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Abstract - The creation of an efficient strategy to help decrease the problem of manual effort expended by software developers 

when labelling software test cases has been the focus of many academic researchers. To ensure that all features and 

applications are fully tested, it is important to have a framework that can effectively match the feature labels and test cases in 

the correct sequence. Irrelevant labeling of test cases can result in inaccuracy, so avoiding it is a key objective of this paper. 

As a result, the primary goal of this work is to extend a previous method for doing automatic directory categorization of test 

cases based on their test case description using the K-nearest-neighbor classifier, Logistic regression, Decision tree and MLP. 

Bag-of-word (Bow) is used as a vector representation and fits all classifiers. The experimental results reveal that using KNN-

BOW and MLP have a higher score than Logistic regression and Decision tree since it outperformed and obtained 77% 

accuracy vs. 71% for KNN-TF-IDF. Meanwhile, we extended using KNN-BOW and MLP-BOW have scored a good result 

compared to Logistic regression and Decision tree, as it outperformed and achieved 77% accuracy in comparison with the 

67% and 65% that Logistic regression and Decision tree achieved, respectively. As a result, KNN-BOW and MLP-BOW are 

excellent choices for directory categorization based on test case descriptions. The suggested strategy contributes to the 

domain by ensuring that machine learning algorithms can easily directly classify test-case descriptions. 

Keywords - Test cases, K nearest neighbors, Bag of words, Logistic regression, Decision tree. 

1. Introduction  
Software testing is the primary factor in effectively 

designing software and ensuring its accuracy about the 

operation or functionality that is intended to be done under 

various input variables [1]. There are several ways or tactics 

for doing software testing. Black box and white box testing 

are the most popular. Other categorizations of software 

testing methodologies may be made based on how the testing 

is performed. Classification test scenarios, according to this, 

can be either manual or automated [2]. 

Manual testing involves manually constructing test cases 

and is more susceptible to human mistakes, whereas 

automation testing involves capturing the different test cases 

based on actions the end user has to take. In contrast, rather 

than wasting time, it is important to use automated testing 

when developing test cases to increase efficiency. 

Furthermore, manual testing is unsuitable for heavy software 

that has a lot of components, such as that used by firms that 

manufacture Android phones [3]. The reason is that Android 

is a multi-layered software platform comprised of apps, 

drivers, components, a kernel and many more. Obviously, 

this software is complicated, and Android makers demand 

extensive testing to ensure that the system is performing as 

planned and meets the organization's hardware and software 

requirements [4]. 

Meanwhile, in the field of software testing, the 

management and organization of test cases play a crucial role 

in ensuring the quality and reliability of software systems. As 

software projects grow in size and complexity, the number of 

test cases also increases exponentially, making manual 

organization and classification a challenging and time-

consuming task [5]. To address this issue, researchers have 

turned to machine learning algorithms to automate the 

process of directory classification for test cases. By 

leveraging the power of machine learning, it becomes 

possible to categorize test cases automatically, thus 

improving efficiency and reducing human effort [6]. 

Machine learning algorithms offer the capability to learn 

patterns and relationships from labelled datasets, enabling the 

development of accurate classification models. These models 

can be trained to classify test cases into different directories 

https://www.internationaljournalssrg.org/
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based on their features and attributes. Several studies have 

explored the application of machine learning algorithms in 

this context, aiming to enhance the effectiveness and 

scalability of test case management [7]. One commonly 

employed approach in automatic directory classification is 

feature extraction. Test cases can be represented using 

various features, such as keywords, textual descriptions, or 

metadata. These features serve as input to machine learning 

models, which learn to associate them with specific 

directories based on the provided labels. Researchers have 

investigated different feature extraction techniques, including 

natural language processing methods, to capture the semantic 

meaning and context of test cases [9]. 

Numerous solutions have been proposed by scholars to 

address the problem, including manual tagging or feature 

name assignment and even the implementation of an 

application lifecycle management system. However, these 

recommended procedures continue to result in inaccurately 

labelled test cases. Therefore, the primary objective of this 

study is to automate the classification of test cases based on 

their information, with the aim of reducing the time and 

effort required by software developers to classify them 

manually. The ultimate goal is to test and validate all features 

and applications thoroughly. A robust framework capable of 

matching feature labels with their respective test cases in 

chronological order is essential to accomplish this. The 

proposed technique will determine the appropriate directory 

for each test case based on the component to which it 

belongs, ensuring that all test cases are correctly categorized. 

For the organization of the paper, it is divided into five 

parts. The background of test cases and topic classification is 

in the first two sections. The third part outlines how the 

suggested approach will be applied to our model. Section 

fourth contains the results of the suggested framework and 

analysis. Finally, the conclusion are presented in the fifth 

part. 

 

2. Related Work 
As software test-case classification is a vital area of 

research, scholars have proposed numerous methods, 

including manual tagging, application-lifecycle management, 

and automated topic classification. Each approach has its 

own advantages and disadvantages in terms of the time 

required and the frequency of incorrect classification. For 

instance, at a particular Android smartphone manufacturer, 

tests are tagged manually, and categories and feature names 

are specified. It is essential that these features are accurately 

identified; otherwise, the test cases will fail, and the 

developer will be unable to determine which features and 

applications have been tested. Another proposed solution to 

this problem is application lifecycle management (ALM). 

ALM is a method used to manage a predetermined process 

that supports software development from the beginning until 

the end, including the release of the product and post-release 

support. This process may involve defect-tracking, repair, or 

testing, and it should be linked through a web interface or a 

customized window application form [10]. 

On another note, recent years have seen a significant 

amount of research being published on autonomous test case 

development methods [2]. This has led to the classification 

of test case creation into three types: random-based and 

requirement-based, program-based, feature extraction, 

machine learning and test case maintenance and evolution. 

2.1. Requirement-Based 

The process of creating test cases based on software 

requirements is commonly known as specification test-case 

generation, as the test case itself can be a semi-formal or 

formal definition of the data or function needed for the 

program being tested [3]. Various software requirement 

formalisms, including logic programs, finite-state machines, 

and first-order logic, can drive formal test case 

specifications. Alternatively, the diagram notation of 

software systems may be utilized for semi-formal 

specifications. The structural requirements for the test case 

benchmark are often presented in a hierarchical form, as 

described in the dataflow diagram. These approaches, along 

with others, can help ensure that the test cases effectively 

meet the requirements of the software being tested [11]. 

2.2. Random-Based 

Random-based test cases refer to a subset of possibility 

models created during software processes. This method 

involves selecting test cases from the software's input space 

using random sampling based on a specified probabilistic 

distribution. This approach is often used for simple random 

testing by applying prior software operations at random. 

However, a more complex random testing method involves 

using a stochastic model. Sophisticated models like Markov 

Chains and Bayesian Networks have been utilized to create 

more advanced testing methods. These advanced techniques 

have been used for flaw identification, reliability testing, and 

functional validation and verification. By using probabilistic 

models and random sampling, these techniques can help 

ensure that the software functions as intended, even under 

varying conditions [12]. 

2.3. Program-Based 

Program-based test cases involve analysing the source 

code of the program being tested without considering its 

execution. This approach is classified as a static-test creation 

or generation technique since it does not consider the 

program's behaviour during execution. Additionally, 

program-based testing is route-oriented, meaning it always 

accepts a specific way as input when creating test cases. This 

method is also referred to as a targeted strategy because it is 

focused on identifying which way leads to the execution of 

the statement. While program-based testing may not account 

for the program's dynamic behaviour during execution, it is 
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still a useful method for ensuring that the source code is 

correct and that it meets the intended goals. This testing 

approach can help identify potential issues with the 

program's logic or syntax and can improve its overall quality 

[13]. 

2.4. Feature Extraction 

Feature extraction is a critical step in the automatic 

directory classification of test cases. It involves transforming 

the raw input data (test cases) into a set of meaningful 

features that can be used as input for machine learning 

algorithms. Various feature extraction techniques have been 

explored in the literature to capture the relevant information 

from test cases and improve the accuracy of classification 

models [13]. Natural language processing (NLP) techniques 

have been widely applied in test case classification to extract 

features from textual labels. These techniques leverage 

linguistic and statistical methods to analyze the textual 

content of test cases and derive meaningful representations. 

For example, Bag-of-Words (BoW) representation is 

commonly used, where each test case is represented as a 

vector of word frequencies. The presence or absence of 

specific keywords or phrases can also be used as binary 

features [14].  

In addition to BoW, more advanced NLP techniques 

have been employed for feature extraction. Term Frequency-

Inverse Document Frequency (TF-IDF) is a technique that 

weights words based on their importance in a document 

collection [15]. This approach considers not only the 

frequency of words but also their rarity across the entire 

corpus. It helps capture the discriminatory power of words 

and enhances the discriminative features used for 

classification. 

Another approach is word embedding, representing 

words as dense vectors in a continuous space. Word2Vec and 

GloVe are popular algorithms for learning word embeddings. 

These techniques capture semantic relationships between 

words and enable the comparison of word meanings based on 

their vector representations. Test cases can be represented by 

averaging or concatenating the word embeddings of the 

words present in the textual descriptions [16]. 

In addition to NLP techniques, metadata associated with 

test cases can also serve as valuable features. Metadata can 

include information such as the test case author, creation 

date, associated requirements, and execution status. This 

metadata can provide insights into the characteristics and 

context of test cases, which can be leveraged for 

classification [17]. 
 

 

2.5. Machine Learning 

Machine learning methods are critical components of 

test case automated directory categorization systems. These 

approaches use labelled datasets to train models that can 

predict the correct directory for unknown test situations. For 

this job, many machine learning techniques have been 

investigated in the literature, with the goal of improving the 

accuracy and efficiency of categorization models [18]. 

For test case categorization, decision trees are prominent 

techniques. Based on the characteristics retrieved from test 

cases, they build a decision tree-like model. Each internal 

node in the tree reflects a feature-based judgement, while 

each leaf node corresponds to a directory name. Decision 

trees are interpretable and can handle both categorical and 

continuous variables, making them valuable for 

understanding the classification process [19, 23]. 

Random forests are an ensemble learning approach for 

improving classification accuracy by combining numerous 

decision trees. Each tree is trained using a randomly selected 

subset of the training data and features. Individual tree 

projections are then integrated to determine the final 

categorization choice. Random forests are well-known for 

their resilience, capacity to handle large feature spaces and 

resistance to overfitting [20]. 

Support Vector Machines (SVMs) are binary classifiers 

that seek the best hyperplane for separating data points from 

distinct classes with the least amount of overlap. SVMs 

translate the input characteristics into a higher-dimensional 

space to identify a linear or non-linear decision boundary. 

They have been extensively used in a variety of classification 

tasks, including test case classification, and are capable of 

handling both linear and non-linear correlations between data 

and classes [21]. 

In recent years, neural networks, especially deep 

learning models, have received a lot of attention for their 

capacity to learn complicated patterns and correlations. 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) are extensively employed 

architectures in test case classification. CNNs thrive at 

collecting geographical and local characteristics in test case 

data, while RNNs excel at capturing temporal relationships 

in sequential test case data [22]. 

 

Researchers have also investigated strategies like 

hyperparameter tweaking, feature selection, and ensemble 

learning to increase the performance of machine learning 

systems. The process of optimising the parameters of 

machine learning algorithms to identify the optimal 

configuration for a particular dataset is known as 

hyperparameter tuning. The goal of feature selection 

approaches is to discover the most important characteristics 

for classification, hence lowering the dimensionality of the 

input data and increasing the model's efficiency. Ensemble 

learning leverages the variety and capabilities of individual 

models by combining numerous models to produce collective 
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predictions [24]. 

2.6. Test Case Maintenance and Evolution 

Automatic directory classification of test cases not only 

aids in organizing and managing test cases efficiently but 

also supports test case maintenance and evolution throughout 

the software development lifecycle. As software systems 

evolve and requirements change, the classification of test 

cases needs to be updated to reflect these modifications. 

When changes are made to the directories or new directories 

are introduced, the classification models need to be adapted 

to ensure the accurate categorization of test cases. Automatic 

directory classification simplifies this process by 

automatically reflecting changes in the classification models. 

As new test cases are added, the models can predict their 

appropriate directories based on the updated classification 

rules [25, 26]. 

This capability of automatic directory classification 

greatly benefits test case maintenance. Manual 

reclassification of test cases can be a time-consuming and 

error-prone task. However, with automatic classification, the 

effort required to maintain and update test case classification 

is significantly reduced, allowing testers and developers to 

focus on other critical activities [18]. 

In addition, the evolution of test cases can be better 

managed through automatic directory classification. As test 

cases are executed, and their results are recorded, the 

classification models can be updated to incorporate this 

feedback. For example, if a test case consistently fails, the 

model can learn to associate it with directories related to 

defect areas, facilitating targeted debugging and maintenance 

efforts [27]. 

By automating the process of directory classification, the 

reusability of test cases is also enhanced. Test cases 

categorized into directories based on their functionalities or 

characteristics can be efficiently retrieved and reused for 

specific testing scenarios. This reduces redundant test case 

creation and promotes efficient utilization of existing test 

assets. Moreover, automatic directory classification 

contributes to the traceability and organization of test cases. 

By accurately categorizing test cases, it becomes easier to 

track their coverage of specific requirements, modules, or 

functionalities. This traceability information can be 

leveraged for test case prioritization, impact analysis, and 

coverage assessment [28]. 

Researchers have proposed using feature labelling as a 

method to tackle the problem of accurately identifying and 

categorizing software features. However, this approach 

presents challenges as it is difficult to come up with suitable 

characteristics that are unique to each feature and team. 

Additionally, each label must be assigned manually, which 

requires domain knowledge and extensive investigation. 

Consequently, the process of feature labelling can be time-

consuming, similar to other labelling activities. Despite these 

challenges, feature labelling remains an important method to 

help organize and manage software features, which can 

enhance software development practices. 

The proposed method involves summarizing test case 

descriptions, but assigning feature labels manually poses a 

risk of human error. Instead, the language used in the test 

case description should be analysed to determine the 

appropriate category for each feature label. The test case 

descriptions used in this approach were collected from 

Android smartphone providers, and this data was used to 

develop a text-based directory classification system. This 

approach is based on the concept of application lifecycle 

management and builds upon the work of previous 

researchers who have developed the concept of topic 

categorization. The goal is to expand the areas of feature 

labelling that were previously limited to test case 

descriptions. By doing so, the proposed method can help 

improve the accuracy and efficiency of test case 

management, leading to better software development 

practices. 
 

3. Methodology  
The primary objective of this study is to propose a 

method for automatically classifying test cases based on their 

descriptions. To achieve this goal, the researchers have 

developed various research techniques that align with their 

objectives. The study presents a detailed methodology that 

outlines the different approaches that can be used to attain 

the system's intended purpose. By thoroughly examining the 

methods used, the study aims to provide insights that can 

inform future research in the area of test case classification. 
 

3.1. Research Framework 

The focus of this approach is on test case descriptions, 

which are divided into two parts for analysis: training and 

testing. The raw data was split in half, with 50% being 

allocated to each. We tried using a loop for the data split but 

found duplicate data, so we followed previous studies and 

divided the dataset into two subsets. We then worked on 

vectorizing the training text so that it could be turned into a 

bag of words. In order to eliminate certain words and terms, 

keywords with numeric characters and those appearing 

(<5%) were removed. A flowchart of the entire process was 

provided for clarity. 
 

The suggested architecture is represented in Figure 1, 

which shows how each phase is connected and the way in 

which data is sourced from ALMS to score predicted. 

Meanwhile, it is important to note that preliminary steps 

need to be taken before we train the models, which are 

discussed before training the model: 

• Transforming Data 

• Cleaning Data 

• Steaming and also Lemmatizing 
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• Doing Vectorization 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1 Proposed framework 

 

3.1.1. Transformation Data  

The first thing we did was alter the data. Because 

structured data most likely increases data quality, it was 

required. Moreover, the modified data will make fitting the 

model easier. Here is the original dataset Figure 2 before data 

modification. 

 

 
Fig. 2 Actual dataset 

The second image in the research paper shows the actual 

dataset with test case descriptions separated into columns. 

This format makes it difficult to match the data with the 

training model. Therefore, data transformation is needed to 

make test case descriptions in a manner that can be trained to 

models, which directly impacts its quality. Figure 3 

demonstrates the data after undergoing the transformation 

process. 

 
Fig. 3 Data transformed 

 

3.1.2. Cleaning Data  

To ensure the success of the proposed model, the test 

case descriptions were cleaned up by removing digits, 

punctuation, and capitalization. The data cleaning process is 

crucial to the project's success since it removes any irrelevant 

information, making the data more useful for analysis. The 

author emphasizes the importance of having clean data and 

takes extra precautions to remove unnecessary information, 

such as number phrases or alphanumeric letters. 

 

3.1.3. Steaming and Lemmatizing 

The primary objective of stemming is to identify the 

essential base root of a word of the description, while 
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lemmatizing aims to decrease inflected base words to their 

base form. Prior to transforming the words into vectors, it is 

necessary to extract the base form of each verb, which is the 

root word. Figure four displays the initial form of the test 

case description, and the subsequent images illustrate how it 

was transformed through lemmatization. 

The context of this passage appears to be focused on the 

pre-processing of text data for natural language processing. 

The author describes the steps taken to prepare the test case 

descriptions for further analysis, specifically the application 

of stemming and lemmatizing to the text. The goal is to 

transform the text into a format that can be more easily 

processed and analysed by a machine learning algorithm. 

 

 
Fig. 4 Text case description 

 

Figure 4 displays a test case description from their data 

set. The description has not yet been fully lemmatized, but it 

has already undergone data transformation and purification, 

making it clearer to understand. The next image shows how 

the same description would appear after undergoing 

lemmatization. However, before the lemmatization process 

can occur, the words in the description must first be 

tokenized, meaning they must be separated into individual 

units or tokens. 

 

 
Fig. 5 Text case description tokenized 

In Figure 5, we can see a test case description that has 

been tokenized, meaning it has been broken down into 

individual words. The purpose of tokenization is to prepare 

the text for further processing, such as lemmatization or 

stemming. In this example, it can be noted that the words in 

the test-case description are not yet in their root form, as is 

the case with the word 'playing'. The next step is to perform 

either lemmatization or stemming, which will reduce the 

inflected words to their base form. 
 

Figure 6 depicts the test-case description that has been 

done to be lemmatized. Every word has been explicitly 

guided by its fundamental root. For example, the word 'play' 

used to be 'playing' before we lemmatized it. However, after 

applying the Corpus dictionary's WordNet Lemmatized and 

Snowball Steamer, each word can now be recognized by its 

fundamental form. 

 
Fig. 6 Text-case-description lemmatized 

 

3.2. Training all Models with Best-Parameters 
In this proposed model, multiple machine learning 

models, namely the K-nearest neighbor (KNN) classifier, 

logistic regression, decision tree, and multilayer perceptron 

(MLP), were employed for the automatic directory 

categorization of test cases based on their descriptions. The 

feature representation used was the Bag-of-Words (BoW) 

approach, applied to all the classifiers. The research's 

primary objective was to compare these models' performance 

in accurately categorizing test cases and reducing manual 

effort. For the KNN model, the study utilized the optimal 

parameters obtained from the BoW or TF-IDF vector 

representations. The scikit-learn library in Python was 

employed to develop the model. In the BoW approach, the 

Minkowski metric was employed to calculate the distance 

between a vector and other vectors in the training dataset. 

Notably, the study found that the cosine distance was 

unnecessary in BoW since the document sizes were nearly 

equal. On the other hand, in the TF-IDF approach, the cosine 

metric was used to compare the distance of a vector to others 

in the training dataset, as size normalization is required when 

computing the cosine distance. 

 
3.3. Vectorizing the Test Dataset 

In the context of machine learning, the statement implies 

that during the testing phase of the algorithm, the correctness 

of words is not important to examine because our models 

only learned words that have appeared during the training 

dataset. Therefore, during training, models were fitted with 

words that did not occur in the test dataset, and the word 

count vector was based on the corpus dictionary. As a result, 

the testing dataset does not require examining the correctness 

of words since the model has already learned them from the 

training dataset. 

 

3.4. Predict and Measurement 
In order to confirm the accuracy of our classification, we 

need to review the results of our model predictions and verify 

the data. Our statistical classification method is K-nearest 

neighbour, Logistic regression, Decision Tree and MLP 
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classifier, which identifies the most commonly occurring 

categories as predicted labels. There may be instances when 

the classifier is unable to accurately assign labels, resulting in 

unexpected outputs that do not affect the model's overall 

performance. The results section will provide an analysis of 

the model's performance. 

4. Results and Discussions 
The next section will present the results and discussions 

of the proposed models, including the accuracy of each 

model measured by the various metrics we used. We found 

that Knn-BOW and MLP had the highest accuracy compared 

to Logistic Regression and Decision Trees. Here are the 

specific details for each model. 

4.1. Dataset Description  

The data utilized in this research was obtained from two 

Android smartphone manufacturers, who requested that their 

identities remain confidential. The dataset contains a large 

number of test cases, but for this study, six test cases were 

selected from six different teams within the organization. 

The ALMS (application lifecycle management system) was 

selected by the previous researchers as it handled these test 

scenarios. The table below lists the domains that are 

represented in the data. 

 
Table 1. Dataset description 

Team ID Test Domain Test Cases 

0 Multimedia 2286 

1 Multimedia 2286 

2 Android OS & Linux Kernel 2286 

3 Android OS & Linux Kernel 2286 

4 Cellular & Connectivity 2286 

5 Cellular & Connectivity 2286 

 Total Test Cases 13716 

 

4.2.  Result and Discussions  

Several models were proposed to classify test cases 

based on categories, including a K nearest neighbor 

classifier, logistic regression, DecisionTree, and MLP 

classifier. These models use different metrics to calculate the 

distance between the real vectors by adding their absolute 

differences. In this study, the Minkowski metric was utilized 

as the metric for the K nearest neighbor classifier. 

After performing data cleaning, lemmatizing, and 

stemming, the data was applied to a K-nearest neighbor 

model with bag-of-words. Different metrics were tested for 

this model, including Minkowski and cosine. It was 

discovered that Minkowski was a better metric option, 

outperforming cosine. The output of this process is presented 

below. 

Figure 6 indicate that using lemmatization is a better 

option in terms of accuracy when compared to stemming, 

particularly when using Minkowski as a metric. However, it 

should be noted that the F1 results for both models are 

similar, suggesting that they are comparable in performance. 

Furthermore, the following figure will show the results 

obtained after applying Logistic Regression and 

DecisionTree models. 

 
Fig. 7 KNN & MLP accuracy 

 
Fig. 8 Logistic regression & Decision tree accuracy 

Figures 7 and 8 can be seen that both models have 

achieved low accuracy compared to the KNN and MLP 

models; however, Logistic regression with alpha (0.01) has 

scored 68 percentage accuracy compared with DecisionTree, 

which has achieved 65 percentage. The panelty of logistic 

regression was L2, and the best optimal of alpha was 0.01. 

Overall, we have implemented four models: logistic 

regression, Decision tree, MLP classifier, and K-nearest 

neighbor classifier applied with Bag-of-words; the upcoming 

table will sum up the accuracy and F1 score that each model 

has achieved. 

 
Table 2. Results 

Model Word root 
Accuracy 

(%) 
F1-Scores 

KNN- 

BoW 
Steaming &Lem 76.66 77 

MLP- 

BoW 
Steaming &Lem 77 77 

Logistic Regression- 

BoW 
Steaming &Lem 67 68 

Decision Tree- 

BoW 
Steaming &Lem 65 65 

 
The MLP model and Knn-Bow yielded the highest 

accuracy when compared to the Logistic Regression and 

Decision Tree models. Among the models tested, using 



Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023 

 

34 

Minkowski as the distance metric along with lemmatizing 

resulted in an accuracy score of 76.66 and an F1 score of 77, 

making it a good option. However, a lower accuracy was 

obtained when applying Knn-Bow with the distance metric 

as cosine. Furthermore, it should be noted that the Decision 

Tree model took a long time to run due to its computation 

requirements, but it has the potential to improve its 

performance if looped. 

 

4.3.  Comparative Analysis  

Our research found that the use of Word Count (WC) 

was more effective than Name-LDA or Name-WC in 

classifying performance outcomes. This led to high F1 scores 

for modules B, C, E, and F. To compare our findings with a 

previous study, we referred to a research paper [1], which 

also used WC and LDA to achieve scores ranging from 0.3 

to 0.88.  

However, our model outperformed the WC performance 

in the previous study, achieving an accuracy of 76.66% and 

an F1 score of 77%. This suggests that text analysis was 

successful in accurately categorizing unique modules. 

5. Conclusion  
To automate the directory categorization process, this 

study recommends utilizing machine learning, which could 

significantly aid in test case classification, a task that 

typically consumes a lot of time for testers to ensure that 

apps or features are performing correctly.  

 

The approach that was utilized in this study performed 

the classification and utilized one distinct vector 

representation: bag-of-words. Four machine learning 

algorithms have applied this model, and a bag of words was 

used to represent a vectorizer of the test case description. As 

it required overfitting and underfitting to analyse, it's notable 

that test case descriptions needed to be categorized as the 

label contributed multiclass. KNN and MLP have scored 

good results and outperformed Logistic regression and 

decision trees.  

 

Additionally, this study investigated how much an 

Android smartphone vendor would need to invest in 

deploying such a system and how much labour developers 

would need to put in to create a functional system. 
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