
International Journal of Engineering Trends and Technology Volume 71 Issue 9, 27-35, September 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I9P203 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Utilizing Machine Learning Algorithms to Automatically

Categorize Software Test Cases

Abdullahi Ahmed Abdirahma1*, Abdirahman Osman Hashi1, Siti Zaiton Mohd Hashim2, Mohamed Abdirahman

Elmi1

1Faculty of Computing, SIMAD University, Mogadishu-Somalia.

2Department of Computer Science, Faculty of Computing, University Teknologi Malaysia, Skudai, Johor, Malaysia.

*Corresponding Author : wadani12727@gmail.com

Received: 04 June 2023 Revised: 31 July 2023 Accepted: 08 August 2023 Published: 03 September 2023

Abstract - The creation of an efficient strategy to help decrease the problem of manual effort expended by software developers

when labelling software test cases has been the focus of many academic researchers. To ensure that all features and

applications are fully tested, it is important to have a framework that can effectively match the feature labels and test cases in

the correct sequence. Irrelevant labeling of test cases can result in inaccuracy, so avoiding it is a key objective of this paper.

As a result, the primary goal of this work is to extend a previous method for doing automatic directory categorization of test

cases based on their test case description using the K-nearest-neighbor classifier, Logistic regression, Decision tree and MLP.

Bag-of-word (Bow) is used as a vector representation and fits all classifiers. The experimental results reveal that using KNN-

BOW and MLP have a higher score than Logistic regression and Decision tree since it outperformed and obtained 77%

accuracy vs. 71% for KNN-TF-IDF. Meanwhile, we extended using KNN-BOW and MLP-BOW have scored a good result

compared to Logistic regression and Decision tree, as it outperformed and achieved 77% accuracy in comparison with the

67% and 65% that Logistic regression and Decision tree achieved, respectively. As a result, KNN-BOW and MLP-BOW are

excellent choices for directory categorization based on test case descriptions. The suggested strategy contributes to the

domain by ensuring that machine learning algorithms can easily directly classify test-case descriptions.

Keywords - Test cases, K nearest neighbors, Bag of words, Logistic regression, Decision tree.

1. Introduction
Software testing is the primary factor in effectively

designing software and ensuring its accuracy about the

operation or functionality that is intended to be done under

various input variables [1]. There are several ways or tactics

for doing software testing. Black box and white box testing

are the most popular. Other categorizations of software

testing methodologies may be made based on how the testing

is performed. Classification test scenarios, according to this,

can be either manual or automated [2].

Manual testing involves manually constructing test cases

and is more susceptible to human mistakes, whereas

automation testing involves capturing the different test cases

based on actions the end user has to take. In contrast, rather

than wasting time, it is important to use automated testing

when developing test cases to increase efficiency.

Furthermore, manual testing is unsuitable for heavy software

that has a lot of components, such as that used by firms that

manufacture Android phones [3]. The reason is that Android

is a multi-layered software platform comprised of apps,

drivers, components, a kernel and many more. Obviously,

this software is complicated, and Android makers demand

extensive testing to ensure that the system is performing as

planned and meets the organization's hardware and software

requirements [4].

Meanwhile, in the field of software testing, the

management and organization of test cases play a crucial role

in ensuring the quality and reliability of software systems. As

software projects grow in size and complexity, the number of

test cases also increases exponentially, making manual

organization and classification a challenging and time-

consuming task [5]. To address this issue, researchers have

turned to machine learning algorithms to automate the

process of directory classification for test cases. By

leveraging the power of machine learning, it becomes

possible to categorize test cases automatically, thus

improving efficiency and reducing human effort [6].

Machine learning algorithms offer the capability to learn

patterns and relationships from labelled datasets, enabling the

development of accurate classification models. These models

can be trained to classify test cases into different directories

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

28

based on their features and attributes. Several studies have

explored the application of machine learning algorithms in

this context, aiming to enhance the effectiveness and

scalability of test case management [7]. One commonly

employed approach in automatic directory classification is

feature extraction. Test cases can be represented using

various features, such as keywords, textual descriptions, or

metadata. These features serve as input to machine learning

models, which learn to associate them with specific

directories based on the provided labels. Researchers have

investigated different feature extraction techniques, including

natural language processing methods, to capture the semantic

meaning and context of test cases [9].

Numerous solutions have been proposed by scholars to

address the problem, including manual tagging or feature

name assignment and even the implementation of an

application lifecycle management system. However, these

recommended procedures continue to result in inaccurately

labelled test cases. Therefore, the primary objective of this

study is to automate the classification of test cases based on

their information, with the aim of reducing the time and

effort required by software developers to classify them

manually. The ultimate goal is to test and validate all features

and applications thoroughly. A robust framework capable of

matching feature labels with their respective test cases in

chronological order is essential to accomplish this. The

proposed technique will determine the appropriate directory

for each test case based on the component to which it

belongs, ensuring that all test cases are correctly categorized.

For the organization of the paper, it is divided into five

parts. The background of test cases and topic classification is

in the first two sections. The third part outlines how the

suggested approach will be applied to our model. Section

fourth contains the results of the suggested framework and

analysis. Finally, the conclusion are presented in the fifth

part.

2. Related Work
As software test-case classification is a vital area of

research, scholars have proposed numerous methods,

including manual tagging, application-lifecycle management,

and automated topic classification. Each approach has its

own advantages and disadvantages in terms of the time

required and the frequency of incorrect classification. For

instance, at a particular Android smartphone manufacturer,

tests are tagged manually, and categories and feature names

are specified. It is essential that these features are accurately

identified; otherwise, the test cases will fail, and the

developer will be unable to determine which features and

applications have been tested. Another proposed solution to

this problem is application lifecycle management (ALM).

ALM is a method used to manage a predetermined process

that supports software development from the beginning until

the end, including the release of the product and post-release

support. This process may involve defect-tracking, repair, or

testing, and it should be linked through a web interface or a

customized window application form [10].

On another note, recent years have seen a significant

amount of research being published on autonomous test case

development methods [2]. This has led to the classification

of test case creation into three types: random-based and

requirement-based, program-based, feature extraction,

machine learning and test case maintenance and evolution.

2.1. Requirement-Based

The process of creating test cases based on software

requirements is commonly known as specification test-case

generation, as the test case itself can be a semi-formal or

formal definition of the data or function needed for the

program being tested [3]. Various software requirement

formalisms, including logic programs, finite-state machines,

and first-order logic, can drive formal test case

specifications. Alternatively, the diagram notation of

software systems may be utilized for semi-formal

specifications. The structural requirements for the test case

benchmark are often presented in a hierarchical form, as

described in the dataflow diagram. These approaches, along

with others, can help ensure that the test cases effectively

meet the requirements of the software being tested [11].

2.2. Random-Based

Random-based test cases refer to a subset of possibility

models created during software processes. This method

involves selecting test cases from the software's input space

using random sampling based on a specified probabilistic

distribution. This approach is often used for simple random

testing by applying prior software operations at random.

However, a more complex random testing method involves

using a stochastic model. Sophisticated models like Markov

Chains and Bayesian Networks have been utilized to create

more advanced testing methods. These advanced techniques

have been used for flaw identification, reliability testing, and

functional validation and verification. By using probabilistic

models and random sampling, these techniques can help

ensure that the software functions as intended, even under

varying conditions [12].

2.3. Program-Based

Program-based test cases involve analysing the source

code of the program being tested without considering its

execution. This approach is classified as a static-test creation

or generation technique since it does not consider the

program's behaviour during execution. Additionally,

program-based testing is route-oriented, meaning it always

accepts a specific way as input when creating test cases. This

method is also referred to as a targeted strategy because it is

focused on identifying which way leads to the execution of

the statement. While program-based testing may not account

for the program's dynamic behaviour during execution, it is

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

29

still a useful method for ensuring that the source code is

correct and that it meets the intended goals. This testing

approach can help identify potential issues with the

program's logic or syntax and can improve its overall quality

[13].

2.4. Feature Extraction

Feature extraction is a critical step in the automatic

directory classification of test cases. It involves transforming

the raw input data (test cases) into a set of meaningful

features that can be used as input for machine learning

algorithms. Various feature extraction techniques have been

explored in the literature to capture the relevant information

from test cases and improve the accuracy of classification

models [13]. Natural language processing (NLP) techniques

have been widely applied in test case classification to extract

features from textual labels. These techniques leverage

linguistic and statistical methods to analyze the textual

content of test cases and derive meaningful representations.

For example, Bag-of-Words (BoW) representation is

commonly used, where each test case is represented as a

vector of word frequencies. The presence or absence of

specific keywords or phrases can also be used as binary

features [14].

In addition to BoW, more advanced NLP techniques

have been employed for feature extraction. Term Frequency-

Inverse Document Frequency (TF-IDF) is a technique that

weights words based on their importance in a document

collection [15]. This approach considers not only the

frequency of words but also their rarity across the entire

corpus. It helps capture the discriminatory power of words

and enhances the discriminative features used for

classification.

Another approach is word embedding, representing

words as dense vectors in a continuous space. Word2Vec and

GloVe are popular algorithms for learning word embeddings.

These techniques capture semantic relationships between

words and enable the comparison of word meanings based on

their vector representations. Test cases can be represented by

averaging or concatenating the word embeddings of the

words present in the textual descriptions [16].

In addition to NLP techniques, metadata associated with

test cases can also serve as valuable features. Metadata can

include information such as the test case author, creation

date, associated requirements, and execution status. This

metadata can provide insights into the characteristics and

context of test cases, which can be leveraged for

classification [17].

2.5. Machine Learning

Machine learning methods are critical components of

test case automated directory categorization systems. These

approaches use labelled datasets to train models that can

predict the correct directory for unknown test situations. For

this job, many machine learning techniques have been

investigated in the literature, with the goal of improving the

accuracy and efficiency of categorization models [18].

For test case categorization, decision trees are prominent

techniques. Based on the characteristics retrieved from test

cases, they build a decision tree-like model. Each internal

node in the tree reflects a feature-based judgement, while

each leaf node corresponds to a directory name. Decision

trees are interpretable and can handle both categorical and

continuous variables, making them valuable for

understanding the classification process [19, 23].

Random forests are an ensemble learning approach for

improving classification accuracy by combining numerous

decision trees. Each tree is trained using a randomly selected

subset of the training data and features. Individual tree

projections are then integrated to determine the final

categorization choice. Random forests are well-known for

their resilience, capacity to handle large feature spaces and

resistance to overfitting [20].

Support Vector Machines (SVMs) are binary classifiers

that seek the best hyperplane for separating data points from

distinct classes with the least amount of overlap. SVMs

translate the input characteristics into a higher-dimensional

space to identify a linear or non-linear decision boundary.

They have been extensively used in a variety of classification

tasks, including test case classification, and are capable of

handling both linear and non-linear correlations between data

and classes [21].

In recent years, neural networks, especially deep

learning models, have received a lot of attention for their

capacity to learn complicated patterns and correlations.

Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) are extensively employed

architectures in test case classification. CNNs thrive at

collecting geographical and local characteristics in test case

data, while RNNs excel at capturing temporal relationships

in sequential test case data [22].

Researchers have also investigated strategies like

hyperparameter tweaking, feature selection, and ensemble

learning to increase the performance of machine learning

systems. The process of optimising the parameters of

machine learning algorithms to identify the optimal

configuration for a particular dataset is known as

hyperparameter tuning. The goal of feature selection

approaches is to discover the most important characteristics

for classification, hence lowering the dimensionality of the

input data and increasing the model's efficiency. Ensemble

learning leverages the variety and capabilities of individual

models by combining numerous models to produce collective

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

30

predictions [24].

2.6. Test Case Maintenance and Evolution

Automatic directory classification of test cases not only

aids in organizing and managing test cases efficiently but

also supports test case maintenance and evolution throughout

the software development lifecycle. As software systems

evolve and requirements change, the classification of test

cases needs to be updated to reflect these modifications.

When changes are made to the directories or new directories

are introduced, the classification models need to be adapted

to ensure the accurate categorization of test cases. Automatic

directory classification simplifies this process by

automatically reflecting changes in the classification models.

As new test cases are added, the models can predict their

appropriate directories based on the updated classification

rules [25, 26].

This capability of automatic directory classification

greatly benefits test case maintenance. Manual

reclassification of test cases can be a time-consuming and

error-prone task. However, with automatic classification, the

effort required to maintain and update test case classification

is significantly reduced, allowing testers and developers to

focus on other critical activities [18].

In addition, the evolution of test cases can be better

managed through automatic directory classification. As test

cases are executed, and their results are recorded, the

classification models can be updated to incorporate this

feedback. For example, if a test case consistently fails, the

model can learn to associate it with directories related to

defect areas, facilitating targeted debugging and maintenance

efforts [27].

By automating the process of directory classification, the

reusability of test cases is also enhanced. Test cases

categorized into directories based on their functionalities or

characteristics can be efficiently retrieved and reused for

specific testing scenarios. This reduces redundant test case

creation and promotes efficient utilization of existing test

assets. Moreover, automatic directory classification

contributes to the traceability and organization of test cases.

By accurately categorizing test cases, it becomes easier to

track their coverage of specific requirements, modules, or

functionalities. This traceability information can be

leveraged for test case prioritization, impact analysis, and

coverage assessment [28].

Researchers have proposed using feature labelling as a

method to tackle the problem of accurately identifying and

categorizing software features. However, this approach

presents challenges as it is difficult to come up with suitable

characteristics that are unique to each feature and team.

Additionally, each label must be assigned manually, which

requires domain knowledge and extensive investigation.

Consequently, the process of feature labelling can be time-

consuming, similar to other labelling activities. Despite these

challenges, feature labelling remains an important method to

help organize and manage software features, which can

enhance software development practices.

The proposed method involves summarizing test case

descriptions, but assigning feature labels manually poses a

risk of human error. Instead, the language used in the test

case description should be analysed to determine the

appropriate category for each feature label. The test case

descriptions used in this approach were collected from

Android smartphone providers, and this data was used to

develop a text-based directory classification system. This

approach is based on the concept of application lifecycle

management and builds upon the work of previous

researchers who have developed the concept of topic

categorization. The goal is to expand the areas of feature

labelling that were previously limited to test case

descriptions. By doing so, the proposed method can help

improve the accuracy and efficiency of test case

management, leading to better software development

practices.

3. Methodology
The primary objective of this study is to propose a

method for automatically classifying test cases based on their

descriptions. To achieve this goal, the researchers have

developed various research techniques that align with their

objectives. The study presents a detailed methodology that

outlines the different approaches that can be used to attain

the system's intended purpose. By thoroughly examining the

methods used, the study aims to provide insights that can

inform future research in the area of test case classification.

3.1. Research Framework

The focus of this approach is on test case descriptions,

which are divided into two parts for analysis: training and

testing. The raw data was split in half, with 50% being

allocated to each. We tried using a loop for the data split but

found duplicate data, so we followed previous studies and

divided the dataset into two subsets. We then worked on

vectorizing the training text so that it could be turned into a

bag of words. In order to eliminate certain words and terms,

keywords with numeric characters and those appearing

(<5%) were removed. A flowchart of the entire process was

provided for clarity.

The suggested architecture is represented in Figure 1,

which shows how each phase is connected and the way in

which data is sourced from ALMS to score predicted.

Meanwhile, it is important to note that preliminary steps

need to be taken before we train the models, which are

discussed before training the model:

• Transforming Data

• Cleaning Data

• Steaming and also Lemmatizing

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

31

• Doing Vectorization

Fig. 1 Proposed framework

3.1.1. Transformation Data

The first thing we did was alter the data. Because

structured data most likely increases data quality, it was

required. Moreover, the modified data will make fitting the

model easier. Here is the original dataset Figure 2 before data

modification.

Fig. 2 Actual dataset

The second image in the research paper shows the actual

dataset with test case descriptions separated into columns.

This format makes it difficult to match the data with the

training model. Therefore, data transformation is needed to

make test case descriptions in a manner that can be trained to

models, which directly impacts its quality. Figure 3

demonstrates the data after undergoing the transformation

process.

Fig. 3 Data transformed

3.1.2. Cleaning Data

To ensure the success of the proposed model, the test

case descriptions were cleaned up by removing digits,

punctuation, and capitalization. The data cleaning process is

crucial to the project's success since it removes any irrelevant

information, making the data more useful for analysis. The

author emphasizes the importance of having clean data and

takes extra precautions to remove unnecessary information,

such as number phrases or alphanumeric letters.

3.1.3. Steaming and Lemmatizing

The primary objective of stemming is to identify the

essential base root of a word of the description, while

ALMS

Test case

Description

Split Test
Case

Description

Load
ALMS

Train Data

Test Data Vectorization

Vectorization

Tuning/

Random

Dictionary

Vectors

and Labels

Average

Train

Model
Score

Fitted

Model

Vectors

and Label

Predict and

Measurements

Parameters

Score

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

32

lemmatizing aims to decrease inflected base words to their

base form. Prior to transforming the words into vectors, it is

necessary to extract the base form of each verb, which is the

root word. Figure four displays the initial form of the test

case description, and the subsequent images illustrate how it

was transformed through lemmatization.

The context of this passage appears to be focused on the

pre-processing of text data for natural language processing.

The author describes the steps taken to prepare the test case

descriptions for further analysis, specifically the application

of stemming and lemmatizing to the text. The goal is to

transform the text into a format that can be more easily

processed and analysed by a machine learning algorithm.

Fig. 4 Text case description

Figure 4 displays a test case description from their data

set. The description has not yet been fully lemmatized, but it

has already undergone data transformation and purification,

making it clearer to understand. The next image shows how

the same description would appear after undergoing

lemmatization. However, before the lemmatization process

can occur, the words in the description must first be

tokenized, meaning they must be separated into individual

units or tokens.

Fig. 5 Text case description tokenized

In Figure 5, we can see a test case description that has

been tokenized, meaning it has been broken down into

individual words. The purpose of tokenization is to prepare

the text for further processing, such as lemmatization or

stemming. In this example, it can be noted that the words in

the test-case description are not yet in their root form, as is

the case with the word 'playing'. The next step is to perform

either lemmatization or stemming, which will reduce the

inflected words to their base form.

Figure 6 depicts the test-case description that has been

done to be lemmatized. Every word has been explicitly

guided by its fundamental root. For example, the word 'play'

used to be 'playing' before we lemmatized it. However, after

applying the Corpus dictionary's WordNet Lemmatized and

Snowball Steamer, each word can now be recognized by its

fundamental form.

Fig. 6 Text-case-description lemmatized

3.2. Training all Models with Best-Parameters
In this proposed model, multiple machine learning

models, namely the K-nearest neighbor (KNN) classifier,

logistic regression, decision tree, and multilayer perceptron

(MLP), were employed for the automatic directory

categorization of test cases based on their descriptions. The

feature representation used was the Bag-of-Words (BoW)

approach, applied to all the classifiers. The research's

primary objective was to compare these models' performance

in accurately categorizing test cases and reducing manual

effort. For the KNN model, the study utilized the optimal

parameters obtained from the BoW or TF-IDF vector

representations. The scikit-learn library in Python was

employed to develop the model. In the BoW approach, the

Minkowski metric was employed to calculate the distance

between a vector and other vectors in the training dataset.

Notably, the study found that the cosine distance was

unnecessary in BoW since the document sizes were nearly

equal. On the other hand, in the TF-IDF approach, the cosine

metric was used to compare the distance of a vector to others

in the training dataset, as size normalization is required when

computing the cosine distance.

3.3. Vectorizing the Test Dataset

In the context of machine learning, the statement implies

that during the testing phase of the algorithm, the correctness

of words is not important to examine because our models

only learned words that have appeared during the training

dataset. Therefore, during training, models were fitted with

words that did not occur in the test dataset, and the word

count vector was based on the corpus dictionary. As a result,

the testing dataset does not require examining the correctness

of words since the model has already learned them from the

training dataset.

3.4. Predict and Measurement
In order to confirm the accuracy of our classification, we

need to review the results of our model predictions and verify

the data. Our statistical classification method is K-nearest

neighbour, Logistic regression, Decision Tree and MLP

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

33

classifier, which identifies the most commonly occurring

categories as predicted labels. There may be instances when

the classifier is unable to accurately assign labels, resulting in

unexpected outputs that do not affect the model's overall

performance. The results section will provide an analysis of

the model's performance.

4. Results and Discussions
The next section will present the results and discussions

of the proposed models, including the accuracy of each

model measured by the various metrics we used. We found

that Knn-BOW and MLP had the highest accuracy compared

to Logistic Regression and Decision Trees. Here are the

specific details for each model.

4.1. Dataset Description

The data utilized in this research was obtained from two

Android smartphone manufacturers, who requested that their

identities remain confidential. The dataset contains a large

number of test cases, but for this study, six test cases were

selected from six different teams within the organization.

The ALMS (application lifecycle management system) was

selected by the previous researchers as it handled these test

scenarios. The table below lists the domains that are

represented in the data.

Table 1. Dataset description

Team ID Test Domain Test Cases

0 Multimedia 2286

1 Multimedia 2286

2 Android OS & Linux Kernel 2286

3 Android OS & Linux Kernel 2286

4 Cellular & Connectivity 2286

5 Cellular & Connectivity 2286

 Total Test Cases 13716

4.2. Result and Discussions

Several models were proposed to classify test cases

based on categories, including a K nearest neighbor

classifier, logistic regression, DecisionTree, and MLP

classifier. These models use different metrics to calculate the

distance between the real vectors by adding their absolute

differences. In this study, the Minkowski metric was utilized

as the metric for the K nearest neighbor classifier.

After performing data cleaning, lemmatizing, and

stemming, the data was applied to a K-nearest neighbor

model with bag-of-words. Different metrics were tested for

this model, including Minkowski and cosine. It was

discovered that Minkowski was a better metric option,

outperforming cosine. The output of this process is presented

below.

Figure 6 indicate that using lemmatization is a better

option in terms of accuracy when compared to stemming,

particularly when using Minkowski as a metric. However, it

should be noted that the F1 results for both models are

similar, suggesting that they are comparable in performance.

Furthermore, the following figure will show the results

obtained after applying Logistic Regression and

DecisionTree models.

Fig. 7 KNN & MLP accuracy

Fig. 8 Logistic regression & Decision tree accuracy

Figures 7 and 8 can be seen that both models have

achieved low accuracy compared to the KNN and MLP

models; however, Logistic regression with alpha (0.01) has

scored 68 percentage accuracy compared with DecisionTree,

which has achieved 65 percentage. The panelty of logistic

regression was L2, and the best optimal of alpha was 0.01.

Overall, we have implemented four models: logistic

regression, Decision tree, MLP classifier, and K-nearest

neighbor classifier applied with Bag-of-words; the upcoming

table will sum up the accuracy and F1 score that each model

has achieved.

Table 2. Results

Model Word root
Accuracy

(%)
F1-Scores

KNN-

BoW
Steaming &Lem 76.66 77

MLP-

BoW
Steaming &Lem 77 77

Logistic Regression-

BoW
Steaming &Lem 67 68

Decision Tree-

BoW
Steaming &Lem 65 65

The MLP model and Knn-Bow yielded the highest

accuracy when compared to the Logistic Regression and

Decision Tree models. Among the models tested, using

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

34

Minkowski as the distance metric along with lemmatizing

resulted in an accuracy score of 76.66 and an F1 score of 77,

making it a good option. However, a lower accuracy was

obtained when applying Knn-Bow with the distance metric

as cosine. Furthermore, it should be noted that the Decision

Tree model took a long time to run due to its computation

requirements, but it has the potential to improve its

performance if looped.

4.3. Comparative Analysis

Our research found that the use of Word Count (WC)

was more effective than Name-LDA or Name-WC in

classifying performance outcomes. This led to high F1 scores

for modules B, C, E, and F. To compare our findings with a

previous study, we referred to a research paper [1], which

also used WC and LDA to achieve scores ranging from 0.3

to 0.88.

However, our model outperformed the WC performance

in the previous study, achieving an accuracy of 76.66% and

an F1 score of 77%. This suggests that text analysis was

successful in accurately categorizing unique modules.

5. Conclusion
To automate the directory categorization process, this

study recommends utilizing machine learning, which could

significantly aid in test case classification, a task that

typically consumes a lot of time for testers to ensure that

apps or features are performing correctly.

The approach that was utilized in this study performed

the classification and utilized one distinct vector

representation: bag-of-words. Four machine learning

algorithms have applied this model, and a bag of words was

used to represent a vectorizer of the test case description. As

it required overfitting and underfitting to analyse, it's notable

that test case descriptions needed to be categorized as the

label contributed multiclass. KNN and MLP have scored

good results and outperformed Logistic regression and

decision trees.

Additionally, this study investigated how much an

Android smartphone vendor would need to invest in

deploying such a system and how much labour developers

would need to put in to create a functional system.

References
[1] Junji Shimagaki et al., “Automatic Topic Classification of Test Cases using Text Mining at an Android Smartphone Vendor,” Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 1-10, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Lijun Shan, and Hong Zhu, “Generating Structurally Complex Test Cases by Data Mutation: A Case Study of Testing an Automated Modelling

Tool,” The Computer Journal, vol. 52, no. 5, pp. 571-588, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[3] Stephen H. Edwards, “Using Software Testing to Move Students from Trial-and-Error to Reflection-in-Action,” Proceedings of the 35th

SIGCSE Technical Symposium on Computer Science Education, pp. 26-30, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[4] Xiao-Yi Zhang, Zheng Zheng, and Kai-Yuan Cai, “Exploring the Usefulness of Unlabelled Test Cases in Software Fault Localization,” Journal

of Systems and Software, vol. 136, pp. 278-290, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[5] Saswat Anand et al., “An Orchestrated Survey of Methodologies for Automated Software Test Case Generation,” Journal of Systems and

Software, vol. 86, no. 8, pp. 1978-2001, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[6] P.A. Stocks, and D.A. Carrington, “Test Templates: A Specification-Based Testing Framework,” Proceedings of 1993 15th International

Conference on Software Engineering, IEEE, pp. 405-414, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[7] P. Ammann, and J. Offutt, “Using Formal Methods to Derive Test Frames in Category-Partition Testing,” Proceedings of COMPASS'94-1994

IEEE 9th Annual Conference on Computer Assurance, pp. 69-79, 1994. [CrossRef] [Google Scholar] [Publisher Link]

[8] A. Hartman, and K. Nagin., “The AGEDIS Tools for Model-Based Testing,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp.

129-132, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[9] Dathar A. Hasan et al., “The Impact of Test Case Generation Methods on the Software Performance: A Review,” International Journal of

Science and Business, vol. 5, no. 6, pp. 33-44, 2021. [Google Scholar] [Publisher Link]

[10] Yanjie Zhao et al., “Towards Automatically Repairing Compatibility Issues in Published Android Apps,” Proceedings of the 44th International

Conference on Software Engineering, pp. 2142-2153, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] He Ye et al., “Automated Classification of Overfitting Patches with Statically Extracted Code Features,” IEEE Transactions on Software

Engineering, vol. 48, no. 8, pp. 2920-2938, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Muhammad Khatibsyarbini et al., “Test Case Prioritization Approaches in Regression Testing: A Systematic Literature Review,” Information

and Software Technology, vol. 93, pp. 74-93, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Karina Curcio et al., “Requirements Engineering: A Systematic Mapping Study in Agile Software Development,” Journal of Systems and

Software, vol. 139, pp. 32-50, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sillitti et al., “Collecting, Integrating and Analyzing Software Metrics and Personal Software Process Data,” Proceedings 29th Euromicro

Conference, vol. 3, pp. 336-342, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[15] Raymond P. L. Buse, and Thomas Zimmermann, “Information Needs for Software Development Analytics,” 34th International Conference on

Software Engineering, IEEE, pp. 987-996, 2012. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3239235.3268927
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+topic+classification+of+test+cases+using+text+mining+at+an+Android+smartphone+vendor.+In+Proceedings+of+the+12th+ACM%2FIEEE+International+Symposium+on+Empirical+Software+Engi&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+topic+classification+of+test+cases+using+text+mining+at+an+Android+smartphone+vendor.+In+Proceedings+of+the+12th+ACM%2FIEEE+International+Symposium+on+Empirical+Software+Engi&btnG=
https://dl.acm.org/doi/abs/10.1145/3239235.3268927
https://doi.org/10.1093/comjnl/bxm043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generating+structurally+complex+test+cases+by+data+mutation%3A+A+case+study+of+testing+an+automated+modelling+tool&btnG=
https://ieeexplore.ieee.org/abstract/document/8130778
https://doi.org/10.1145/971300.971312
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+software+testing+to+move+students+from+trial-and-error+to+reflection-in-action&btnG=
https://dl.acm.org/doi/abs/10.1145/971300.971312
https://doi.org/10.1016/j.jss.2017.07.027
https://scholar.google.com/scholar?q=Exploring+the+Usefulness+of+Unlabelled+Test+Cases+in+Software+Fault+Localization&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0164121217301589/
https://doi.org/10.1016/j.jss.2013.02.061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Orchestrated+Survey+of+Methodologies+for+Automated+Software+Test+Case+Generation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121213000563
https://doi.org/10.1109/ICSE.1993.346025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+Templates%3A+A+Specification-Based+Testing+Framework&btnG=
https://ieeexplore.ieee.org/document/346025
https://doi.org/10.1109/CMPASS.1994.318466
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Formal+Methods+to+Derive+Test+Frames+in+Category-Partition+Testing&btnG=
https://ieeexplore.ieee.org/document/318466
https://doi.org/10.1145/1013886.1007529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+AGEDIS+tools+for+model+based+testing&btnG=
https://dl.acm.org/doi/abs/10.1145/1013886.1007529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+impact+of+test+case+generation+methods+on+the+software+performance%3A+A+review&btnG=
https://ideas.repec.org/a/aif/journl/v5y2021i6p33-44.html
https://doi.org/10.1145/3510003.3510128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Automatically+Repairing+Compatibility+Issues+in+Published+Android+Apps&btnG=
https://dl.acm.org/doi/abs/10.1145/3510003.3510128
https://doi.org/10.1109/TSE.2021.3071750
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+Classification+Of+Overfitting+Patches+With+Statically+Extracted+Code+Features&btnG=
https://ieeexplore.ieee.org/abstract/document/9399306
https://doi.org/10.1016/j.infsof.2017.08.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+case+prioritization+approaches+in+regression+testing%3A+A+systematic+literature+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584916304888
https://doi.org/10.1016/j.jss.2018.01.036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Requirements+engineering%3A+A+systematic+mapping+study+in+agile+software+development&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121218300141
https://doi.org/10.1109/EURMIC.2003.1231611
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Collecting%2C+Integrating+and+Analyzing+Software+Metrics+and+Personal+Software+Process+Data&btnG=
https://ieeexplore.ieee.org/document/1231611
https://doi.org/10.1109/ICSE.2012.6227122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B15%5D%09Buse%2C+R.+P.%2C+%26+Zimmermann%2C+T.+%282012%2C+June%29.+Information+needs+for+software+development+analytics.+In+2012+34th+International+Conference+on+Software+Engineering+%28ICSE%29+%28pp.+987-996%29.+IEEE.+&btnG=
https://ieeexplore.ieee.org/abstract/document/6227122

Abdullahi Ahmed Abdirahma et al. / IJETT, 71(9), 27-35, 2023

35

[16] Dan Han et al., “Understanding Android Fragmentation with Topic Analysis of Vendor-Specific Bugs,” 19th Working Conference on Reverse

Engineering, IEEE, pp. 83-92, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[17] Christof Ebert, and Hassan Soubra, “Functional Size Estimation Technologies for Software Maintenance,” IEEE Software, vol. 31, no. 6, pp.

24-29, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[18] Abram Hindle et al., “Relating Requirements to Implementation via Topic Analysis: Do Topics Extracted from Requirements Make Sense to

Managers and Developers?,” 28th IEEE International Conference on Software Maintenance, pp. 243-252, 2012. [CrossRef] [Google Scholar]

[Publisher Link]

[19] Annibale Panichella et al., “How to Effectively Use Topic Models for Software Engineering Tasks? An Approach based on Genetic

Algorithms,” 35th International Conference on Software Engineering, IEEE, pp. 522-531, 2013. [CrossRef] [Google Scholar] [Publisher

Link]

[20] Ed Keenan et al., “Tracelab: An Experimental Workbench for Equipping Researchers to Innovate, Synthesize, and Comparatively Evaluate

Traceability Solutions,” 34th International Conference on Software Engineering, IEEE, pp. 1375-1378, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Thomas H. Davenport, Jeanne G. Harris, and Robert Morison, Analytics at Work: Smarter Decisions, Better Results, Harvard Business Press,

2010. [Google Scholar] [Publisher Link]

[22] Stuart McIlroy et al., “Analyzing and Automatically Labelling the Types of User Issues that are Raised in Mobile App Reviews,” Empirical

Software Engineering, vol. 21, no. 3, pp. 1067-1106, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[23] Haibing Li et al., "Financial Fraud Detection: Multi-Objective Genetic Programming with Grammars and Statistical Selection

Learning," SSRG International Journal of Computer Science and Engineering, vol. 7, no. 2, pp. 1-18, 2020. [CrossRef] [Publisher Link]

[24] P.M. Johnson et al., “Improving Software Development Management through Software Project Telemetry,” IEEE Software, vol. 22, no. 4, pp.

76-85, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[25] Dongmei Zhang et al., “ Software Analytics as a Learning Case in Practice: Approaches and Experiences,” Proceedings of the International

Workshop on Machine Learning Technologies in Software Engineering, pp. 55-58, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[26] Akanksha Pandey, and L.S. Maurya, "Career Prediction Classifiers based on Academic Performance and Skills using Machine

Learning," SSRG International Journal of Computer Science and Engineering, vol. 9, no. 3, pp. 5-20, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[27] Barbara A. Kitchenham, and Shari L. Pfleeger, “Personal Opinion Surveys,” Guide to Advanced Empirical Software Engineering, Springer, pp.

63-92, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[28] Anh Tuan Nguyen et al., “Duplicate Bug Report Detection with a Combination of Information Retrieval and Topic Modeling,” Proceedings of

the 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 70-79, 2012. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/WCRE.2012.18
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B16%5D%09Han%2C+D.%2C+Zhang%2C+C.%2C+Fan%2C+X.%2C+Hindle%2C+A.%2C+Wong%2C+K.%2C+%26+Stroulia%2C+E.+%282012%2C+October%29.+Understanding+android+fragmentation+with+topic+analysis+of+vendor-specific+bugs.+In+2012+19th+Working+Conference+on+Reverse+Engineering+%28pp.+83-92%29.+IEEE.+&btnG=
https://ieeexplore.ieee.org/abstract/document/6385104
https://doi.org/10.1109/MS.2014.138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Functional+size+estimation+technologies+for+software+maintenance&btnG=
https://ieeexplore.ieee.org/abstract/document/6949529
https://doi.org/10.1109/ICSM.2012.6405278
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relating+Requirements+to+Implementation+via+Topic+Analysis%3A+Do+Topics+Extracted+from+Requirements+Make+Sense+to+Managers+and+Developers%3F&btnG=
https://ieeexplore.ieee.org/abstract/document/6405278
https://doi.org/10.1109/ICSE.2013.6606598
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+to+effectively+use+topic+models+for+software+engineering+tasks%3F+an+approach+based+on+genetic+algorithms&btnG=
https://ieeexplore.ieee.org/document/6606598
https://ieeexplore.ieee.org/document/6606598
https://doi.org/10.1109/ICSE.2012.6227244
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tracelab%3A+An+experimental+workbench+for+equipping+researchers+to+innovate%2C+synthesize%2C+and+comparatively+evaluate+traceability+solutions&btnG=
https://ieeexplore.ieee.org/abstract/document/6227244
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analytics+at+Work%3A+Smarter+Decisions%2C+Better+Results&btnG=
https://books.google.co.in/books?hl=en&lr=&id=2otJuvfvflgC&oi=fnd&pg=PR4&dq=Analytics+at+Work:+Smarter+Decisions,+Better+Results&ots=zqrah-OKlH&sig=UIuG77xXOlmgLrtsxIQNH65l2-Q&redir_esc=y#v=onepage&q=Analytics%20at%20Work%3A%20Smarter%20Decisions%2C%20Better%20Results&f=false
https://doi.org/10.1007/s10664-015-9375-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+and+Automatically+Labelling+the+Types+of+User+Issues+that+are+Raised+in+Mobile+App+Reviews&btnG=
https://link.springer.com/article/10.1007/s10664-015-9375-7
https://doi.org/10.14445/23488387/IJCSE-V7I2P101
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=375
https://doi.org/10.1109/MS.2005.95
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+software+development+management+through+software+project+telemetry&btnG=
https://ieeexplore.ieee.org/abstract/document/1463212
https://doi.org/10.1145/2070821.2070829
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+analytics+as+a+learning+case+in+practice%3A+Approaches+and+experiences&btnG=
https://dl.acm.org/doi/abs/10.1145/2070821.2070829
https://doi.org/10.14445/23488387/IJCSE-V9I3P102
https://scholar.google.com/scholar?q=Career+Prediction+Classifiers+based+on+Academic+Performance+and+Skills+using+Machine+Learning&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Career+Prediction+Classifiers+based+on+Academic+Performance+and+Skills+using+Machine+Learning&hl=en&as_sdt=0,5
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=466
https://doi.org/10.1007/978-1-84800-044-5_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Personal+Opinion+Surveys&btnG=
https://link.springer.com/chapter/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/2351676.2351687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Duplicate+bug+report+detection+with+a+combination+of+information+retrieval+and+topic+modeling&btnG=
https://dl.acm.org/doi/abs/10.1145/2351676.2351687
https://dl.acm.org/doi/abs/10.1145/2351676.2351687

