Chattopadhyay, Indranil and Lu, Wenying and Manikam, Rishya and Malarvili, M. B. and Ambati, Ranga Rao and Gundamaraju, Rohit (2023) Can metagenomics unravel the impact of oral bacteriome in human diseases? Biotechnology and Genetic Engineering Reviews, 39 (1). pp. 85-117. ISSN 0264-8725
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1080/02648725.2022.2102877
Abstract
Oral microbial ecosystems are vital in maintaining the health of the oral cavity and the entire body. Oral microbiota is associated with the progression of oral diseases such as dental caries, periodontal diseases, head and neck cancer, and several systemic diseases such as cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, diabetes, lung infection, colorectal cancer, and pancreatic cancer. Buccal mucosa, tongue dorsum, hard palate, saliva, palatine tonsils, throat, keratinized gingiva, supra-gingival plaque, subgingival plaque, dentures, and lips are microbial habitats of the oral cavity. Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic disease. Fusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritis. The higher abundance of Prevotella intermedia is typical in periodontal diseases, rheumatoid arthritis, and adverse pregnancy outcome. S. salivarius displayed higher abundance in both dental caries and OSCC. Oral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines. Identification of oral bacteria using culture-dependent approaches and next-generation sequencing-based metagenomic approaches is believed to significantly identify the therapeutic targets and non-invasive diagnostic indicators in different human diseases. Oral bacteria in saliva could be exploited as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders. Other therapeutic approaches such as the use of probiotics, green tea polyphenol, cold atmospheric plasma (CAP) therapy, antimicrobial photodynamic therapy, and antimicrobial peptides are used to inhibit the growth of biofilm formation by oral bacteria.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | biomarker, dysbiosis, inflammation, Oral bacteria, oral diseases, systemic diseases, therapeutic targets |
Subjects: | Q Science > Q Science (General) Q Science > QR Microbiology |
Divisions: | Biosciences and Medical Engineering |
ID Code: | 105566 |
Deposited By: | Widya Wahid |
Deposited On: | 06 May 2024 06:25 |
Last Modified: | 06 May 2024 06:25 |
Repository Staff Only: item control page