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Abstract: This paper introduces a multivariate extension of Raftery copula. The proposed copula
is exchangeable and expressed in terms of order statistics. Several properties of this copula are
established. In particular, the multivariate Kendall’s tau and Spearman’s rho, as well as the density
function, of the suggested copula are derived. The lower and upper tail dependence of the proposed
copula are also established. The dependence parameter estimator of this new copula is examined
based on the maximum likelihood procedure. A simulation study shows a satisfactory performance
of the presented estimator. Finally, the proposed copula is successfully applied to a real data set on
black cherry trees.
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1. Introduction

The bivariate exponential distribution has been receiving more attention in research
studies for many decades [1]. It has been applied in a variety of statistical practices, such as
reliability theory, queuing theory and physics.

A significant class of the bivariate family of distributions is the Marshall–Olkin bi-
variate exponential distribution (MOBE) introduced in [1]. The MOBE model provides an
interesting physical interpretation in terms of fatal shocks as it contains both continuous
and singular components. Furthermore, the MOBE provides an interesting copula, which
has been embraced in several practical applications, such as finance [2]. The bivariate
exponential literature demonstrated the existence of countless models and classes that have
been further developed in recent decades (see references from [1–18]) especially.

In [19], Raftery has introduced another class of bivariate exponential distribution
that shows an interesting interpretation in physics. Unlike the Marshall–Olkin model,
Fréchet’s upper bound belongs to the class of Raftery’s bivariate exponential distributions,
which allows the correlation to be modeled broadly. Moreover, this distribution is con-
tinuous without any singular part, which makes the dependence parameter estimation
more tractable [20].

As outlined in [19], there are several versions of Raftery bivariate and multivariate
exponential distributions. An important version of these kinds of distributions is defined as
follows. Consider Z1, Z2, and Z3 identical and independent exponential random variables
with parameter λ. Assume J is a Bernoulli random variable with parameter θ ∈ (0, 1)
assumed independent of Z1, Z2 and Z3. The random pair (X, Y) defined by

X = (1− θ)Z1 + JZ3 and Y = (1− θ)Z2 + JZ3, (1)

has a Raftery bivariate exponential distribution with parameters λ > 0 and θ ∈ (0, 1). As
shown in [19], the marginal random variables X and Y are exponentially distributed with
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parameter λ. This is a simple and efficient model in the context of its ability to model the
full range of positive correlations using only one dependence parameter, namely θ ∈ (0, 1).
In fact, it is easily seen that the model includes the bivariate Fréchet distribution when θ
tends to 1 and reaches the independence case when θ tends to 0. Furthermore, it could
be seen that the random vector (X, Y) is exchangeable, so the model can only be used to
describe an exponential random pair with the same marginal distributions.

To avoid this limitation and considering [7], one can adopt the comonotonic shocks
method introduced in [9] in order to adapt Model (1) for no exchangeable random pair
(X, Y). The idea behind this method is to replace the common shock Z3 with the pair of
shocks (Z′3, Z′4), such that Z′3 and Z′4 are perfectly positively dependent and exponentially
distributed with parameters λ1 and λ2, respectively. In other words, the distribution of
the random vector (Z′3, Z′4) is the upper Fréchet bound expressed by M(x, y) = min{1−
exp(−λ1x), 1− exp(−λ2x)}. This means that there exists an exponential random variable
Z with parameter 1 such that Z′3 = λ1Z and Z′4 = λ2Z. To define the proposed alternative
model, let Z′1, Z′2 and Z be exponential random variables with parameters λ1, λ2 and 1,
respectively. Let J be Bernoulli random variable with parameter θ ∈ (0, 1) and presume
that the random variables Z′1, Z′2, Z and J are independent. Hence, the suggested bivariate
exponential random pair (X′1, Y′2) is defined by

X′1 = (1− θ)Z′1 + λ1 JZ and X′2 = (1− θ)Z′2 + λ2 JZ. (2)

It can be shown that X′1 and X′2 are exponentially distributed with different parameters
λ1 and λ2, correspondingly. Finally, in contrast to Model (1), Representation (2) provides a
bivariate exponential random vector that is not necessarily exchangeable. Similarly, the
family of random pairs generated by Representation (2) contains the Fréchet upper bound,
so it models the full range of positive correlation, namely [0, 1]. Moreover, Model (1) is
a special case of Model (2) obtained when λ1 = λ2 = λ. Furthermore, the joint survival
function of (X′, Y′) is given, for all (x, y) ∈ R+ ×R+, by

H̄(x, y) = exp[−max(λ1x, λ2y)]

+
1− θ

1 + θ
exp

(
−λ1x + λ2y

1− θ

){
1− exp

(
1 + θ

1− θ
max(λ1x, λ2y)

)}
. (3)

Note that both of the random vectors generated by Models (1) and (2) have the same
survival copula expressed, for all (u, v) ∈ [0, 1]2, by

Ĉ(u, v) = min(u, v) +
1− θ

1 + θ
u

1
1−θ v

1
1−θ

(
1−max(u, v)−

1+θ
1−θ

)
. (4)

The latter is called the Raftery copula and its Spearman’s rho and Kendall’s tau of this
copula are given in terms of θ by

ρ =
θ(4− 3θ)

(2− θ)2 , (5)

and

τ =
2θ

3− θ
, (6)

respectively. Hence, the goal of this paper is to extend the Raftery copula to the multivariate
setting and study its properties.

The paper is structured as follows. Section 2 establishes a multivariate extension
of the Raftery copula extracted from a multivariate version of the model described in
Model (2). Section 3 derives the Kendall’s tau, the Spearman’s rho and the density function
corresponding to the proposed copula. Section 4 establishes the lower and upper tail
dependence of the proposed survival copula. Section 5 is devoted to the estimation of
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the dependence parameter of this copula and presents a simulation study showing its
performance. The proposed approach has been applied successfully to fit a multivariate
distribution to a real data set about black cherry trees.

2. Multivariate Raftery Copula with One Parameter of Dependence

The aim of this section is to propose a multivariate extension of the Raftery copula
presented in Equation (4). To do so, we start by briefly discussing the multivariate Raftery
exponential distribution. In fact, Raftery has presented a multivariate exponential model
in [19] that extends the bivariate distribution given in Model (1). As outlined in this paper,
the resulting model is exchangeable and the number of its parameters decreases exponen-
tially in terms of the dimension of the random vector. Here, we propose a nonexchangeable
multivariate extension of the bivariate model (Model (1)) with fewer parameters. This can
be carried out by using the concept of the comonotonic shocks method introduced in [9].
Specifically, let Z1, . . . , Zd, Z be independent exponential random variables with parameters
λ1 . . . , λd, 1, respectively. Let J be a Bernoulli random variable with parameter θ ∈ (0, 1).
Assume further that J is independent of Z1, . . . , Zd, Z. A multivariate exponential random
vector (X1, . . . , Xd) of the Raftery type is constructed as follows:

Xj = (1− θ)Zj + Jλ−1
j Z, j = 1, . . . , d. (7)

The above construction provides a class of multivariate distributions with given
marginals that are exponentially distributed with parameters λ1, . . . , λd. Note that the
value of θ ∈ [0, 1] can be viewed as a dependence parameter of this set of distributions. In
addition, this family of distributions describes only the positive dependence and contains
the Fréchet upper bound, obtained when θ tends to 1−. An alternative formulation of the
above model is

Xj = −λ−1
j
{
(1− θ) ln(Uj) + J ln(U)

}
, j = 1, . . . , d.

where U1, . . . , Ud, U are independent random variables uniformly distributed over [0,1].
These random variables are independent of J. Since the marginal random variable Xj
is exponentially distributed with parameters λj, j = 1, . . . , d. It is easy to check that the
survival copula Ĉθ associated with (X1, . . . , Xd) is the distribution of the uniform random
vector (V1, . . . , Vd) defined by

Vj = exp (−λjXj) = U1−θ
j U J , j = 1, . . . , d. (8)

Hereafter, we explicit the form of the survival copula Ĉθ .

Proposition 1. The survival copula of the random vector (X1, . . . , Xd) is given, for all u =
(u1, . . . , ud) ∈ [0, 1]d, by

Ĉθ(u) = u(1) +
(1− θ)(1− d)

1− θ − d

(
d

∏
j=1

uj

) 1
1−θ

−
d

∑
i=2

θ(1− θ)

(1− θ − i)(2− θ − i)

(
i−1

∏
j=1

u(j)

) 1
1−θ

u
2−θ−i

1−θ

(i) (9)

where u(1), . . . , u(d) denote the order statistics of u1, . . . , ud.

Proof. For all u = (u1, . . . , ud) ∈ [0, 1]d, one has
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Ĉθ(u) = P(V1 ≤ u1, . . . , Vd ≤ ud)

= (1− θ)P
(

U1−θ
1 ≤ u1, . . . , U1−θ

d ≤ ud

)
+ θP

(
U1−θ

1 U ≤ u1, . . . , U1−θ
d U ≤ ud

)
= (1− θ)

(
d

∏
j=1

ui

) 1
1−θ

+ θP
(

U1−θ
1 U ≤ u1, . . . , U1−θ

d U ≤ ud

)
. (10)

Let Fθ be the distribution function of U1−θ
1 . Conditioning on the random variable U,

one obtains

P
(

U1−θ
1 U ≤ u1, . . . , U1−θ

d U ≤ ud

)
=

∫ 1

0
P
(

U1−θ
1 ≤ u1

t
, . . . , U1−θ

d ≤ ud
t

)
dt

=
∫ 1

0
Fθ

(u(1)

t

)
× · · · × Fθ

(u(d)

t

)
dt

=
d

∑
i=0

∫ u(i+1)

u(i)

Fθ

(u(1)

t

)
× · · · × Fθ

(u(d)

t

)
dt, (11)

where u(0) = 0 and u(d+1) = 1. Note that, for all t ∈ [u(i), u(i+1)], i = 1, . . . , d, one has

Fθ

( u(j)
t

)
=
( u(j)

t

) 1
1−θ , if 1 ≤ j ≤ i and Fθ

( u(j)
t

)
= 1, if i < j ≤ d. Hence, Equation (11)

becomes,

u(1) +
d

∑
i=1

(
i

∏
j=1

u(j)

) 1
1−θ ∫ u(i+1)

u(i)

t−
i

1−θ dt

= u(1) +
d

∑
i=1

1− θ

1− θ − i

(
i

∏
j=1

u(j)

) 1
1−θ(

u
1−θ−i

1−θ

(i+1) − u
1−θ−i

1−θ

(i)

)
. (12)

By inserting (12) into (10), one obtains

Ĉθ(u) = (1− θ)

(
d

∏
j=1

uj

) 1
1−θ

+ θu(1)

+
d

∑
i=1

θ(1− θ)

1− θ − i

(
i

∏
j=1

u(j)

) 1
1−θ(

u
1−θ−i

1−θ

(i+1) − u
1−θ−i

1−θ

(i)

)

= u(1) +
(1− θ)(1− d)

1− θ − d

(
d

∏
j=1

uj

) 1
1−θ

−
d

∑
i=2

θ(1− θ)

(1− θ − i)(2− θ − i)

(
i−1

∏
j=1

u(j)

) 1
1−θ

u
2−θ−i

1−θ

(i) ,

which ends the proof.

Observe from Equation (9) that the survival copula Ĉθ coincides with the indepen-
dence copula when θ = 0, and it reaches the Fréchet upper bound when θ tends to 1−.
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Furthermore, one checks that the Raftery bivariate survival copula given in Equation (4) is
a special case of Equation (9), obtained when d = 2. In fact, for d = 2, one has

Ĉθ(u) = u(1) +
1− θ

1 + θ

(
2

∏
j=1

u(j)

) 1
1−θ

− 1− θ

1 + θ
u

1
1−θ

(1) u
− θ

1−θ

(2)

= u(1) +
1− θ

1 + θ
u

1
1−θ
1 u

1
1−θ
2

(
1− u

− 1+θ
1−θ

(2)

)
.

For illustration, let us express Formula (9) for d = 3 in terms of the order statistics u(1),
u(2) and u(3). Indeed, for d = 3, standard calculations show from Equation (9) that

Ĉθ(u) = u(1) +
1− θ

(1 + θ)(2 + θ)
u

1
1−θ
1 u

1
1−θ
2 u

1
1−θ
3

[
2(1 + θ)− θu

− 2+θ
1−θ

(3) − (2 + θ)u
− 1+θ

1−θ

(2) u
− 1

1−θ

(3)

]
.

Note that it is easy to simulate from the survival copula Ĉθ . This follows from the
fact that the proposed copula is deduced from the stochastic representation described in
Equation (8). Hence, the following algorithm allows simulating data from the survival
copula Ĉθ .

Algorithm of simulation:

1. Generate independent values u, u1, . . . , ud from uniform [0, 1];
2. Generate j from Bernoulli distribution with parameter θ;
3. Set v1 = u1−θ

1 uj, . . . , vd = u1−θ
d uj;

4. The desired vector is (v1, . . . , vd).

As a corollary of Proposition 1, one obtains the survival function of the multivariate
exponential random vector given by the stochastic representation shown in Equation (7).

Corollary 1. The survival function of the random vector (X1, . . . , Xd) is given, for all x =
(x1, . . . , xd) ∈ [0, ∞)d, by

H̄θ(x) = exp (−x̃(d)) +
(1− θ)(1− d)

1− θ − d
exp

{
− 1

1− θ

d

∑
i=1

x̃i

}

−
d

∑
i=2

θ(1− θ)

(1− θ − i)(2− θ − i)
exp

{
− 1

1− θ

i−1

∑
j=1

x̃(d−j+1) −
2− θ − i

1− θ
x̃(d−i+1)

}
,

where x̃(1), . . . , x̃(d) denote the order statistics of x̃1 = λ1x1, . . . , x̃d = λdxd.

Proof. From Sklar’s theorem, one observes that

H̄θ(x) = Ĉθ{exp (−λ1x1), . . . , exp (−λdxd)}. (13)

Let ui = exp (−λixi) = exp (−x̃i), i = 1, . . . , d. This implies that u(i) = exp (−x̃(d−i+1)).
It results from Equation (13) that the multivariate survival function H̄θ provided in the
above corollary is directly deduced by substituting u(i) into exp (−x̃(d−i+1)) in
Equation (9).

Simple calculations allow checking that, for d = 2, the multivariate survival function
H̄θ given in Corollary 1 reduces to the bivariate survival function given in Equation (3).
Hereafter, we derive the Pearson correlation coefficients of random pairs selected from a
random vector following the survival function H̄θ .
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Proposition 2. Let (X1, . . . , Xd) be an exponential random vector with survival function given in
Corollary 1. Then for any, 1 ≤ i 6= j ≤ d,

Corrθ(Xi, Xj) = θ(2− θ), θ ∈ [0, 1].

Proof. The components of (X1, . . . , Xd) are defined through Equation (7). Thus, one has
for any, 1 ≤ i 6= j ≤ d,

Xi = (1− θ)Zi + Jλ−1
i Z and Xj = (1− θ)Zj + Jλ−1

j Z.

Since Xi and Xj are exponentially distributed with parameters λi and λj,
var(Xi) = 1/λ2

i and var(Xj) = 1/λ2
j . Using the fact that, respectively, Zi, Zj, Z and J

are independent,

Corrθ(Xi, Xj) =
Cov

(
(1− θ)Zi + Jλ−1

i Z, (1− θ)Zj + Jλ−1
j Z

)
√

var(Xi)var(Xi)

= var(JZ)

= E(J2Z2)− (E(JZ))2

= θE(Z2)− θ2(E(Z))2

= θ(2− θ),

which ends the proof.

Note that the function θ 7→ Corrθ(Xi, Xj) = θ(2− θ) increases from [0, 1] to [0, 1]. This
implies that the range of Corrθ(Xi, Xj) is exactly [0, 1]. This is not surprising because the
family of survival functions derived in Corollary 1 reaches the Fréchet upper bound when
θ tends to 1−.

3. Properties of Ĉθ

This section provides some properties of the proposed survival copula Ĉθ .

3.1. Density Function of the Survival Copula Ĉθ

The next result states the expression of the density cθ of the survival copula Ĉθ . This
formula will be used to estimate the dependence parameter θ through the maximum
likelihood method.

Proposition 3. The density function of the survival copula Ĉθ is given by

cθ(u) =
1

(1− θ)d−1(1− θ − d)

(
1− d− θu

1−θ−d
1−θ

(d)

)( d

∏
j=1

uj

) θ
1−θ

.

Proof. The density function of cθ is the derivative of Ĉθ with respect to each of its arguments.
Therefore, one has

cθ(u) =
∂dĈ(u)

∂u1 . . . ∂ud
=

∂dĈ(u)
∂u(1) . . . ∂u(d)

.

To more easily handle the above derivatives, let us decompose Ĉθ as follows:

Ĉθ(u) = f (u(1), . . . , u(d)) + g(u(1), . . . , u(d−1)),



Mathematics 2023, 11, 414 7 of 15

where

g(u(1), . . . , u(d−1)) = u(1) −
d−1

∑
i=2

θ(1− θ)

(1− θ − i)(2− θ − i)

(
i−1

∏
j=1

u(j)

) 1
1−θ

u
2−θ−i

1−θ

(i) ,

and

f (u(1), . . . , u(d)) =
(1− θ)(1− d)

1− θ − d

(
d

∏
j=1

u(j)

) 1
1−θ

− θ(1− θ)

(1− θ − d)(2− θ − d)

(
d−1

∏
j=1

u(j)

) 1
1−θ

u
2−θ−d

1−θ

(d) .

Notice that the partial derivative of g(u(1), . . . , u(d−1)) with respect to u(d) vanishes.
Hence, standard calculations lead to

cθ(u) =
∂d f (u(1), . . . , u(d))

∂u(1) . . . ∂u(d)

=
1

(1− θ)d−1(1− θ − d)

(
1− d− θu

1−θ−d
1−θ

(d)

)( d

∏
j=1

uj

) θ
1−θ

,

which ends the proof.

3.2. Spearman’s Rho

Spearman’s rho is an important measure of dependence. It measures the strength
of association among the components of a random pair (X, Y). It is well-known that this
dependence measure is independent of the marginal distributions of X and Y, and it can be
written with regards to the copula of (X, Y). There exists several ways to extend the Spear-
man’s rho to a multivariate case. For instance, Schmid and Schmidt have studied in [21]
three multivariate extensions of the population version of Spearman’s rho. This section
provides an expression of Spearman’s rho related to the proposed survival copula Ĉθ . To
this end, we study the version of the multivariate Spearman’s rho defined by

ρd =
d + 1

2d − d− 1

{
2d
∫
[0,1]2

d

∏
i=1

uidĈθ(u)− 1

}

=
d + 1

2d − d− 1

{
2dE

(
d

∏
i=1

Vi

)
− 1

}
, (14)

where (V1, . . . , Vd) is a uniform random vector distributed as the survival copula Ĉθ .

Proposition 4. The expression of the above Spearman’s rho for the survival copula Ĉθ is given by

ρd =
(d + 1)(2d − (2− θ)d)− 2dθd

(2− θ)d(2d − d− 1)
. (15)
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Proof. Since the random vector (U1−θ
1 U J , . . . , U1−θ

d U J) follows the survival copula Ĉθ , then
from Equation (14),

ρd =
d + 1

2d − d− 1

{
2dE

(
d

∏
i=1

U1−θ
i U J

)
− 1

}

=
d + 1

2d − d− 1

{
2dE

(
UdJ

) d

∏
i=1

E
(

U1−θ
i

)
− 1

}
. (16)

Moreover,

E
(

UdJ
)
=

(1− θ)

d + 1
+ θ and E

(
U1−θ

i

)
=

1
2− θ

, i = 1, . . . , d. (17)

Hence, Equation (15) is immediately obtained from Equations (16) and (17).

It can be easily seen that for d = 2, the general formula of Spearman’s rho given in
Equation (15) reduces to Equation (5). In fact, for d = 2, one has

ρ2 =
(2 + 1)(22 − (2− θ)2)− 22θ × 2

(2− θ)2(22 − 2− 1)
=

θ(4− 3θ)

(2− θ)2 .

Similarly, for d = 3, and after some elementary calculations, one obtains

ρ3 =
(3 + 1)(23 − (2− θ)3)− 23θ × 3

(2− θ)3(23 − 3− 1)
=

θ[(3− θ)2 − 3]
(2− θ)3 .

3.3. Kendall’s Tau of Ĉθ

The multivariate Kendall’s tau is introduced in [14,17]. For the proposed survival
copula, this measure is defined by

τd =
2dE
(
Ĉθ(V1, . . . , Vd)

)
− 1

2d−1 − 1
,

where the uniform random vector (V1, . . . , Vd) is distributed as the survival copula Ĉθ .

Proposition 5. The Kendall’s tau of the survival copula Ĉθ is given by

τd =
2d−1d!

(2d−1 − 1)∏d
i=2(i + 1− θ)

+
(1− θ)2(d2 − 1)

(d− 1 + θ)(d + 1− θ)(2d−1 − 1)

− 2dd!
2d−1 − 1

d

∑
k=2

θ(1− θ)(2− θ)

2k(k− 1)!(1− θ − k)(2− θ − k)∏d
i=k(i + 1− θ)

(18)

− 1
2d−1 − 1

.

Proof. Since the uniform random vector (U1−θ
1 U J , . . . , U1−θ

d U J) is distributed as the sur-
vival copula Ĉθ , then

τd =
2dE
{

Ĉθ(U1−θ
1 U J , . . . , U1−θ

d U J)
}
− 1

2d−1 − 1
. (19)

The fact that the survival copula Ĉθ is exchangeable implies that

E
{

Ĉθ(U1−θ
1 U J , . . . , U1−θ

d U J)
}
= d!E

{
Ĉθ(U1−θ

1 U J , . . . , U1−θ
d U J)I[U1 < U2 < · · · < Ud]

}
, (20)
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where I[.] stands for the indicator function. From Equation (9), one observes that the
expectation, E

{
Ĉθ(U1−θ

1 U J , . . . , U1−θ
d U J)I[U1 < U2 < · · · < Ud]

}
, is reduced to the next

expression:

I1 +
(1− θ)(1− d)

1− θ − d
I2 −

d

∑
k=2

θ(1− θ)

(1− θ − k)(2− θ − k)
Ik, (21)

where

I1 = E
{

U1−θ
1 U JI[U1 < U2 < · · · < Ud]

}
,

I2 = E

{
U

dJ
1−θ

(
d

∏
j=1

Ui

)
I[U1 < U2 < · · · < Ud]

}
,

and for k = 2, . . . , d,

Ik = E

{
U JU2−θ−k

k

(
k−1

∏
j=1

Uj

)
I[U1 < U2 < · · · < Ud]

}
.

By virtue of Equations (19)–(21), one observes that

τd =
2dd!

2d−1 − 1
I1 +

(1− θ)(1− d)d!2d

(2d−1 − 1)(1− θ − d)
I2

−
d

∑
k=2

θ(1− θ)d!2d

(2d−1 − 1)(1− θ − k)(2− θ − k)
Ik −

1
2d−1 − 1

. (22)

The quantities Ik, k = 1, 2, . . . , d, involved in the above expression of τd can be calcu-
lated as follows:

I1 = E
(

U J
)

E
{

U1−θ
1 I[U1 < U2 < · · · < Ud]

}
=

2− θ

2

∫ 1

0

∫ ud

0
· · ·

∫ u3

0

∫ u2

0
u1−θ

1 du1du2 . . . dud−1dud

=
2− θ

2
× 1

(2− θ)(3− θ) · · · (d + 1− θ)

=
1

2 ∏d
i=2(i + 1− θ)

, (23)

I2 = E
{

U
dJ

1−θ

}
E

{(
d

∏
j=1

Ui

)
I[U1 < U2 < · · · < Ud]

}

=
(1− θ)(d + 1)

d + 1− θ

∫ 1

0

∫ ud

0
· · ·

∫ u3

0

∫ u2

0
u1u2 . . . ud−1uddu1du2 . . . dud−1dud (24)

=
(1− θ)(d + 1)

d + 1− θ
× 1

2dd!

=
(1− θ)(d + 1)
2d(d + 1− θ)d!

,



Mathematics 2023, 11, 414 10 of 15

and for k = 2, . . . , d,

Ik = E
{

U J
}

E

{
U2−θ−k

k

(
k−1

∏
j=1

Uj

)
I[U1 < U2 < · · · < Ud]

}

=
2− θ

2

∫ 1

0

∫ ud

0
· · ·

∫ u3

0

∫ u2

0
u2−θ−k

k uk−1 . . . u1du1du2 . . . dud−1dud

=
2− θ

2

∫ 1

0

∫ ud

0
· · ·

∫ uk+1

0
u2−θ−k

k

(∫ uk

0
· · ·

∫ u2

0
u1 . . . uk−1du1 . . . duk−1

)
duk

=
2− θ

2

∫ 1

0

∫ ud

0
· · ·

∫ uk+1

0
u2−θ−k

k
u2(k−1)

k
2k−1(k− 1)!

duk . . . dud−1dud (25)

=
2− θ

2k(k− 1)!

∫ 1

0

∫ ud

0
· · ·

∫ uk+1

0
uk−θ

k duk . . . dud−1dud

=
2− θ

2k(k− 1)!
× 1

(k + 1− θ)(k + 2− θ) · · · (d + 1− θ)

=
2− θ

2k(k− 1)!
× 1

∏d
i=k(i + 1− θ)

.

Hence, Expression (18) is deduced by inserting Equations (23)–(25) into Equation (22),
which ends the proof.

Hereafter, one shows that for d = 2, the general formula of Kendall’s tau described in
Equation (18) reduces to Equation (6). In fact, for d = 2, one see from Equation (18) that

τ2 =
4

(3− θ)
+

3(1− θ)2

(1 + θ)(3− θ)
− 2(1− θ)(2− θ)

(1 + θ)(3− θ)
− 1 =

2θ

(3− θ)
.

Remark that both ρd and τd derived in Propositions 4 and 5, respectively, are nonin-
creasing functions in terms of d. This behavior is illustrated in Figures 1 and 2. In fact,
Figure 1 presents the curves of ρ2, ρ3 and ρ4 in terms of θ ∈ [0, 1]. Since the calculations
show that τ2 = τ3, Figure 2 exposes the curves of τ2, τ4 and τ5 in terms of θ.

Figure 1. The curves of ρ2, ρ3 and ρ4 in terms of θ are indicated with colors red, blue and
green, respectively.
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Figure 2. The curves of τ2, τ4 and τ5 in terms of θ are indicated with colors blue, green and
purple, respectively.

4. Lower and Upper Tail Dependence

There are many ways to define the lower and upper tail dependence in the multivariate
setting. In this section, we adopt the definition of these parameters provided in [13].
Specifically, let (U1, . . . , Ud) be a uniform random vector with copula C. According to [13],
the multivariate lower and upper tail dependence associated with C are defined by

λL = lim
u→0+

P{U1 ≤ u, . . . , Ud ≤ u|Ud ≤ u} = lim
u→0+

C(u, . . . , u)
u

,

and

λU = lim
u→0+

P{U1 ≥ 1− u, . . . , Ud ≥ 1− u|Ud ≥ 1− u} = lim
u→0+

C̄(1− u, . . . , 1− u)
u

,

where C̄ denotes the survival function of (U1, . . . , Ud). Hereafter, we derive the expressions
of λU and λL of the proposed survival copula.

Proposition 6. The lower and upper tail dependence of the survival copula Ĉθ are expressed by

λL =
1− d− θ + (d− 1)(1− θ)

1− d− θ
and λU = 0.

Proof. From Equation (9), one has

Ĉθ(u, . . . , u)
u

= 1 +
(1− θ)(1− d)

1− θ − d
u

d−1+θ
1−θ − θ(1− θ)

d

∑
i=2

1
(1− θ − i)(2− θ − i)

. (26)
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Clearly, u
d−1+θ

1−θ tends to 0 as u tends to 0+ because d−1+θ
1−θ > 0. Therefore, the above

sum can be simplified as follows:

θ(1− θ)
d

∑
i=2

1
(1− θ − i)(2− θ − i)

= θ(1− θ)
d

∑
i=2

(
1

1− θ − i
− 1

2− θ − i

)
= θ(1− θ)

(
1

1− θ − d
+

1
θ

)
=

(1− d)(1− θ)

1− θ − d
. (27)

From Equations (26) and (27), one deduces that

λL = lim
u→0+

Ĉθ(u, . . . , u)
u

= 1− (1− d)(1− θ)

1− θ − d
=

1− d− θ + (d− 1)(1− θ)

1− d− θ
.

To establish λU , first note that

0 ≤
¯̂Cθ(1− u, . . . , 1− u)

u
≤

¯̂Cθ(1− u, 1− u)
u

(28)

It is well-known that for the Bivariate Raftery copula, λU = 0 (see Example 5.21
in [16]). This means that

lim
u→0+

¯̂Cθ(1− u, 1− u)
u

= 0. (29)

Combining Equations (28) and (29), one obtains

λU = lim
u→0+

¯̂Cθ(1− u, . . . , 1− u)
u

= 0.

Notice that for d = 2, the lower tail dependence provided in Proposition 6 reduces
to 2θ/(1 + θ), which is the expression of λL related to the bivariate Raftery copula (see
Example 5.21 in [16]). It is similar for the upper tail dependence.

5. Parameter Estimation and Simulation Study
5.1. Dependence Parameter Estimation

In this section, we discuss the estimation of the dependence parameter θ using the
maximum likelihood procedure; moreover, we will examine the finite-sample accuracy of
the estimates for several sample sizes. To this end, let ui = (ui1, . . . , uid), i = 1, . . . , n be a
sample that has been established earlier from the survival copula Ĉθ . The log-likelihood
function is given by

L(θ, u1, . . . , un) =
n

∑
i=1

ln{cθ(ui)}

= −n(d− 1) ln(1− θ)− n ln(1− θ − d)

+
n

∑
i=1

[
ln
(

1− d− θu
1−θ−d

1−θ

(id)

)
+

θ

1− θ
ln

(
d

∏
j=1

uij

)]
,

where u(id) = max{ui1, . . . , uid}, i = 1, . . . , n. The maximum likelihood estimator θ̂ of θ is
achieved by maximizing the above log-likelihood function in terms of θ. More specifically,

θ̂ = argmax
θ∈[0,1]

L(θ, u1, . . . , un). (30)
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This maximization cannot be explicitly solved. Because, there is no closed-form
solution of the next equation,

∂L(θ, u1, . . . , un)

∂θ
= 0.

To solve the problem shown in Equation (30), one adopts numerical maximization,
which provides efficient results, as shown by the following simulation study established
for d = 3.

5.2. Simulation Study

The tables below present the outcomes of the estimator θ̂, the bias and the mean
squared error (MSE) of θ. The following scenarios present, when investigated, simulations
that demonstrate that θ̂ provides a good estimator for the dependence parameter θ. Being
a comprehensible result, the effectiveness of our estimator θ̂ increases as n increases, and
the bias and MSE of θ̂ decrease. Hence, the estimator becomes narrower as the sample size
grows. In addition to the fact that we observed many more simulations, which are not
presented here, where the estimator θ̂ performed very well when n was getting larger.

This can be brought forward by looking at the behavior of the estimator θ̂ in three
different scenarios: weak dependence (ρ3 = 0.25, i.e., θ = 0.2880) in Table 1; moderate
dependence (ρ3 = 0.5, i.e., θ = 0.5155) in Table 2; and strong dependence (ρ3 = 0.75,
i.e., θ = 0.7162) in Table 3.

Table 1. Estimation for θ corresponding to weak dependence.

n θ̂ Bias(θ̂) MSE(θ̂)

θ = 0.2880

20 0.29270000 0 0.31850000 0.144625
50 0.29050000 0.00250000 0.00884725

100 0.27625000 −0.01175000 0.00208025
200 0.27600000 −0.01200000 0.00113675

Table 2. Estimation for θ corresponding to moderate dependence.

n θ̂ Bias(θ̂) MSE(θ̂)

θ = 0.5155

20 0.52640000 0.01090000 0.01062985
50 0.52080000 0.00530000 0.00396345

100 0.52000000 0.00450000 0.00294825
200 0.51680000 0.00130000 0.00274345

Table 3. Estimation for θ corresponding to strong dependence.

n θ̂ Bias(θ̂) MSE(θ̂)

θ = 0.7162

20 0.730600 0.0144000 0.003619
50 0.7216000 0.0054000 0.0022986

100 0.72000000 0.00380000 0.00166244
200 0.71675000 0.00055000 0.00041259

5.3. Real Data

An actual data set is utilized to assess the effectiveness of this extension. The data
set trees may be found in the datasets R package, as well as in [12]. The information was
gathered from a sample size of 31 black cherry trees from the forest in order to calculate the
volume of a tree based on its height and diameter. The data set includes 31 observations of
the variables. The variables are given as Diam, which represents the diameter in inches,
Height, which represents the height in feet, and Volume, which represents the volume
in cubic feet. Our goal is to fit a multivariate distribution describing the data by using
the proposed copula. This can be conducted in two steps. In the first step, we select the
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marginal distributions. Then, we look for the copula in the second step. These two steps
are achieved through goodness-of-fit procedures.

First step. Using the bootstrap technique based on the Kolmogorov–Smirnov (KS)
Test, Table 4 demonstrates that the variables Diam and Volume are distributed as a gamma
distribution and the Height follows the Weibull distribution. The maximum likelihood
estimates (MLEs) of the model parameters are given in Tables 5–7.

Table 4. Test statistics and p-value tests.

Test Statistic p-Value

Dim 0.10458 0.85217
Height 0.11079 0.80158
Volume 0.12117 0.70799

Table 5. MLEs of the model parameters for Dimension.

Dim

Gamma shape = 4.4408, scale = 1.5095, location = 6.5452

Table 6. MLEs of the model parameters for Height.

Height

Weibull shape = 6.2766, scale = 35.628, location = 42.914

Table 7. MLEs of the model parameters for Volume.

Volume

Gamma shape = 3.3689, scale = 8.9557, location = 0

Second step. Now, we evaluate the goodness-of-fit test (GOF) of the proposed cop-
ula Ĉθ based on Cramér-von Mises statistics using the bootstrap algorithm proposed
by [10]. The estimator of the dependence parameter of the proposed copula is obtained by
θ̂ = 0.6102115. The p-value of this GOF test is 0.813, which is much higher than 0.05. This
confirms that our proposed copula Ĉθ describes the dependency among the components of
the data set reasonably well. The next Table 8 summarizes this information.

Table 8. GOF test for Ĉθ .

Cramér-von Mises

Test statistic Sn = 0.4188187

p-value 0.818
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