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Abstract: This paper presents the significance of a seismic hazard curve plot as a dynamic parameter
in estimating earthquake-resistant structures. Various cases of structural damages in Malaysia are
due to underestimating earthquake loadings since mostly buildings were designed without seismic
loads. Sabah is classified as having low to moderate seismic activity due to a few active fault lines.
Background point, area, and line sources are the three tectonic features that have impacted Sabah.
Data on earthquakes from 1900 to 2021 have been collected by a number of earthquake data centers.
The seismicity is based on a list of historical seismicities in the area, which stretches from latitudes
4 ◦S to 8 ◦N and longitudes 115 ◦E to 120 ◦E. The goal of this research is to develop a seismic hazard
curve based on a conventional probabilistic seismic hazard analysis being examined for the maximum
peak ground acceleration at 10% probability of exceedance as published in MSEN1998-1:2015. This
study extended to 5% and 2% probability of exceedance combined with the seismic hazard curve
by using Ranau as a case study. To calculate the expected ground motion recurrence, such as peak
ground acceleration at the site, earthquake recurrence models were combined with selected ground
motion models. A logic tree structure was used to combine simple quantities such as maximum
magnitudes and the chosen ground motion models to describe epistemic uncertainty. The result
demonstrates that peak ground acceleration values at the bedrock were estimated to be 0.16, 0.21, and
0.28 g of the total seismic hazard curve at 10%, 5%, and 2% PE in a 50-year return period, respectively.
The seismic hazard study at a Ranau site basically depends on the seismicity of a region and the
consequences of failure in the past. Thus, the results can be used as a basis for benchmarking design
or evaluation decisions and for designing remedial measures for Sabah constructions to minimize
structural failure.

Keywords: hazard curve; moderate earthquake; design standard; structural failure

1. Introduction

Earthquakes are a sequence of movements caused by a sudden release of energy due
to fault displacement. This seismic vibration can cause the earth to shake, potentially
affecting heavily populated areas and resulting in human injury and death. Thus, buildings
and nonstructural elements must be able to withstand seismic loads to reduce the number
of deaths from these incidents. Alberto et al. [1] found that securing building safety is
essential based on their examination of building failure. Furthermore, as demonstrated by
Perrone et al. [2], nonstructural elements must also improve seismic regulations because
this type of structure performs poorly during earthquakes. Malaysia is located on the stable
Eurasian plate to the south and within stable continental regions (SCR). Large earthquakes
are considered to occur relatively infrequently in SCR, and if they do, there also will
inevitably be damage. In SCR, faults are often unknown, and seismic source characteristics
are subject to greater uncertainty. The deformation of Southeast Asia was a combined result
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of continental collision and oceanic subduction [3]. However, Malaysia is very fortunate
despite being surrounding by countries with large earthquakes, but its position is stable in
the Eurasian Plate. Malaysia’s location is also geographically outside of the ring of fire [4].

A significant or even moderate shallow-focus earthquake is usually accompanied by
several other tremors. The biggest challenge is the PGA value that should be taken that
corresponds to the moderate area. The representation of uniform seismicity characteristics,
such as focal depth, seismicity intensity, and maximum magnitude, are represented by
seismic source zones. Geological, seismological, geophysical, and geotechnical investiga-
tions are used to create the characterizations. Each piece of earthquake data is selected
from within an enclosed region that is likely to occur within a source zone of seismicity
and tectonism that is similarly associated. Because of the high rate of occurrence of events
and the vast amount of research conducted in those active tectonic areas, the localization
of faults that trigger earthquakes is also very accurate but not a moderate region. The
limited amount of earthquake data, on the other hand, is not a factor in predicting potential
earthquakes in seismic hazard analysis. Borah et al. [5] found that source zonation is a sig-
nificant factor in hazard estimation. Sawires and Hamdache [6] agreed on the importance
of characterizing the earthquake source using logic tree approach, especially in low-rate
seismicity regions, in order to improve seismic hazard assessment.

The method of quantitatively assessing the design parameters of earthquake ground
motion at a specific site is known as probabilistic seismic hazard analysis, or PSHA. Peak
ground acceleration (PGA) is a ground motion metrics that are taken into account in this
evaluation. There are four procedures that PSHA should follow: (1) gathering earthquake
data, (2) describing the seismic source’s size and distance, (3) identifying the earthquake’s
ground motion, and (4) computing the seismic hazard at certain sites. In the current
investigation, the PGA value at 10% PE is benchmarked based on MSEN1998-1:2015 [7]
as similarly conducted by Drouet et al. [8]. MSEN1998-1 [7], Malaysia’s first national
seismic hazard maps, were completed in 2017 and are based on Eurocode 8 [9]. This
broad view of earthquakes is used to assess the current earthquake situation throughout
Malaysia. The identification of active faults is an essential component in seismic hazard
analysis. Faults might be either active or inactive. When referring to moderate seismicity,
the term “active” denotes movement, even if it is of small magnitude. Therefore, in the
zoning procedure where the seismic events are not populated, there may be numerous
uncertainties. According to Sharon et al. [10], the seismic source zone identification in this
instance was achieved by assuming a consistent rate of seismicity throughout each distinct
source zone and using sufficient geological and paleoseismic data to specify source locations.
Therefore, current geological maps of Sabah by Wannier [11] and Mohd Zainudin et al. [12]
are used for the delineation of fault source identification.

In the preceding 121 years, Sabah has seen 520 earthquakes with magnitudes ranging
from 2.9 to 6.3. According to Agarwal and Blockley [13], damage is required for failure to
occur, and hazard is required for damage to occur. The seismic hazard study at a location
is mostly determined by the region’s seismicity, the sorts of structures involved, and the
repercussions of failure, such as in the case of Ranau, Sabah. As a result, developing
a Malaysian hazard curve is critical, particularly when it comes to seismic appraisal of
existing buildings or new building development, particularly nonlinear response analysis.
Using the existing earthquake database collection, the hazard curve suitable for Malaysia
is examined using probabilistic seismic hazard assessment based on the highest recorded
PGA value.

The possibility of exceeding a specific value in a predetermined future time period
was referred to as the probability of exceeding it. For common buildings, 10% PE with
a time period of 50 years is typically employed, as discovered in Looi et al. [14] and
Chong et al. [15]. Three areas of research are being examined for their maximum PGA based
on prior seismic activity predictions in the region, as published in MSEN1998-1:2015 [7].
According to Looi et al. [16], the highest PGAs for Sabah, Sarawak, and West Malaysia are
0.15, 0.11, and 0.11 g, respectively. Sabah has a PGA value of 0.16 g on the National Hazard
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Map, MSEN1998-1:2015 [7], whereas Sarawak has a value of 0.15 g, and West Malaysia
has a value of 0.13 g. Based on a global assessment utilizing the global earthquake model
(GEM), Pagani et al. [17] estimated the PGA value at 10% PE to be between 0.08 and 0.13 g.
As noted in the PGA comparison, Sabah has the highest PGA in comparison with Sarawak
and West Malaysia (Table 1). This study accumulated the hazard curve of Sabah based on
hazard value summarized from MSEN1998-1:2015 [7]. Seismic hazard curve is the size and
frequency of seismic action to which a region may be subjected for a certain period of time.
The curve reflects the seismic parameters, source characteristics, and types of earthquakes
in the region.

Table 1. Expected maximum PGA values in Sabah, Sarawak, and West Malaysia assuming a 10%
probability of exceedance.

Reference PGA at 10% PE (g)

Sabah Sarawak West Malaysia

Looi et al. [16] 0.15 0.11 0.11

MSEN1998-1:2015 [7] 0.16 0.15 0.13

Pagani et al. [17] 0.13 0.13 0.08

In order to determine the effect of seismic loads on various types of structures,
earthquake-resistant loadings of 10%, 2%, and 5% are investigated. The three types of
PE are an extensive analysis for further analyzed buildings under various scenarios, as
performed by Yang et al. [18], and Dutfoy [19] analyzed 10%, 5%, and 2% as new-generation
probabilistic seismic hazard information as an alternative seismic hazard modelling. In the
seismic design analysis of different types of structure, Tr 475 and 1000 years are known as
operating basis earthquake (OBE) seismic level equivalent to 10% and 5% of PE, respec-
tively, and Tr 2475 is safe shutdown earthquake (SSE) seismic level equivalent to 2% of PE.
The seismic design of structures is generally based on a design response spectrum obtained
from hazard analysis for a specified return period. For many engineering applications, such
as the design of critical facilities or highly irregular buildings, a more complex dynamic
nonlinear analysis is often conducted. Such analysis requires input in the form of design
time series with response spectra that are consistent with the target design spectrum. Earth-
quake acceleration time histories (EATH) known also as design time series are developed
by modifying initial time series that consist of empirical recordings from past earthquakes
representative of the design event or numerical simulations of the ground motion for the
design event. Two approaches exist for modifying the time series to be consistent with the
design response spectrum: scaling and spectral matching. Scaling involves multiplying
the initial time series by a constant factor so that the spectrum of the scaled time series is
equal to or exceeds the design spectrum over a specified period range. Spectral matching
involves modifying the frequency content of the time series to match the design spectrum
at all spectral periods [20]. The synthetic earthquake acceleration time histories (EATH) on
the rock site condition for all the interest return periods are proposed for dynamic structural
analysis purposes. The earthquake acceleration time histories are provided based on a
range of earthquake intensity measures by using several real recorded data and performing
the spectral matching algorithm.

2. Methods

In common analysis of linear and nonlinear dynamic, response spectrum would
refer to linear elastic analysis. The hazard curve is a plot that can be transformed into a
response spectrum at different period procedures able to assess the seismic vulnerability in
a probabilistic manner, such as in the investigations of Marmureanu et al. [21], Solarino and
Giresini [22], and Vargas-Alzate et al. [23], in comparison with nonlinear inelastic, which
depends on the time history input, which requires a certain spectral matching analysis in a
more complex manner. Seismic hazard analysis determines the probability of experiencing
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a certain severity of any damaging earthquake at a specific location within a given time
period [24,25]. It is a probabilistic mathematical procedure that evaluates the answer to
uncertainty about future seismic location, earthquake size, and shaking intensity. As seen
in the flowchart of methodology in Figure 1, the technique is divided into six phases, and
each step is explained in greater detail in the following section.
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2.1. Data Collection and Processing Earthquake Catalog

The first step is to collect earthquake data. Various earthquake data centers have
provided earthquake catalogue data spanning the years 1900 to 2021. The seismicity
is based on a list of the region’s historical seismicities, which spans latitudes 4 ◦S to
8 ◦N and longitudes 115 ◦E to 120 ◦E. Seismic occurrences with a magnitude greater
than 2.0 are considered when compiling the catalogue. A massive dataset supported by
numerous national and international agencies was used to compile earthquake databases,
including the United States Geological Survey and National Earthquake Information Center
(USGS and NEIC), International Seismological Centre (ISC), Harvard Centroid Moment
Tensor (CMT), and Malaysian Meteorological Department (MET Malaysia). Following the
collection of earthquake events, the next step is to analyze the magnitude of earthquakes,
with the whole set in the earthquake catalogue being classified in terms of MW. The most
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accurate magnitude to classify the scale of an earthquake in seismic hazard analysis and
moment magnitude is MW since it is directly proportional to the algorithm of seismic
moment and has a uniform behavior for all magnitude ranges. Since the accuracy of
recorded earthquakes is dependent on magnitude, seismic hazard assessment needs a
homogenous earthquake catalogue for the region studied [26–29].

The declustering procedure is then initiated. Several events in a cluster that occurred
in conjunction with a main shock may have been dependent events (fore- and aftershocks)
throughout the declustering process. These fore- and aftershocks must be removed from the
collection using a declustering technique to ensure a distribution of earthquake occurrences.
This study employs gridded seismicity zone analysis, as performed by Leptokaropou-
los et al. [30] and Zaliapin and Ben-Zion [31], and density-based clustering from Cesca [32].
There were 172 events in the collection, declustered from 520 occurrences, with 5 events of
MW 6.0, 28 events of MW 5.0, and 138 events of less than MW 4.0. Declustering eliminates
around 67% of the activities in the catalogue. This study investigates the completeness of
earthquake data from 1900 to 2021. According to the data, earthquakes with magnitudes
of less than MW 4.0 were first completely documented beginning in 1980. All events with
a magnitude greater than and equal to MW 4.0 are fully reported in the 30-year earth-
quake database. This is because seismic stations have been installed in Malaysia since the
late 1980s.

2.2. Identification and Modelling the Earthquake Source

The third stage is locating an earthquake source that is either active or inactive. The
detection and delineation of seismic source zones is one of the main phases of a seismic
hazard analysis. The features of the fault will include characteristics, such as focal depth,
rate, and maximum magnitude. The tectonic features that affected Sabah can be categorized
into three groups, as observed by Wannier [11] and Mohd Zainudin et al. [12], namely, point,
area, and line sources, as sketched in Figure 2. A point source is a single, independent
earthquake source, an area source is a fault that is dispersed over a wide area, and a
line source is a fault that can be plainly visible on a map and has a specific length. This
study performed a probabilistic seismic hazard assessment (PSHA) using the OpenQuake
software developed by the Global Earthquake Model (GEM) [33].

2.3. Ground Motion Model Description

Ground motion parameters (peak ground acceleration, PGA) values can be calculated
using an adequate set of ground motion models (GMMs), also known as ground motion pre-
diction equation (GMPE), depending on the magnitude, source to site, and soil conditions
of the earthquake source. According to multiple papers, including Anbazhagan et al. [34]
and Weatherill and Cotton [35], using more than one GMM in logic tree formulations for
PSHA has become normal practice. Thus, Table 2 lists three well-known GMMs used in the
current study: Abrahamson and Silva [36], Zhao et al. [37], and Fukushima and Tanaka [38].
The PGA in this study was measured using Equation (1), which Abrahamson and Silva [36]
constructed based on the next-generation attenuation (NGA) ground motion parameters:

Ln Sa(g) = f1(M,Rrup) + a12FRV + a13FN + a15FAS + f5(PGA1100,VS30) +
FHWf4(Rjb,Rrup,Rx,W,dip,Ztop,M) + FRVf6(Ztop) + (1 - FRV)f7(Ztop) + f8(Rrup) +

f10(Z1.0,VS30),
(1)

where M stands for moment magnitude, Rrup is rupture distance (km), Rjb is Joyner-Boore
distance (km), Rx is horizontal distance (km) from the top edge of the rupture, Ztop is
depth to the top of the rupture (km), FRV is flag for reverse faulting earthquakes, FN is
flag for normal faulting earthquakes, FAS is flag for aftershocks, FHW is flag for hanging
wall sites, dip is fault dip in degrees, VS30 is shear-wave velocity over the top 30 m (m/s),
Z1.0 is depth to VS is 1.0 km/s at the site (m), PGA1100 is median peak acceleration (g)
for VS30 = 1100 m/s, W is down-dip rupture width (km), and a12 to a15 are coefficients.
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The shallow crustal earthquakes due to local faults were studied using the peak ground
acceleration (PGA) ground motion parameters, the GMMs created by Zhao et al. [37] for
shallow crustal earthquakes in Japan. Equation (2) describes the model:

Log(y) = aMW + bx - log(r) + e(h-hc)δh + FR + Ck + ε + ή, (2)

where MW denotes moment magnitude, x denotes source distance in kilometers, h denotes
focal depth, δh is a dummy vector, FR denotes reverse-fault parameter, Ck denotes site
class, and ε and ή denote coefficients. The equation was calibrated from rock, heavy,
medium, and soft soil ground on the basis of earthquake data in Japan and other countries
by Fukushima and Tanaka [38]. Although the model was created for Japan, it can be
used in other countries with a distance of up to 300 km for MW 4.6–8.2. Provided that
MW = moment magnitude and R = distance (km), the equation is shown in Equation (3).

Log (PGA) = 0.42MW − log(R+0.25 × 100.42M
W) − 0.0033R + 1.22 (3)
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Table 2. Descriptions of the GMM used by PSHA to estimate the PGA ground motion parameters.

GMM Model Description Range of Magnitude Distance Definition

Abrahamson and Silva [36]

Using the PEER NGA
database, empirical ground

motion models for the
rotation-independent average
horizontal component from
shallow crustal earthquakes

are created. The active
shallow crust tectonic zone is

supported.

5.0–8.5 Required distance measures at
0–200 km.

Zhao et al. [37]

Regression of historical data,
primarily from Japan’s
subduction and crustal

earthquakes, with data from
earthquakes in the Western
United States and the 1978
Tabas earthquake in Iran

thrown in for good measure.

5.1–7.3

If a fault model is provided,
the hypocentral distance
(Rhyp), 0–300 km, is the
shortest distance to the
rupture plane (Rrup).

Fukushima and Tanaka [38] Designed for active shallow
crustal earthquakes. 4.6–8.2 Closest distance to the fault,

1–300 km.

The average shear wave velocity of 30 m depth, or VS30, was employed. The classi-
fication of soil types is based on Eurocode 8, where 800 m/s is assigned to soil type A.
There were a total of 367 earthquake time histories, comprising local earthquake events
throughout Malaysia. These data originate from 70 earthquakes recorded by 33 seismic
stations. Figure 3 depicts the magnitude, MW and distance, Rhypo (km) distributions of
records. It demonstrates that the majority of data are less than MW 6.0 magnitude at a range
of 5 to 600 km and greater than MW 7.0 magnitude at distances greater than 500 km.
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In order to satisfy Sabah as being predominantly influenced by local seismic sources,
the three selected GMMs were compared with real records on soil type A, as shown in
Figure 4. The root of mean square (RMS) was determined for each model to measure
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the difference between estimated and recorded PGA, following Tze et al. [39]. The error
is defined as the difference between the estimated and recorded logarithmic values of
PGA. The RMS value for the Fukushima and Tanaka [38] model is 0.869, followed by the
Abrahamson and Silva [36] model at 0.415 and Zhao et al. [37] equal to 0.301.
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Figure 4. Comparison of GMM curves for active tectonic regions with recorded PGA on rock sites in
Malaysia from local source earthquakes [36–38].

A logic-tree-based algorithm has recently been used to account for various types of
uncertainties, such as the considered earthquake modelling, parameters of seismic source,
maximum magnitude, and GMMs, which are analyzed for PSHA [28,34]. Multiple models
were considered using logic trees, with weights that expressed the degree of confidence
in the seismic hazard [35]. The technique is widely used as a tool to capture epistemic
uncertainty in hazard estimation [6,28,34]. The probabilistic weights for the considered
maximum magnitudes, as well as those for the earthquake source models for local faults
that were chosen, were set based on the probability of each model’s precision. According to
Cummins [40] and Weatherill and Cotton [35], using proper GMMs has a bigger influence
on PSHA; thus, to prevent conservative values from being over- and underestimated, the
weight of each GMM is assigned to a logic tree. These three GMMs have good predictive
and fitting capabilities for the observational data. The Abrahamson and Silva [36] model
is shown to fit all magnitude ranges and distances between 10 and 1000 km the best.
According to the hierarchy of curve-fitting GMMs, Zhao et al. [37] appears to be slightly
underpredicted, whereas Fukushima and Tanaka [38] exhibits reasonable consistency,
although a little overpredicted. The model of Abrahamson and Silva [36] demonstrated a
perfect fit. The Abrahamson and Silva [36] equation was given the greatest weight of 0.5
since it offered better residual fits to the earthquake datasets. Fukushima and Tanaka [38]
came in third with a weightage of 0.2, and Zhao et al. [37] obtained the second-highest
weightage of 0.3. One form, weighted 1.0 in the all-source models, is used to compute the
recurrence rate. The maximum magnitude is weighted by adding 0.5 to Mmax and 0.25 to
both Mmax,+0.25 and Mmax,−0.25.

2.4. Seismic Hazard Parameter

The basic input for the seismic hazard analysis is the source model, expressed through
the Gutenberg–Richter recurrence for each of the seismic zones. The temporal distribution
of earthquakes is assumed to follow a frequency–magnitude relationship. The Gutenberg–
Richter recurrence model was used to calculate the seismic hazard parameters a, b, and
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λ. In seismic hazard evaluations, the Gutenberg–Richter model is well known and widely
accepted [19,41]. The maximum and minimum magnitude (Mmax and Mmin) can be deter-
mined using the previously compiled earthquake catalogue. The following formula can be
used to calculate a, b, and λ: Log10 λ = a – bM, where λ is the earthquake rate and the a-
and b-values are constant. The a-value represents the frequency of occurrence of events
of a specific magnitude, whereas the b-value represents the relative distribution of small
and large occurrence with β = 2.303 b. Table 3 summarizes the input of seismic hazard
parameters for each source used to calculate the seismic hazard curve.

Table 3. Local faults’ seismic hazard parameters.

Segment Locality
Frequency–Magnitude Relationship

Mmax
β λ

Area

Lahad Datu
0.921

0.201
6.5

Ranau 0.152

Labuk 0.824 0.043 5.5

Line

Kudat 0.921 0.152 6.0

Pitas

0.824 0.043 5.0
Perancangan

Pensiangan

Tawau

Kunak 1.051 0.175 6.0

Background

BS1 0.824 0.043 4.0

BS2
1.051 0.175

5.5

BS3 6.0

2.5. Seismic Hazard Curve Calculation

Until calculating the hazard curve, the next step was to use a probabilistic method to
quantify design parameters of earthquake ground motion, such as peak ground accelera-
tions at the bedrock. Baker et al. [42] established a complete probability theorem that will
be used to measure the PSHA equation. This theorem is based on a probability principle,
which treats the earthquake magnitude M and hypocenter distance Rhyp as continuous
independent random variables. In its most basic form, the complete probability theorem is
expressed by Equation (4).

P[I ≥ i] =
∫
R

∫
M

P[I ≥ i|m and r ].fM(m).fR(r)dmdr (4)

The equation consists of fM(m), where it is the magnitude density function, and fR(r)
is the hypocenter distance density function. For a given earthquake magnitude M and
hypocenter distance R, [I > i|m and r] is a conditional probability of (random) intensity
I exceeding the value of i at the site. The natural logarithm of a number is logarithm to
the base e, while the usual logarithm of a product is the sum of the logarithms of the
numbers being multiplied. Equation (5) can be used to translate the relationship between
the two logarithms.

Log10(PGA) =
ln(PGA)

ln(10)
(5)

The probabilistic seismic hazard analysis is computed to account for various return
periods of the hazard for Sabah since it is dependent on the annual rate of ground motion
exceeding a specific value. The likelihood of reaching the ground motion level z due to
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an occurrence of size magnitude and distance length reflects a strong ground motion at
a site due to all earthquakes predicted to occur in the area around the site. There is a
probability of exceeding z during an exposure period of Y years, assuming that z is the
average occurrence rate. The probability of exceeding Z during an exposure period of Y
years can be written as in Equation (6).

P(Z > z) = 1− exp[−Yz] (6)

The probability density function for magnitude, M, is based on the Gutenberg–Richter
equation, which assumes that the upper bound of earthquake magnitudes is limited due to
the finite size of the source faults. A bounded Gutenberg–Richter recurrence law is a finite
magnitude distribution in which if a maximum magnitude is calculated, the likelihood of
magnitude is expressed in Equation (7).

FM(m) =
bln(10).10−b(m−mmin)

1− 10−b(mmax−mmin)
(7)

When it comes to earthquake sources, the likelihood of seeing a distance less than R is
proportional to the fraction of the fault that is within a total length of r. In Equation (8), it is
presumed that earthquake epicenters are equally probable in all places.

FR(r) = P(R < r) (8)

Additionally, probabilistic uniform hazard response spectra of the interested site can
also be derived. A response spectrum in which each point has the same probability of
exceedance during a specific design time is called uniform hazard spectrum (UHS) on a
rock site (VS30 = 760 m/s). The calculated uniform hazard spectrum on a rock site is based
on OBE and SSE seismic levels. The recommended elastic acceleration response spectra are
based on part 1 of Eurocode 8 [9] seismic provisions. By employing these elastic acceler-
ation response spectra, rock site peak ground acceleration (PGA) with 475 years’ return
period, importance factor of structure, and structural behavior factor design acceleration
response spectra would be created. As regards the spectral matching results for obtaining
appropriate synthetic earthquake acceleration time histories (EATHs) based on the obtained
probabilistic uniform hazard spectra for the interested site, for each seismic hazard level,
different EATHs can be obtained for dynamic structural analysis purposes. The derived
EATHs are obtained through original filtered earthquake acceleration records due to the
shallow crustal and subduction intraslab seismic sources of Malaysia.

3. Results

A seismic hazard curve is determined for a specific period of vibration at several
motion stages, and the design value of acceleration for a specific period of vibration is
obtained by interpolation of the hazard curve at 2%, 5%, or 10% probability of exceedance.
The hazard curves for the mean annual rate of exceedance versus peak ground acceleration
(PGA) for Sabah are compared with Sarawak and West Malaysia, as shown in Figure 5. This
hazard curve is pertinent to the highest PGA in each region and is appropriate, for a rock
site was derived from a source model that considers three segments of Sabah localized fault
regions. Since the 2004 Aceh earthquake, Malaysian seismic hazard analysis has progressed
steadily, beginning with the introduction of a rational framework for dealing with apparent
randomness in earthquake processes, which allowed risk assessments to consider both
the severity and likelihood of earthquake effects. The next stage was to identify epistemic
uncertainties associated with inadequate knowledge and to develop frameworks for both
quantifying and incorporating them into hazard evaluations. Structure shall be considered
to have a return period, Tr of seismic action for the no-collapse requirement (or, equivalently,
reference probability of exceedance in 50 years, when the following Equation (9) is satisfied



Buildings 2023, 13, 318 11 of 16

in unit of g (m/s2) or gal (cm/s2), where 1 g = 980 gal. Tr is the return period, q is the
percent probability of exceedance (10%, 5%, or 2%), and t is the exposure time.

Tr =
1

1− (1− q)1/t (9)
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Figure 5. Sabah’s hazard curves in comparison with the seismic zone of Sarawak and West Malaysia.

The hazard curve depicts peak ground acceleration with 10%, 5%, and 2% probabilities
of exceeding in 50 years, corresponding to return periods of 475, 1000, and 2475 years,
respectively. Sabah has the highest PGA rating [7], and earthquakes are common in the
region. In the final analysis, from the hazard curve, it showed that the PGA value at 10% is
equal to 0.16 g, 5% is 0.21 g, and 2% is 0.28 g by referring to the area of Sabah. In comparison
with the hazard curve of Sarawak and West Malaysia developed by Ahmadi et al. [43]
and Loi et al. [44] and summarized in Table 4, the study shows only 10% probability of
exceedance, and the plot of hazard curve shows a different result of return period. From the
analysis, 10% PE from Sarawak is equal to 0.07 g, 5% PE is 0.092 g, and 2% is equal to 0.13 g.
As for West Malaysia, 10%, 5%, and 2% PE are equal to 0.09, 0.13, and 0.20 g, respectively.
The PGA value of 10% PE in Sabah is equivalent to that suggested by MSEN1998-1:2015 [7];
however, different values found in Sarawak and West Malaysia predicted a lower value
in comparison with MSEN1998-1:2015 [7]. MSEN1998-1:2015 [7] provides the hazard map
for 10%, while Figures 6 and 7 provide the hazard maps for 5% and 2%, respectively. The
term “uniform hazard spectrum” refers to a response spectrum where each point has the
same probability of exceeding during a particular design time. In this work, the uniform
hazard spectra (5% damping) of Ranau regions of Sabah were carried out to suggest design
response spectral acceleration (RSA) on a bedrock for the entire Sabah region (Figure 8).
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Table 4. Seismic hazard curve comparison values between Sabah, Sarawak, and West Malaysia at
10%, 5%, and 2% probability of exceedance.

Region 10% 5% 2%

Sabah 0.16 g 0.21 g 0.28 g

Sarawak 0.07 g 0.09 g 0.13 g

West Malaysia 0.09 g 0.13 g 0.20 g
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The seismic hazard study in Sabah is primarily determined by the seismicity of the
region and the repercussions of previous failures. Many buildings were damaged as a result
of the Ranau 6.0 magnitude earthquake, and the earthquake resulted in casualties and eco-
nomic loss. Several studies, including Khoiry et al. [45], Roslee et al. [46], Ganasan et al. [47],
and Razak et al. [48], discuss the analysis of structural integrity and construction measures,
such as conceptual design, structural integrity, structural stiffness, strong column–weak
beam, building construction, and seismic defect. All essential aspects affecting the seismic
hazard at the specific site, as well as the actual dynamic performance of the structure,
should be considered in structural analyses. As a result, the findings can be utilized to
inform design or evaluation decisions, as well as the development of corrective procedures
for Malaysian structures.
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4. Conclusions

The probabilistic seismic hazard analysis (PSHA) is used in this study to estimate
the hazard level of the Sabah region, which is applicable throughout Malaysia. This is
because the region has the highest peak ground acceleration (PGA) of any state in Malaysia.
The value can be used in building seismic design analysis. The hazard curve results were
presented in this study using a combination of the region’s local faults. Line, area, and
background point source were used to model seismic sources with variable characteristics.
From 1900 to 2021, the study region’s composite earthquake catalogue includes a region
bounded by 4 ◦S–8 ◦N latitude and 115 ◦E–120 ◦E longitude. In order to understand
epistemic uncertainty, a logic tree structure was used to integrate simple quantities, such as
maximum magnitudes and ground motion models (GMMs). The hazard curve for Malaysia
was computed using probabilistic analysis at 10%, 5%, and 2% probability of exceedance
(PE) in the design period of 50 years, which corresponds to return periods of approximately
475, 1000, and 2475 years, respectively. The PGA values at the bedrock were estimated to be
about 0.16, 0.21, and 0.28 g for 10%, 5%, and 2% PE, respectively. The hazard curve value,
however, can be applied when the value of PGA is similar; however, it does not apply for
the region where the PGA values are lower than the suggested PGA.

The findings can be used to make design or evaluation decisions in Malaysia and to
develop corrective procedures and anticipate structural failure in a variety of settings of
10%, 5%, or 2% PE. The application of a hazard curve in the current study might be applied
in certain places around Malaysia if the PGA value is equivalent. For research purposes,
some studies have used the highest PGA for damage prediction purposes in which the
objective of this study is performed, where the current seismic design code are limited to
the 10% seismic level. This study can be referenced to extend the rare event of the seismic
level by applying two different seismic loads: 5% and 2%. The current seismic input can be
extended to nonlinear dynamic analyses of structures in terms of acceleration time series
whose response spectra are compatible with a specified target response spectrum. Generate
synthetic ground motion appropriate for a site due to those return periods of earthquake.
Carry out with the distribution percentage of hazard due to the considered seismic sources
through disaggregation seismic hazard analysis.
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