the proof of location using the CAM verification module and the latest location certificate.
A vehicle cannot deny sending a message signed by its private key or claim a location
outside the communication range of the receiving vehicles. The proof of mobility of the
vehicles which send the event message should also be presented in the local database (LDB).
Because the nodes in the event position are witnessed vehicles, then they should also detect
the event pattern using the CNN prediction module. Then, a vehicle should verify if the
event pattern matches the event pattern in the event message, then the message is added
to the consensus list. Otherwise, the sender vehicle will be reported as a misbehaving
vehicle and its trust value will be updated. If the average trust values of the messages of
the consensus vehicles are greater than the average trust of the potential witness vehicles,
then a block is generated and signed and then sent to the nearest RSUs using a reliable
connection. Both vehicles that generate the event message and will receive an incentive
and their trust will be updated. If the trust value of the recipient vehicle is less than the
trust value of the sender vehicle, the recipient vehicle compares the represented grid image
that contains the event with its own generated grid image. The comparison is performed
based on the root mean square error as shown in Equation (13). Another potential strategy
for comparison can be used based on the image retrieval used in [64]. The message with
the lowest RMSE is added to the blockchain.

RMSE =

√
∑n

i=1(xs − xr)
2

n
(13)

where n is the number of cells in the grid image and xs and xr are the cell values of the
sent and received grid images, respectively. The RMSE of the message, however, should
not exceed a certain threshold. The threshold can be selected based on the lower quartile
Q1 (Q1 is the 25th percentile) of the box and whisker plot. The threshold value of the
consensus trust value (in Figure 6) can be calculated as in Formula (14):

∑C
i=1 Ti

C
>

∑W
i=1 Ti

W
(14)

where C and W denote the set of censuses and witness vehicles, respectively, and Ti the
trust value of vehicle i as extracted from the blockchain. The wittiness vehicles at the event
location with high trust values are eligible for consensus. In another words, a vehicle
with a trust value higher than the average trust value of wittiness vehicles is eligible for
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consensus. Suspicious vehicles that have high innovation errors from the CAM verification
module are excluded from the consensuses. Figure 6 shows the flowchart of the proposed
consensus method.
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4. Performance Evaluation

Proof of concept based on the simulation has been conducted to validate and evaluate
the proposed consensus method. Detailed information about the simulation setup and
performance measures are presented in the following subsections.

4.1. Experimental Environment

The simulation of urban mobility (SUMO) has been used in this study to generate
vehicle traffic. SUMO is a common simulation tool used to evaluate VANET solutions in
related studies. The map that was used in the experiment (see Figure 7) was extracted
from open street maps and fed into SUMO to generate traffic data. Vehicles are generated
randomly and directed to different destinations on the map. Two scenarios were created:
a low traffic scenario (50 vehicles in each square kilometer) and a high traffic scenario
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(200 vehicles in each square kilometer). The dataset used in the study was extracted from
a three km-length and three-lane road. The SUMO simulator is connected to the Python
programming environment through the Traffic Control Interface TraCI Python library.
Vehicle positions, speeds, acceleration, direction, and road lane numbers are extracted.
For each simulated vehicle, a dataset that represents vehicle movement was extracted and
stored in the local database (LDB) in the form of CAMs for each row. LDB contains the
mobility information of the vehicle within 2 km (the communication range is assumed to
be one km according to the IEEE standard). Table 2 shows the simulation parameters used
in the experiment.
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Table 2. Simulation parameters.

Parameter Value Parameter Value

Simulation Time 3600 s Communication Protocol IEEE 802.11 p
Average Speed 50 km per hour Communication Range 1000 m
Max Vehicle Density 200 vehicles per km2 Data Rate 3 Mbps
Min Vehicle Density 50 vehicles per km2 CAM Size 500 Byte
Mobility Model Freeway Max CAM Broadcasting Rate 10 per second
Road Length 3 km Propagation Model Two-ray path-loss

4.2. Event Detection Model Training and Testing

As explained in the previous section, two scenarios were simulated, one for high-density
and the other for low-density scenarios considering the parameters in Table 2. Vehicle
movements were simulated using SMO software based on the map obtained from the
OpenStreetMap (https://www.openstreetmap.org/ (accessed on 13 February 2023)) (See
Figure 7). To simulate the traffic events, some vehicles were selected randomly in different
time epochs to slow down and stop in the middle of the road. In response, the following

https://www.openstreetmap.org/
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vehicles also decelerate or change lanes accordingly to avoid collisions. Such sudden
deceleration and stopping make a disturbance in the traffic follow and produce traffic
anomalies. To simulate misbehaving vehicles, 15% of the vehicles were programmed to
send false mobility information. The attacks include the basic and sophisticated creation
of fake mobility information such as fake deceleration, fake stopping, and fake maneu-
vering. A homogenous noise environment with a normal distribution of a 1.8 m error
average was assumed in the GPS noise information. The CAM messages are appended
gradually in every time epoch. In each time epoch, each vehicle verifies the correctness
of CAM messages using the aforementioned CAMs verifications module. The dataset
consists of a total of 16,657 images created and used for training and testing. As explained
in Section 3.3.3, the innovation error of the Kalman filter was aggregated to generate the
grid images (see Figure 2). The total number of images with traffic anomalies is 8387;
meanwhile, 8270 images contain normal traffic. The CNN model was trained based on 70%
of the dataset, while 30% was used for testing. The CNN model was constructed using the
Keras framework in Python. Then, the constructed model was used for online operation
by integrating the trained classifier into the SUMO scenarios through the Traffic Control
Interface TraCI Python library.

4.3. Evaluation Measures

We used some common measures in this study such as the event detection accuracy,
recall, precision, false positive rate, false negative rate, success rate, average consensus
time, and average delay. The event detection accuracy is calculated using Equation (15):

Acc =
nt

N
(15)

where nt is the number of traffic images correctly classified divided by the number of
total classified images. The recall is defined as the number of traffic anomalies correctly
identified ntp divided by the total number of actual traffic anomalies Np.

recall =
ntp

Np
(16)

The precision is the number of traffic anomalies correctly identified ntp divided by the
total number of predicted traffic anomalies Npp.

precision =
ntp

Npp
(17)

The false positive rate (FPR) is the number of traffic anomalies wrongly identified n f p
divided by the total number of actual traffic anomalies Np.

FPR =
n f p

Np
(18)

The false negative rate (FNR) is the number of normal traffic images wrongly identified
n f n divided by the total number of actual normal traffic images Nn.

FPR =
n f n

Nn
(19)

The average message success rate is the total number of event messages that have
been successfully added to the blockchain. It is the ratio of the number of verified messages
mi by a consensus node i and the received message. It is equivalent to the message delivery
ratio when the source is the vehicles that generate the block.

SR =
mi
Np

(20)
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The message failure rate FR is calculated based on SR as follows. FR = 1− SR. The
average delay is the time spent since the event was detected until it is received by the
destination.

average delay =
N

∑
i=1

(
Tp(i) + Ts(i) + Tc(i) + Tv(i) + Ttd(i)

)
N

(21)

where Tp(i), Ts(i), Tc(i)′ and Ttd(i) denote to the time of processing, signature time, consensus
time, verification, and transmission latency, respectively.

5. Results and Discussion

The security analysis and performance evaluation are discussed in this section to show
the advantages of the proposed PoT scheme.

5.1. Security Analysis

In the following subsections, the security analysis of the proposed PoT dissemination
scheme is presented.

Decentralization: A blockchain is stored in multiple nodes in the network such as RSUs,
special vehicles such as police and emergency vehicles, and also in public vehicles such as
buses. The rationale behind these selected vehicles is that those vehicles can have enough
resources that are needed for scalability and also so they are easy to maintain by trusted
parties. Because the storage is distributed on multiple nodes (police cars, emergency
vehicles, buses, etc.), the proposed solution does not rely on vulnerable centralized or
trusted third-party storage. That is, a compromised node will be disclosed and thus it is
not possible to disseminate fake messages. Assuming an event message size of 800 bytes as
computed based on the event message generation module, the message size is consistent
with the related studies [5,25] as it is assumed to be between 500 bytes and 1500 bytes in
the basic safety messages (BSM) in the United Sates’ WAVE standards [10]. Table 3 shows
the maximum expected size of the blockchain in gigabytes. Even with 1000 years, the
blockchain can only be 292 GB. Such a size is reasonable for VANETs.

Table 3. The maximum message size is 800 bytes (including the signature).

Assuming 1000 Events Assuming 2000 Events Assuming 5000 Events

#Year Block Chain Size (GB) Block Chain Size (GB) Block Chain Size (GB)

1 0.292 0.584 1.46
10 2.92 5.84 14.6
100 29.2 58.4 146

1000 292 584 1460
10,000 2920 5840 14,600

Privacy Protection: To preserve the vehicles’ real identity, the vehicles generate a
temporal pseudonym public key and obtain certification for their temporal pseudonym
public key. Vehicles are allowed to change their public keys in mix zones only where
there are RSUs or special vehicles such as police vehicles. The authorities authenticate the
vehicles and sign the temporal pseudonym public key. Attackers cannot identify the real
vehicle identified as the vehicle uses a temporal key. Even if the attacker analyzes the event
messages stored in the blockchain, it is impossible to link the pseudonyms keys to each
other. The event messages in the blockchain that are generated by the vehicle are rare. It
might be very difficult to find them unless the attacker carries out brute force attacks. In
this case, the attacker may have p = m

n where m is the number of event messages generated
by a vehicle and n is the total number of messages. Given that m is less than 10 per day for
some vehicles such as taxis and the total events may reach 5000, the probability of finding a
two-message generated by the same vehicle is 0.2%. Even if the worst case happens it is
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impossible to retrieve the true identity from the pseudonym’s ID. The proposed solutions
rely on temporal IDs so that it is impossible for an attacker to access the encrypted keys in
a short time by brute force. Only the authorities can identify the true identity of the vehicle
by linking the pseudonyms of a vehicle with its true identity so that incentives and trust
values can be identified.

Integrity Protection: Vehicles sign their generated messages using their private keys.
To verify the signature vehicles, it is required first to verify the certificate using the public
authority key. If the certificate is valid then the signature is verified. It is difficult for an
attacker to reuse the certificate of other vehicles because the digital signature is generated
using the private key of the vehicles. In addition, vehicles that sign the message cannot deny
the signature, so the non-repudiation service is achieved. If verification is not successful, the
message will not be endorsed during the consensus. The time verification of the signature
is averaged at 0.51 ms. That means within 100 ms which is the period of communication in
the IEEE standard [10]; a vehicle can verify around 196 vehicles.

Security Against Malicious Vehicle: An adversary can generate two types of messages:
basic safety message part 1 (CAM or mobility information) or an event message (EM or basic
safety message part 2). Vehicles that generate false CAMs will be detected by neighboring
vehicles using the CAMs detection module. The CAMs detection module uses the signal
properties and Kalman filter algorithm to fuse sensor information generated from both
sender and receiver vehicles. The signal properties are out of the attacker’s control because
they are measured by the receiver which verifies the message’s trustworthiness. The event
message should carry the error map which should be consistent with the error map that
is generated by the verifier. Thus, the CAM detection model is robust against malicious
vehicles which send false information. Similarly, if the event message is fabricated, it will
be detected easily as proof that the event did not occur. All neighboring vehicles will detect
the fake event message. With integrity protection, a vehicle cannot send a message on
behalf of other vehicles. A vehicle uses its private key to generate the digital signature of
the message to ensure no attacker can sign on behalf of the legitimate vehicle. An attacker
which controls multiple vehicles should be able to avoid the existence in the range of the
trusted verifiers and should be able to compromise more than 50% of the trusted verifiers
which have high trust values. Such a condition is challenging to be satisfied in practical
situations. Thus, the proposed event dissemination scheme can easily detect false messages.

5.2. Simulation Results Analysis

The performance in terms of event detection accuracy, the efficiency of the message dissem-
ination, and the message success and failure rate are presented in the following subsections.

Event Prediction Model Performance: The performance of the proposed consensus
method depends on the performance of the event prediction model because the event
prediction model carries the proof of the road incident. Figure 8 shows the training
and testing performance of the proposed model. Meanwhile, Figure 9 shows the testing
performed in the two simulated scenarios: high density and low density.

As shown in Figure 8, the performance of the prediction model on the training set
reaches 98.5%, 98%, 99%, and 98.5% in terms of accuracy, detection rate, precession, and
F-measure, respectively. Meanwhile, the performance achieved on the testing set reached
97.5%, 98%, 97%, and 97.5%, respectively. The constructed model is also applied during
the simulation run time and a prediction is conducted at every time epoch to detect the
event as early as possible. As shown in Figure 9, the performance achieved in terms of
accuracy, detection rate, precession, and F-measure in the low-density scenario is 91.6%,
91.4%, 94.18%, and 91.6%, respectively, while it is 93.2%, 92.6%, 93.8%, 93.2%, respectively
in the high-density scenario.
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Figures 8 and 9 show the performance of the proposed event detection model while
Figure 10 shows the gains when the signal properties (RSSI and AoA) were utilized for
improving false CAMs detection. In Figure 10a,b, LD+SP and HD+SP denote the low and
high-density scenarios, respectively, with signal properties included (AoA and RSSI) for
CAMs detection while LD-SP and HD-SP denote the same scenarios without including
the signal properties. In the absence of RSSI and AoA, attackers can send fake movement
information with a wide scope. However, the attack scope is eliminated using these two
features leading to high detectability of fake CAM messages and thus the exclusion from the
grid image which represents the event messages (see Figure 8a). As can be seen in testing,
the performance of the event detection model is 97.5%. Both highly dynamic mobility and
misbehaving vehicles contribute to degrading the quality of the grid image that represents
the traffic anomalies. In the low density scenario, it is difficult to distinguish due to a
lack of sufficient information. Similarly, misbehaving vehicles collude and send false
CAM messages aiming at generating fake mobility patterns to trigger the event detection
model in the benign vehicles to generate fake event messages. Without the AoA and RSSI
features, such misbehavior influences the event detection performance. As can be seen in
Figure 10a,b, the inclusion of RSSSI and AoA leads to improving the accuracy of the event
detection in both scenarios. The accuracy improvements achieved are 6.5% and 4.9% for
low and high-density scenarios, respectively (see Figure 10a). Meanwhile, the false positive
rate and the false negative rate dropped by 6% and 7% for the low-density scenario and 5%
for the high-density scenario, respectively. Although the false CAMs detection module can
correct the false messages, attackers can still impact the event detection accuracy.
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Figure 10. Event prediction performance of testing during run time with and without the AoA and
RSSI in the CAM validation (a) Accuracy, Recall, Precession, and F-Measure, and (b) False Positive
Rate (FPR) and False Negative Rate (FNR).

Delay and Communication Overhead: Figure 11a,b and Table 4 show the results in
terms of delay and communication overhead. The time needed for validating the event
message is 1.51 ms compared to 13.5 ms, 14.7 ms, 12 ms, 4.8 ms, 14.5 ms, and 7.6 ms for
DSSP [25], IBV [30], EAAP [31], PoS, PoET, and PoQF [26], respectively. The verification
delay of PoS and PoET can vary based on the used signature algorithm. The average
delay is directly affected by the validation and consensus delay. Meanwhile, the average
consensus time achieved by the proposed PoT scheme is 87.6 ms. Compared to the existing
methods of DSSP [25], IBV [30], EAAP [31], PoS, PoET, and PoQF [26], which achieved
156.52 ms, 170.43 ms, 139.13 ms, 119.7 ms, 362.5 ms, and 190.2 ms, respectively, the proposed
scheme reduced the consensus delay by 58.9%. The consensus delay includes the time
needed for verification and validation of the correctness of the event message. On average,
the proposed PoT achieved a 155.2 ms delay. The average delay is the time required for
detecting, gaining consensus of, transmitting, and validating the event message.
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In VANETs, 155.2 ms for event dissemination is acceptable with most safety and
traffic efficiency applications. The average time needed by a human driver to respond
to an accident is 1.5 s which is lower than the maximum transmission delay recorded
in the experiments. The maximum delay could reach 306.6 ms in some situations such
as high-density scenarios. In terms of communication overhead, in each time epoch, a
vehicle needs to sign a CAM message and it needs to verify a maximum of 200 vehicles in
a high-density scenario (worst-case scenario). The maximum time needed for generating
and sending event messages is 105.2 ms assuming 200 vehicles in the communication
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range. Although this time is slightly greater than 100 ms, it is not necessary to verify all the
messages received from neighboring vehicles as long as the innovation error of the Kalman
filter is not consistent with the temporal innovation error of the vehicles. The average delay
is 87.6 ms in generating and disseminating event messages.

Table 4. Delay and communication overhead.

Average Performance Measure Values

Signature delay (RSA-1024) 4.6 ms
Message verification delay 1.5 ms
Message consensus delay 87.6 ms
The average delay 155.2 ms
Max delay 306.6 ms (HD)
Event message communication overhead 105.2 ms (HD)
CAMs communication overhead 25.1 ms (HD)

Compared to the common types of consensus methods such as PoW which needs
10 min to solve the puzzle [26], PoS and PoET achieve more efficient consensus delays
of 119.7 and 365.9, respectively. However, the proposed PoT algorithm is more efficient
and suitable for critical time applications in VANETs than PoS and PoET. The proposed
PoT consensus doesn’t require solving a difficult puzzle like PoW, it does not require
time to select the relay node or perform voting; in addition, it does not require waiting a
random time.

Message Success/Failure Rate: In the proposed PoT, nodes compete to find the con-
sensus nodes with the highest trust values to validate the message and generate the block.
Hence, the message success rates for low and high density are 91.43% and 91.96%, respec-
tively, and the message failure rates for low- and high-density scenarios are 8.67% and
8.04%, respectively. As compared to the existing consensus methods such as PoS and PoET,
which achieved 21.7%, and 18.1% failure rates, respectively, the proposed PoT consensus
algorithm is more effective.

6. Conclusions and Future Work

In this study, an event message dissemination scheme for VANETs is proposed based
on blockchain technology and the convolutional neural network technique. An efficient
and secure consensus method called PoT was designed and developed that comprises
multiple proofs such as proof of location, proof of mobility, and proof of event to validate
the correctness of the emergency message before it is added to the blockchain. A proof
of event has been created using a convolutional-neural-network-based prediction model
that was trained based on correlating the mobility pattern extracted from the cooperative
awareness messages. The occurrence of the event is represented by mobility patterns
generated using the help of the Kalman filter algorithm and the signal properties such
as RSSI and AoA for proof of trustworthiness. The results showed that the proposed
dissemination scheme reduced the consensus time by 58.7% while the message failure rate
was reduced by 7%. The proposed scheme shows its suitability to meet VANET critical time
applications. Although the proposed scheme is highly secure against malicious vehicles, an
in-depth investigation is needed. In future work, the authors will explore the robustness of
the proposed scheme to different percentages of malicious vehicles. The proposed scheme
assumes that the trust establishment mechanisms are ideal for VANETs which needs more
investigation. In addition, although the false CAMs detection module can correct false
messages, attackers still can impact the event detection accuracy. Such limitations can be
improved by improving the estimation capability in the CAM detection model. Moreover,
other deep learning techniques may be used to improve event detection accuracy.
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