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Abstract: The motion of solid objects or even fluids can be described using mathematics. Wind
movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phe-
nomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of
the most common techniques used for mathematical modelling are Ordinary Differential Equation
(ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However,
most of them require substantial amounts of data or an initial governing equation. Furthermore,
if a system increases its complexity, namely, if the number and relation between its components
increase, then the amount of data required and governing equations increase too. A graph is another
well-established concept that is widely used in numerous applications in modelling some phenomena.
It seldom requires data and closed form of relations. The advancement in the theory has led to the
development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS,
namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi
relations between components of a system once needed. The concept has produced some results
in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS
Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA
is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and
reliability. It successfully identified the two districts that were the main sources of the outbreak based
on their reproduction number, R0.

Keywords: graph theory; multidigraph; autocatalytic set; fuzzy autocatalytic set

MSC: 05C50; 15B57

1. Introduction

A system is said to be complex if it has emergent global dynamics that come from the
activities of its elements rather than being imposed by a central controller [1]. Emergent
behaviours are large-scale consequences of a system of locally interacting agents that are
frequently unexpected and difficult to predict [1]. Modelling a system is essential for under-
standing its behaviour. In addition, a complex system is always complicated to analyse and
requires advanced analysis using various mathematical methods [2]. It involves various
structures due to the multiple relationships between its components. These relationships
offer important information about the behaviour and dynamics of the system. Therefore, in
this research, we infused multidigraph as a special feature in our modelling to enhance
systems’ connectivity and be able to consider various relationships and information in
the system.

A multidigraph is a modelling technique that employs multiple edges to represent
the connection of its variables in a given system. In the graph, two or more edges share
the same tail and head vertices. Numerous researchers have used multigraph to model
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their problems, especially those involving multiple interrelationships systems. Some of
the systems are networks of education systems [3], multi-agent systems [4], vector-borne
diseases [5], and financial transactions [6]. Fedriani and Moyano [3] studied situations
related to education, particularly on the detection of levels of mathematical education
in which several variables were involved. Zhang and Chen [4] used multidigraph to
model the communication network of a multiagent for achieving bipartite consensus,
whereby their nodes or vertices correspond to the agents and the edges correspond to
the communication strength between agents. Iggidr et al. [5] studied the dynamics of a
multi-group model for vector-borne disease models by applying the connectivity graph
involving multiple edges. Furthermore, Lin et al. [6] proposed a novel graph embedding
method called Temporal Weighted Multidigraph Embedding (T-EDGE), which incorporates
transaction information from both time and amount of domains to capture the properties
of their dynamic transaction networks. Multidigraph has been successfully used to present
relationships between its components. The great capability provided by multidigraph
inspires us to integrate it with a well-known concept called autocatalytic set (ACS).

The concept of ACS was first introduced in the context of catalytically interacting
molecules [7,8]. In 1998, Jain and Krishna introduced the definition of autocatalytic set
in the form of a graph. The researchers described an ACS as a subgraph whose every
node has at least one incoming link from a node that belongs to the same subgraph [9].
Then fuzzy autocatalytic set (FACS) was developed by Ahmad et al. [10] by combining
fuzzy graph and ACS. A fuzzy graph is a graph that integrates fuzziness [11], while ACS is
another form of a graph that embeds the closed connection or catalytic features between
its vertices. Ahmad et al. [10] modelled a clinical waste incineration process using FACS.
Their system’s vertices represent chemical variables with significant roles throughout the
process and the edges reflect their chemical reactions. The FACS approach was able to
determine both the sequence of depleting variables and the system’s products. Since then,
FACS has been investigated further and has been used in several other systems, including
the pressurized water reactor (PWR) [12]. Ahmad et. al. [13] explored the mathematical
features of FACS further and introduced the coordinated transformation form of FACS. The
introduction of coordinated FACS has made it possible for Hassan et al. [14] to develop
FACS into a chemometrics method and later named it a chemometric fuzzy autocatalytic
set (c-FACS). The c-FACS was used by the researchers [14] for analysing a set of Fourier
Transform Infrared Red (FTIR) signal data of gelatine. Most of the applications of ACS and
FACS from previous researchers involve single-directed edge between a pair of vertices.

In this paper, a new form of ACS called the multidigraph autocatalytic set (MACS) is
introduced for such complex systems that require multiple edges and ‘closed’ interactions.
Multidigraph for ACS has never been reported in the literature. The integration of these
two mathematical structures is expected to be able to model any complex system that has
multiple components and interrelationships.

The research framework is depicted in Figure 1 below. The paper is organized as
follows. Section 2 provides basic concepts, definitions and backgrounds associated with this
study. Section 3 describes the MACS, some of its features, its algorithm, namely, MACSGA
and its implementation. The conclusion and future work of this study are outlined in
Section 4.
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Figure 1. The research framework of MACS.

2. Preliminaries
2.1. Autocatalytic Set

Kauffman [7] first proposed the concept of autocatalytic set (ACS) and coined its
potential role as a tool to model complex systems. Hordijk [15] then further pointed out
that it can be used as a possible modelling technique in chemistry, physics, biology, and
computer science. The later researchers aimed to understand the necessary conditions for
the catalytically of the system. The theory was further developed by Jain and Krishna [9]
who then introduced ACS in the form of a graph where the components (which could be
species, neurons, agents, etc.) are represented by nodes and their mutual interactions by
the links of the graph. The introduction of ACS as a graph has provided an important tool
to capture various aspects of a given network structure [16]. The formal definition of an
autocatalytic set is as follows.

Definition 1 ([9]). An autocatalytic set is a subgraph, each of whose vertices has at least one
incoming link from vertices belonging to the same subgraph.

Some examples of ACS with 1-cycle, 2-cycles, and 3-cycles are illustrated in Figure 2.
They are cyclic graphs because each graph has a closed path, i.e., there exists a path that
begins and ends at the same vertex.



Mathematics 2023, 11, 912 4 of 20
Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

 
(a) (b) (c) 

Figure 2. (a) 1-cycle ACS (b) 2-cycles ACS (c) 3-cycles ACS. 

A graph with 𝑣  nodes is completely specified by a 𝑣 × 𝑣  matrix, 𝐴(𝐺) = (𝑎 ) , 
which is called an adjacency matrix of the graph. 

Definition 2 ([17]). An adjacency matrix of a graph 𝐺 = 𝐺(𝑉, 𝐸) with 𝑣 nodes is a 𝑣 × 𝑣 ma-
trix, denoted by 𝐴(𝐺) = (𝑎 ), where 𝑎 = 1 if 𝐸 contains a directed link (𝑗, 𝑖) (arrow pointing 
from node 𝑗 to node 𝑖), and 𝑎 = 0 otherwise.  

Below are some examples of the adjacency matrices drawn from the examples of ACS 
illustrated in Figure 2. 

(1) 0 11 0  
0 1 00 0 11 0 0  

(a) (b) (c) 

Furthermore, the relationship between ACS and Perron–Frobenius eigenvalue, 𝜆  is 
given by the following Theorem 1. Eventhough the property has been casually mentioned 
in [18]; therefore, we take the pleasure to prove it here.  

Theorem 1. An ACS should consist of a closed walk. Therefore, the most dominant eigenvalue, 𝜆 , possess the following: 

i. 𝜆 ≥ 1 if a graph has an ACS.  
ii. 𝜆 = 0 if a graph has no ACS. 

Proof. Suppose G is an ACS with adjacence matrix 𝐶 = 𝑎 𝑎 ⋯ 𝑎⋮ ⋮ ⋮ ⋮𝑎 𝑎 ⋯ 𝑎 . Next, con-

sider a sequence a non-zero entries of 𝐶 , 𝑎 ≠ 0, such that 𝑎 𝑎 𝑎 … 𝑎 𝑎 . Notice 𝑎  indicates ∃ link from j to i,  𝑎  indicates ∃ link from i to s,  𝑎  indicates ∃ link from s to t,  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 𝑎  indicates ∃ link from l to p,  𝑎  indicates ∃ link from p to j. 
All the above links are connected, and the path starts and ends at the same vertex; 

thus, the sequence in the form of 𝑎 𝑎 𝑎 … 𝑎 𝑎  is a cycle or a closed walk. 
Now, since G is a cycle graph, the set of its eigenvalues (spectrum), 𝑆(𝐺), is given by 

[18], that is  𝑆(𝐺) = 𝜆 : 𝜆 = 2𝑐𝑜𝑠 , 𝑖 = 0,1,2, … , 𝑛 − 1  . 
Firstly,  𝑐𝑜𝑠 ≤ 1 for 𝑖 = 0,1,2, … , 𝑛 − 1.  
If that the case,  1 ≤ 2𝑐𝑜𝑠 ≤ 2 for 𝑖 = 0,1,2, … , 𝑛 − 1.  

Figure 2. (a) 1-cycle ACS (b) 2-cycles ACS (c) 3-cycles ACS.

A graph with v nodes is completely specified by a v× v matrix, A(G) =
(
aij
)
, which

is called an adjacency matrix of the graph.

Definition 2 ([17]). An adjacency matrix of a graph G = G(V, E) with v nodes is a v× v matrix,
denoted by A(G) =

(
aij
)
, where aij = 1 if E contains a directed link (j, i) (arrow pointing from

node j to node i), and aij = 0 otherwise.

Below are some examples of the adjacency matrices drawn from the examples of ACS
illustrated in Figure 2.

(1)
(

0 1
1 0

) 0 1 0
0 0 1
1 0 0


(a) (b) (c)

Furthermore, the relationship between ACS and Perron–Frobenius eigenvalue, λ1 is
given by the following Theorem 1. Eventhough the property has been casually mentioned
in [18]; therefore, we take the pleasure to prove it here.

Theorem 1. An ACS should consist of a closed walk. Therefore, the most dominant eigenvalue, λ1,
possess the following:

i. λ1 ≥ 1 if a graph has an ACS.
ii. λ1 = 0 if a graph has no ACS.

Proof. Suppose G is an ACS with adjacence matrix CG =

a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann

. Next,

consider a sequence a non-zero entries of CG, aαβ 6= 0, such that aijasiats . . . aplajp. Notice
aij indicates ∃ link from j to i,
asi indicates ∃ link from i to s,
ats indicates ∃ link from s to t,
...

...
...

...
...

...
...

...
...

...
...

apl indicates ∃ link from l to p,
ajp indicates ∃ link from p to j.
All the above links are connected, and the path starts and ends at the same vertex;

thus, the sequence in the form of aijasiats . . . aplajp is a cycle or a closed walk.
Now, since G is a cycle graph, the set of its eigenvalues (spectrum), S(G), is given

by [18], that is
S(G) =

{
λi : λi = 2cos

(
2πi
n

)
, i = 0, 1, 2, . . . , n− 1

}
.

Firstly,∣∣∣cos
(

2πi
n

)∣∣∣ ≤ 1 for i = 0, 1, 2, . . . , n− 1.
If that the case,
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1 ≤
∣∣∣2cos

(
2πi
n

)∣∣∣ ≤ 2 for i = 0, 1, 2, . . . , n− 1.
Now, if λ1 is assigned as the most dominant eigenvalue for i = 0, 1, 2, . . . , n − 1,

therefore,
λ1 ≥ 1.
In other words,

an ACS should consist of a closed walk, then λ1 ≥ 1 that is statement (i).
For statement (ii), takes the contrapositive of (i), namely,

if λ1 < 1, then the graph has no closed walk, hence is not an ACS.
In particular, λ1 = 0, then the graph has no closed walk, hence is not an ACS that is

the statement (ii) exactly. �

The concept of “fuzzy graph” was introduced by Rosenfeld [11] as a graph that
incorporates fuzziness. The new concept of a fuzzy graph has caught the attention of
many researchers, such as Sameena [19] who introduced a clustering method based on the
connectedness concept in a fuzzy graph. Figure 3 illustrates a fuzzy graph. The formal
definition of fuzzy graph and its adjacency matrix for the fuzzy graph are as follows.
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Figure 3. An example of a fuzzy graph.

Definition 3 ([11]). A fuzzy graph G = (σ, µ) is a pair of functions σ : S→ [0, 1] and
µ : S× S→ [0, 1] 3 ∀x, y ∈ S, µ(x, y) ≤ σ(x) ∧ σ(y) .

Definition 4 ([11]). An adjacency matrix, A of a fuzzy graph G = (V, σ, µ) is an n × n
matrix defined as A =

(
aij
)

such that aij = µ
(
vj, vi

)
.

The adjacency matrix for the fuzzy graph in Figure 3 is

A =


0 0 1 0

0.7 0 0 0
0 0.5 0 0
0 0 0.2 0


2.2. Fuzzy Autocatalytic Set

In 2010, Ahmad et al. [10] introduced a novel mathematical concept called fuzzy
autocatalytic set. The researchers incorporated fuzzy graph with an autocatalytic set to
form fuzzy autocatalytic set (FACS) to model a clinical waste incineration process, whereby
the edges of the graph have fuzzy membership values. The formal definition of FACS is as
follows.

Definition 5 ([10]). A fuzzy autocatalytic set is a subgraph each of whose nodes has at least one
incoming link with membership value µ(ei) ∈ (0, 1], ∀ei ∈ E.

The following theorem is trivial, and the proof can be referred in [10]. However, we
reinstate the proof here again for benefit of the readers.

Theorem 2 ([10]). Every crisp graph is a fuzzy graph.
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Proof. Suppose G(V, E) is a crisp graph. It can be considered as G(σ, µ) which is a pair
of function σ : V → {0, 1} and µ : V ×V → {0, 1} . It immediately fulfils the definition of
fuzzy graph given by Rosenfeld [11] as well as the definition given by Yeh and Bang [20]
since {0, 1} ⊂ [0, 1]. �

Theorem 3 ([10]). Every autocatalytic set is a fuzzy graph.

Theorem 4 ([10]). Every fuzzy autocatalytic set is also a fuzzy graph.

The FACS have been widely used to model various systems. For example, Ahmad
et al. [10] implemented FACS for a clinical waste incineration process. Clinical waste can
be incinerated to eliminate any dangerous components while also lowering the volume
of the waste and leaving just ash for disposal. Figure 4 showed a schematic diagram of a
district clinical waste incinerator facility in Malacca.
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The formal definition of FACS for a clinical waste incinerator system in Figure 4 is as
follows.

Definition 6 ([10]). Let ei ∈ E. The fuzzy head of ei denotes as h(ei) and the tail t(ei) are functions
of ei such that h : E→ [0, 1] and t : E→ [0, 1] for ei ∈ E. A fuzzy edge connectivity is a tuple
(t(ei), h(ei)) and the set of all fuzzy edge connectivity is denoted as C = {(t(ei), h(ei)) : ei ∈ E}.

The fuzzy tail value, t(ei) is equal to 1 since each variable was taken as a whole before
it evolved to other variables. However, the fuzzy head value h(ei) is taken in the interval of
(0, 1) due to the strength of connection or reaction with another variable. Therefore, the
membership value for fuzzy edge is defined as follows:

µ(ei) = min{t(ei), h(ei)}

The thickness represents the connectivity strength between vertices and the colour of
the edges denotes different ranges of membership values for the fuzzy edge connectivity
(see Figure 5).

Since every vertex of an ACS must have an incoming edge or link, FACS is guaranteed
to have a cycle. This feature is stated formally as Theorem 5.
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Theorem 5 ([10]). If G is a FACS with adjacency matrix

A(G) =

a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann


and for each α = 1, 2, . . . , n there exist β 6= α, β = 1, 2, . . . , α− 1, α + 1, . . . , n such that
aαβ 6= 0, then aij asi ats . . . apl ajp is a cycle.

Surprisingly, the FACS fulfils the Perron–Frobenius Theorem, in particular regarding
the Perron–Frobenius Eigenvalues (PFE). This property is stated formally as Theorem 6.

Theorem 6 ([10]). If a graph is a FACS, then λ1 > 0.

The FACS’s adjacency matrix is a square matrix, A =
[
aij
]
, with entries represent-

ing membership values ranging from 0 to 1. The procedure involves computing the
matrix’s Perron–Frobenius eigenvalues and eigenvectors. The smallest value of the Perron–
Frobenius eigenvector is identified and removed from the system. In other words, the
graph dynamic procedure removes the insignificant elements until 2× 2 matrix is obtained.

In addition, numerous researchers have studied the properties and different types of
FACS. Liew et al. [21] composed FACS into an omega algebra to generate a transformation
semigroup of it. Furthermore, Liew et al. [22] introduced FACS as a category and revealed
several types of morphisms. Ashaari et al. [12] modelled their secondary system of a
pressurized water reactor using FACS and showed the obtained model of the system was
better than the crisp graph model. Ahmad et al. [13] investigated the mathematical structure
of FACS that has led to the visualization of it in ordinary Euclidean space and named their
procedure coordinated FACS. Qasim and Ahmad [23] further introduced the normed space
for FACS of fuzzy graph Type-3. Since there is a possibility of a weak form of ACS whereby
it may contain a vertex with no incoming link, the condition has spurred Mamat et al. [24]
to define two new concepts of ACS, namely weak autocatalytic set (WACS) and fuzzy weak
autocatalytic set (FWACS). Many researchers have been drawn to use FACS in complex
systems ever since due to its unique feature. For example, Hassan et al. [14] created a
chemometric fuzzy autocatalytic set (c-FACS) for gelatine authentication purposes. The
c-FACS can identify the bovine, porcine, and fish gelatine signatures and their distinct
features. Ashaari et al. [25] used FACS to model their palm oil refining process. Their
FACS were able to identify the desired and undesired compounds during the process. The
researchers’ contributions to ACS and FACS are summarised in Table 1.
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Table 1. Development of autocatalytic set theory.

Researchers Year Contribution

Kauffman, 1971 [1] 1971 The concept of ACS as a possible tool to model the catalytic interaction of
chemical compounds is introduced.

Rosenfeld, 1975 [2] 1975 Fuzzy graph theory was defined.
Jain and Krishna, 1998 [3] 1998 Introduction of ACS as a graph.

Ahmad et al., 2010 [4] 2010 A fuzzy autocatalytic set (FACS) was introduced. Each edge of an ACS carries
its respective fuzzy membership value.

Liew and Ahmad, 2010 [5] 2010 Algebraic structure FACS (Ω-FACS) was generated.
Liew and Ahmad, 2011 [6] 2011 Category FACS was presented.

Ashaari et al., 2016 [7] 2016 Modelling Pressurized Water Reactor (PWR) system using a dynamic graph of
FACS.

Bakar et al., 2016 [8] 2016 Coordinated FACS is introduced.
Qasim and Ahmad, 2016 [9] 2016 Proved FACS as a normed space of fuzzy graph Type-3.

Mamat et al., 2019 [10] 2019 Weak autocatalytic set (WACS) and fuzzy weak autocatalytic set (FWACS)
were introduced.

Hassan et al., 2020 [11] 2020 Chemometrics FACS (c-FACS) was developed for gelatin authentication
purposes.

Ashaari et al., 2021 [12] 2021 Modelling of palm oil refining process using FACS.

3. Materials and Methods
3.1. Multidigraph Autocatalytic Set (MACS)

Multiple directed graphs or multidigraphs are widely available in the literature. It is
an ordinary graph but with multiple directed edges between any pair of its vertices. The
formal definition of a multidigraph is as follows:

Definition 7 ([26]). A multidigraph G is a nonempty set of vertices whereby every two of its
vertices are joined by a finite number of directed edges. The multidigraph G can be expressed as
G = (V, E) where V is a nonempty set of vertices and E is a set of directed edges between a pair of
its vertices in V.

An example of a multidigraph is shown in Figure 6.
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A new form of autocatalytic set, namely, multidigraph autocatalytic set (MACS) is
defined formally now.

Definition 8. A multidigraph autocatalytic set (MACS) is an autocatalytic set that allows multiple
directed edges between any pair of its vertices.

A MACS that contains an incoming link at each vertex is shown in Figure 7a. On the
other hand, a multidigraph that has no incoming link to at least one of its vertices is a
non-autocatalytic (see Figure 7b).
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Both multidigraphs in Figure 7 are not cyclic as well.

3.2. MACS’s Adjacency Matrix

The crucial thing about MACS is how one defines its adjacency matrix. It is not as
straightforward as ACS since the former allows multiple directed edges between any pair of
its vertices. Here, we adopt Barik and Sahoo [27] form of adjacency matrix for the purpose.

Definition 9. Let G(V, A) be a MACS with V = {1, 2, 3, . . . , n}. Let fij and bij denote the
number of directed edges from i to j and j to i, respectively. Then the complex adjacency matrix
AMACS(G) of G is a n× n matrix AMACS(G) =

[
aij
]

whose entries are defined as

aij =
fij + bij

2
+

fij − bij

2
i (1)

The MACS’s complex adjacency matrix is further discussed in the following examples
which are Example 1 and Example 2. Example 1 illustrates how one calculates an entry for
a MACS’s matrix. Example 2 demonstrates a MACS, its adjacency matrix, its eigenvalues
and its eigenvectors.

Example 1. Consider the multidigraph G in Figure 7a. The MACS’s adjacency matrix of G is
given as follows.

AMACS(G) =

 0 3
2 −

1
2 i 0

3
2 + 1

2 i 0 3
2 + 3

2 i
0 3

2 −
3
2 i 0


In particular, a12 and a23, are determined as follows.

a12 = f12+b12
2 + f12−b12

2 i
= 1+2

2 + 1−2
2 i

= 3
2 −

1
2 i

a23 = f23+b23
2 + f23−b23

2 i
= 3+0

2 + 3−0
2 i

= 3
2 + 3

2 i

Lemma 1. The adjacency matrix for a MACS is

AMACS(G) =
[
cij
]
=


α + βi f or ij
|eii| f or i = j
α− βi f or ji

whereby α, β ∈ R and |eii| is the number of self-loops.

Proof. Consider 2 arbitrary vertices of a MACS, vi and vj such that the number of directed
edges from vi to vj is fij = m, the number of directed edges from vj to vi is bij = n, the
number of self-loops at vi is |eii| and the number of self-loops at vj is

∣∣ejj
∣∣.
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cij =
fij+bij

2 +
fij−bij

2 i = m+n
2 + m−n

2 i = α + βi ,

cji =
f ji+bji

2 +
f ji−bji

2 i = n+m
2 + n−m

2 i = m+n
2 − m−n

2 i = α− βi ,

cii =
|eii |+|eii |

2 + |eii |−|eii |
2 i = 2|eii |

2 = |eii| and

cjj =
|ejj|+|ejj|

2 +
|ejj|−|ejj|

2 i =
2|ejj|

2 =
∣∣ejj
∣∣.

Hence,

AMACS(G) =
[
cij
]
=


α + βi f or ij
|eii| f or i = j
α− βi f or ji

whereby α, β ∈ R and |eii| is the number of its self-loops. �

MACS produces a complex adjacency matrix that contains the real and imaginary
parts.

Theorem 7. Let G(V, A) be a MACS, then, AMACS(G) is a Hermitian matrix.

Proof. Let G(V, A) be a MACS and AMACS(G) =

a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann

.

Now,

AMACS(G)

=

 a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann


However, by Lemma 1 then we have,

=



|e11|
α12 − β12i

α12 + β12i
|e22|

· · · α1(n−1) + β1(n−1)i
α2(n−1) + β2(n−1)i

α1n + β1ni
α2n + β2ni

...
. . .

...
α1(n−1) − β1(n−1)i

α1n − β1ni
α2(n−1) − β2(n−1)i

α2n − β2ni
· · ·

∣∣∣e(n−1)(n−1)

∣∣∣
α(n−1)n − β(n−1)ni

α(n−1)n + β(n−1)ni
|enn|


= (AMACS(G) )T .

Hence, AMACS(G) is a Hermitian matrix since AMACS(G) = (AMACS(G) )T . �

The following lemma and theorem associated with MACS are generated.

Lemma 2. Let AMACS(G) is a Hermitian matrix for graph G that is MACS, then

(AMACS(G) )T T
= AMACS(G)
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Proof. Let AMACS(G) = [a + bi]ij. Therefore, AMACS(G) = [a− bi]ij.
Then,
(AMACS(G) )T = [a + bi]ji and (AMACS(G) )T = [a− bi]ji.

Hence, (AMACS(G) )T T
= [a− bi]ij = AMACS(G). �

Even though MACS’s complex adjacency matrix is a complex matrix; however, it
yields real eigenvalues.

Theorem 8. Let G(V, E) be a MACS, then det(AMACS(G)) ∈ R.

Proof. Let G(V, E) be a MACS. Therefore, AMACS(G) = (AMACS(G) )T .
Look,
det(AMACS(G)) = det(AMACS(G) )T since AMACS(G) is a Hermitian matrix

= det
(
(AMACS(G) )T

)T
since detA = detAT

=det AMACS(G) by lemma 2.
It is only possible when only det(AMACS(G)) ∈ R. �

Thus, all eigenvalues obtained from AMACS(G) must be reals too.

Corollary 1. All eigenvalues of AMACS(G) are reals.

Proof. Let AMACS(G) = [a + bi]ij = [a]ij + i[b]ij.

Therefore, ρ(λ) = det(AMACS(G)− λI)
= det

(
[a− λI]ij + i[b]ij

)
since λI is a real matrix

= det(BMACS(G)) by letting BMACS(G) = [a− λI]ij + i[b]ij.
∈ R using Theorem 7.
Therefore, all eigenvalues of AMACS(G), namely, λ1, λ2,λ3, . . . , λn−1, λn are reals. �

Since AMACS(G) is Hermitian and R is a complete ordered field; therefore, all its
eigenvalues are reals and ordered as well, i.e., λ1 > λ2 > λ3 > . . . > λn−1 > λn,
where the index can be rearranged when necessary. This immediately implies ∃λ1 ∈
{λi : i = 1, 2, 3, . . . , n} 3 λ1 > λ2 > λ3 > . . . > λn−1 > λn.

Theorem 9. Re(AMACS(G))n > 0, ∀n ∈ N.

Proof. (by mathematical induction)
Consider the statement Pn : Re(AMACS(G))k > 0.
Let AMACS(G) = [a + bi]ij = [a]ij + i[b]ij.
(i) P1

(AMACS(G))1 =
(
[a]ij + i[b]ij

)1
= [a]ij + i[b]ij.

Re(AMACS(G)) = [a]ij > 0 since G is a MACS.
Therefore, P1 is true.
(ii) Pn =⇒ Pn+1
Assume Pn : Re(AMACS(G))n > 0 is true.
Now,
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(AMACS(G))n+1 =
(
[a]ij + i[b]ij

)n+1
=
(
[a]ij + i[b]ij

)(
[a]ij + i[b]ij

)
. . .
(
[a]ij + i[b]ij

)
︸ ︷︷ ︸

n times

=
(
[a]ij + i[b]ij

)[
Re(AMACS(G))n + Im(AMACS(G))n]

=
[
[a]ijRe(AMACS(G))n + [a]iji[c]ij + i[b]ijRe(AMACS(G))n − [b]ij[c]ij

]
by taking Im(AMACS(G))n = i[c]ij

=

[a]ijRe(AMACS(G))n − [b]ij[c]ij︸ ︷︷ ︸
Re(AMACS(G))n+1

+ i
(
[a]ij[c]ij + [b]ijRe(AMACS(G))n

)
︸ ︷︷ ︸

Im(AMACS(G))n+1


since Re(AMACS(G))n > 0 by assumption.

In other words,
(AMACS(G))n+1 = [s]ij + i[t]ij for some [s]ij, [t]ij ∈ M(R)n.
Using one of the properties of eigenspace, that is
Av = λv =⇒ Akv = λkv for k ∈ N

therefore
(AMACS(G))n+1v = [s]ijv + i[t]ijv = λn+1v > 0 =⇒ [s]ij = Re(AMACS(G))n+1 > 0
If that is the case, Pn+1 is also true.
Hence, Re(AMACS(G))n > 0, ∀n ∈ N. �

Example 2. An example of a MACS is shown in Figure 8 and followed by its respective complex
adjacency matrix.
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The complex adjacency matrix for G(V, A) is then determined such that

AMACS(G) =


0 4− i 2 0

4 + i 0 1 + i 0
2 1− i 0 3

2 −
i
2

0 0 3
2 + i

2 0

 =


0 4 2 0
4 0 1 0
2 1 0 3

2
0 0 3

2 0

+


0 −1 0 0
1 0 1 0
0 −1 0 − 1

2
0 0 1

2 0

i

The AMACS(G) is a complex adjacency matrix that contains its real and imaginary parts.
The eigenvalues of AMACS(G) are−4.3093,−1.9298, 0.9699, and 5.2692, and their correspond-
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ing eigenvectors are


−0.3752 + 0.6026i
0.4185− 0.5071i
0.2250− 0.0750i
−0.0870

,


0.1098 + 0.1345i
0.3127− 0.1002i
−0.6813 + 0.2271i

0.5884

,


−0.2282− 0.0197i
−0.2862 + 0.0006i
0.4615− 0.1538i

0.7931



and


0.6375− 0.0840i
0.6049 + 0.1097i
0.4150− 0.1383i

0.1313

 respectively.

3.3. MACS and Perron–Frobenius Theorem

The next stage is to establish MACS possessing the Perron–Frobenius Theorem as ACS
in [9] and FACS in [10]. This is crucial to adopt and modify the algorithm developed by
Ahmad et al. [10] so that it can be used for MACS as well without hesitation.

There are several definitions that are needed to be reinstated here. It starts with the
notion of dominant eigenvalue.

Definition 10 ([28]). We say λ1 is a dominant eigenvalue of a matrix A ∈ Cn,n if it is the largest
modulus in modulus eigenvalue, i.e., |λ1| > |λi|, i = 2, 3, . . . , n, so that |λ1| = ρ(A).

The relation between the dominant eigenvalue and the Perron–Frobenius theorem is
spelled in the following Definition 11.

Definition 11 ([29]). A matrix A ∈ Cn,n possesses the Perron–Frobenius property if its dominant
eigenvalue λ1 is positive and the corresponding eigenvector x(1) is nonnegative.

The matrix A ∈ Cn,n can also possess the strong Perron–Frobenius property if it
satisfies the three conditions stated in Definition 12.

Definition 12 ([29]). A matrix A ∈ Cn,n possesses the strong Perron–Frobenius property if
its dominant eigenvalue λ1 is positive, simple (λ1 > |λi|, i = 2, 3, . . . , n) and the corresponding
eigenvector x(1) is positive.

There are also complex Perron–Frobenius and strong complex Perron–Frobenius
properties defined in the following Definition 13 and Definition 14, respectively.

Definition 13 ([29]). A matrix A ∈ Cn,n possesses the complex Perron–Frobenius property if its
dominant eigenvalue λ1 is positive and its corresponding eigenvector x(1) can be chosen so that

Rex(1) ≥ 0. i.e., if x(1) =
[

x(1)1 x(1)2 . . . x(1)n

]T
, then Rex(1)j ≥ 0 for all j = 1, 2, . . . , n.

Definition 14 ([29]). A matrix A ∈ Cn,n possesses the strong complex Perron–Frobenius property
if its dominant eigenvalue λ1 is positive, simple, with λ1 > |λi|, i = 2, 3, . . . , n, and for the
corresponding eigenvector x(1), there holds: Rex(1) > 0, i.e., Rex(1)j > 0 for all j = 1, 2, . . . , n.

The next theorem is needed to establish the sufficient and necessary conditions for our
intended MACS algorithm.

Theorem 10 ([29]). For a matrix A ∈ Cn,n, the following properties are equivalent:

(i) Both matrices A and AH possess the strong Perron–Frobenius property.

(ii) There exists an integer k0 > 0 such that Re
(

Ak
)
> 0 for all k ≥ k0 and for the eigenvalues

of A hold |λ1| > |λi|, i = 2, 3, . . . , n.

All results obtained in the previous section are now ready to be assembled to prove
the final important theorem for MACS that is stated and proved formally.



Mathematics 2023, 11, 912 14 of 20

Theorem 11. A MACS G(V, E) with its adjacency matrix

AMACS(G) =
[
cij
]
=


α + βi f or ij
|eii| f or i = j
α− βi f or ji

(2)

with α, β ∈ R and |eii| is the number of self-loops, then AMACS(G) possesses the strong
Perron–Frobenius property.

Proof. Let G(V, E) be a MACS with an adjacency matrix as given in (2).
Theorem 8 guarantees AMACS(G) is a Hermitian matrix. All its eigenvalues of AMACS(G),

namely, λ1, λ2, λ3, . . . , λn−1, λn are reals by Corollary 1, i.e., λ1, λ2, λ3, . . . , λn−1, λn ∈ R.
Since AMACS(G) is Hermitian and R is a complete ordered field; therefore, all its

eigenvalues are reals and ordered as well, i.e., λ1 > λ2 > λ3 > . . . > λn−1 > λn, where the
index can be rearranged when necessary.

(i) This immediately implies ∃λ1 ∈ {λi : i = 1, 2, 3, . . . , n} 3 λ1 > λ2 > λ3 > . . . >
λn−1 > λn.

(ii) Furthermore, Re(AMACS(G))n > 0, ∀n ∈ N by Theorem 9.

However, then, AMACS(G) = (AMACS(G))H by Lemma 2.
The above two items are the necessary and sufficient conditions for AMACS(G) =

(AMACS(G))H to be equivalent to the strong complex Perron–Frobenius property guaran-
teed by Theorem 10. �

3.4. MACS Graph Algorithm (MACSGA)

A new algorithm involving a graph of MACS is constructed in this section. The MACS
Graph Algorithm (MACSGA) is developed to assist the modelling procedure for MACS. In
general, a MACS’s adjacency matrix, AMACS(G) is the input of this algorithm. The output
is the 2× 2 matrix. The MACSGSA algorithm is outlined as follows (Algorithm 1).

3.5. MACS’s Implementation and Results

A published system with its respective data by Iggidr et al. [30] is used to show
the MACS’s capability, reliability, and efficiency. The researchers studied the effect of
human movements on the dynamics of a vector-borne disease. They proposed that the
migration of human hosts can have a significant impact on the epidemiological dynamics
in locations where there are extensive movements such as large urban transit networks
which enable extensive host movements. Therefore, hosts can become sick or infect others
in areas that are geographically remote from where they normally reside, and the pattern of
movement should be a key factor in the dynamics of the disease. Iggidr et al. [30] applied
the Bailey–Dietz model that presents a consistent derivation of a multigroup model for
urban environments. The model also identified which district favours the endemic based
on its basic reproduction number, R0. Two equilibrium-related intervals are identified: (i) if
R0 ≤ 1, then it is a disease-free equilibrium (DFE), and (ii) when R0 > 1, it is an endemic
equilibrium. The identified reproduction numbers, R0 for eight districts in the city of Rio
de Janeiro, Brazil, are listed in Table 2.

However, in this work, the dynamic of the disease is analysed using the developed
MACS algorithm and its graph G is shown in Figure 9. The vertices represent the identified
districts, namely, Centro (1), Sul (2), Norte (3), Oeste (4), Baixada (5), Niteroi (6), Mage (7),
and Itaguai (8). On the other hand, the edges represent the individuals’ movement from
one district to another district.
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Algorithm 1: The MACS graph algorithm (MACSGA)

1.
Identify a given system as a multidigraph autocatalytic set, G(V, E) and determine its set of
vertices V = {v1, v2, v3, . . . , vn} for i = 1, 2, 3, . . . , n and its set of multiple directed edges,
E = {e1, e2, e3, . . . , em} for j = 1, 2, 3, . . . , m.

2.
Determine the complex adjacency matrix AMACS(G) of the G(V, E) as defined by (1) in
Definition 9.

3.

Calculate the dynamic concentration for each variable,
x′i = ∑n

j=1 aijxj − xi ∑n
j,k=1 aijxj.

Variable xi is evolved with time t. The variable xi is large enough to get close to the
Perron–Frobenius eigenvector, X as denoted by Xi ≡ xi(t).
(At this stage AMACS(G) possesses the strong complex Perron–Frobenius property
guaranteed by Theorem 11).

4.

Determine the lowest value of Xi for Perron–Frobenius eigenvector (PFE) from;

V =

{
i ∈ A

∣∣∣∣Xi = min
j∈A

Xj, A = {1, 2, 3, . . . , n}
}

.

The vertex that has the lowest PFE value is removed from graph G. Hence, the resultant
graph contains n− 1 vertices.

5. Determine the new adjacency matrix for the updated graph G.

6.
Repeat Step 4 and Step 5 for the new multidigraph G until a matrix with dimension 2× 2 is
produced.

Table 2. The R0 readings for the eight districts in Rio.

District Basic Reproduction Number

Centro 0.948
Sul 0.760

Norte 0.681
Oeste 0.487

Baixada 0.616
Niteroi 1.149
Mage 2.618

Itaguaii 1.991
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The obtained adjacency matrix of the graph is determined.

AMACS(G) =



1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 1 0 1 0 1 0
1 0 0 1 1 0 0 1


The developed algorithm MACSGA is coded using MATLAB version R2022A. The

coding was then executed on a MacBook Air using Macintosh HD macOS 12.5. The total
computing time was recorded to be 161.803 s. Figure 10 illustrates the updated stages of
the MACS graph G. Initially, it consists of eight vertices, which are reduced to two vertices
at the end.
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The dynamicity of the MACS graph is simulated by MACSGA (see Table 3) whereby
the lowest value for PFE is determined, hence its respective vertex of MACS is removed.
The two surviving vertices that represent the two districts (Mage and Itaguai) of Rio
indicated the main sources of the outbreak.
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Table 3. The dynamic of MACS graph.

Parameter PFE Description

Centro
Sul

Norte
Oeste

Baixada
Niteroi
Mage

Itaguai





0.4302
0.2983
0.3738
0.3738
0.3738
0.2792
0.3738
0.2983



Niteroi is removed.



Centro
Sul

Norte
Oeste

Baixada
Mage

Itaguai





0.3999
0.3165
0.3999
0.3999
0.3999
0.3999
0.3165


Sul is removed.


Centro
Norte
Oeste

Baixada
Mage

Itaguai




0.4082
0.4082
0.4082
0.4082
0.4082
0.4082


Oeste is removed.


Centro
Norte

Baixada
Mage

Itaguai




0.4000
0.4000
0.4000
0.6000
0.4000


Centro is removed.


Norte

Baixada
Mage

Itaguai




0.3780
0.3780
0.7559
0.3780

 Norte is removed

Baixada
Mage

Itaguai

 0
0
1

 Baixada is removed

(
Mage

Itaguai

) Mage and Itaguai are identified as the two culprit districts that
caused the outbreak.

The obtained results are compared with the Bailey-Dietz model used by Iggidr
et al. [30] (see Table 4).

Table 4. Comparison of obtained computed results using MACSGA against published results by
Iggidr et al. [30].

MACSGA Bailey-Dietz Model

District that caused the endemic. Mage, Itaguai Mage, R0 = 2.618
Itaguai, R0 = 1.991

Our obtained results using MACSGA concur with the published results by Iggidr
et al. [30]. The later researchers reported that Mage and Itaguai had the two highest values
of the basic reproduction number, R0 = 2.618 and R0 = 1.991, respectively.

4. Conclusions and Future Work

This paper has introduced a new form of autocatalytic set, namely, multidigraph
autocatalytic set (MACS). The MACS is defined and some of its mathematical structures
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have been investigated. A new algorithm named MACSGA has been developed and
implemented on the system posted by Iggidr et al. [30]. The effectiveness of MACS has
been established since the obtained results using MACSGA concur with the researchers’
result. The advantages of MACS as a modelling tool are shown, namely,

• It can model complex systems that possess multi parameters and relations.
• It requires less data, mainly for verification only.
• It is efficient and requires less computing time.
• No governing equation is needed.
• It can be used for any types of modelling, static or dynamic.

The contributions of this work can be summarized as follows.

â Most of the recent studies on complex systems have focused on what has come to be
termed “connectivity”[31]. Connectivity is a description of the relationship between
distinct parameters in the system [32]. The more complicated the system, the more
complex the level of connectedness within it for example number and relation between
its components increase, then the amount of data required and governing equations
increase too. The MACS is able to simplify the connectivity in the system and act as a
network representation of a complex system to gain a better understanding of how a
system function and evolve.

â Emergent behaviour is a crucial concept in complex system theory. It is the behaviour
of a system that is determined by its interactions rather than its individual pieces. As
a result, examining a system’s separate parts cannot anticipate emergent behaviour.
It can only be predicted, managed, or controlled if the pieces and their relationships
are understood. It is important to identify the relevant structure of the system and
its most important parts. In any complex problem, if we cannot model the system
accurately, we cannot solve the problem. The MACS can depict the structure of a
complicated system, especially when the system has significant interrelationships.

â For example, implement MACS in social network analysis. The discovery and identifi-
cation of influencers and decision-makers are two of the most important jobs in social
network analysis. Ensuring the continued engagement of these influencers can lead
to increased overall network engagement or specific communities built around such
people. MACS can be used for identifying the most influential users and identifying
relationships between specific components. While data becomes more complex and
interconnected, the application of MACS is essential for timely and effective data
processing and analysis.

Finally, the MACS offers a new modelling technique for complex system whereby
no governing equation is required to start with. It only demands system identification in
form of nodes and edges initially. However, in the future, the MACS can be incorporated
with fuzziness via fuzzy membership values of its relations to form Fuzzy Multiple Auto-
catalytic Set (FMACS). It can be used further to model system with some missing crucial
information. Needless to say, the MACS is possible to be coupled with other conventional
modelling techniques. The capability of MACS for modelling other complex systems and
its possibilities are endless.
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