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Abstract: Computerized brain tumor classification from the reconstructed microwave brain (RMB)

images is important for the examination and observation of the development of brain disease. In

this paper, an eight-layered lightweight classifier model called microwave brain image network

(MBINet) using a self-organized operational neural network (Self-ONN) is proposed to classify the

reconstructed microwave brain (RMB) images into six classes. Initially, an experimental antenna

sensor-based microwave brain imaging (SMBI) system was implemented, and RMB images were

collected to create an image dataset. It consists of a total of 1320 images: 300 images for the non-tumor,

215 images for each single malignant and benign tumor, 200 images for each double benign tumor

and double malignant tumor, and 190 images for the single benign and single malignant tumor

classes. Then, image resizing and normalization techniques were used for image preprocessing.

Thereafter, augmentation techniques were applied to the dataset to make 13,200 training images per

fold for 5-fold cross-validation. The MBINet model was trained and achieved accuracy, precision,

recall, F1-score, and specificity of 96.97%, 96.93%, 96.85%, 96.83%, and 97.95%, respectively, for

six-class classification using original RMB images. The MBINet model was compared with four

Self-ONNs, two vanilla CNNs, ResNet50, ResNet101, and DenseNet201 pre-trained models, and

showed better classification outcomes (almost 98%). Therefore, the MBINet model can be used for

reliably classifying the tumor(s) using RMB images in the SMBI system.

Keywords: brain tumor classification; RMB image dataset; stacked antenna sensor; deep learning;

self-ONN; sensor-based microwave brain imaging system

1. Introduction

At present, brain tumors are a serious cause of death worldwide. The expansion of
abnormal cells that develop inside the brain results in a brain tumor. It causes harm to
the brain’s major tissues and develops into cancer. It poses a threat to human life, has
a deadly prognosis, and has a significant impact on quality of life. However, due to the
unrestrained progression of brain tumors, the possibility of developing brain cancer is
increasing day by day. The probability of developing brain cancer is increasing over time
as a result of the tumors’ unrestrained growth, and it is the tenth leading cause of death
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in people [1]. Typically, there are two main categories for brain tumors: (i) benign tumors
and (ii) malignant tumors [2,3]. Globally, the incidence of brain tumors is rising alarm-
ingly rapidly. The National Brain Tumor Society (NBTS) estimates that 88,970 Americans
were living with a major brain cancer diagnosis in 2022, with 63,040 of those individuals
suffering from benign tumors and 25,930 from cancerous tumors [2]. According to the
report, the survival rate of the patients is only 36%. The benign tumor is made up of
non-cancerous cells with a uniform structure and a consistent shape [4–6]. It does not
expand to other bodily areas or encroach on nearby tissue. A cancerous tissue of the brain
with a heterogeneous composition and an irregular form makes up a malignant tumor [4–6].
In contrast to malignant tumors, which grow uncontrollably, benign tumors grow relatively
slowly. The invasive properties of the tumors increase the death rate, but early diagnosis,
monitoring, categorization, and appropriate examination can lower the mortality rate and
raise the survival percentage. Furthermore, automatic brain tumor classification from
medical images is important for clinical evaluation and treatment planning of brain can-
cers. In addition, brain tumor analysis, classification, and detection are severe issues for
radiologists and medical doctors. The accurate and timely investigation of brain cancer
is imperious for the appropriate treatment of this disease. Brain tumor classification is
an important technique in medical imaging applications that classifies specific tumors
based on head images. Currently, different types of imaging technologies, including PET
(positron emission tomography), MRI (magnetic resonance imaging), ultrasound screening,
X-ray screening, and CT (computed tomography), are utilized to diagnose brain tumors
in advanced medical facilities [4,7–9]. These imaging standards assist medical doctors
and radiologists to identify different types of health-related diseases, such as brain can-
cer. These imaging methods’ major downsides include increased cancer risk due to high
dose radioactivity, decreased susceptibility, extreme ionizing of brain cells, high cost, and
risk for pregnant women and elderly patients [5–7,9–12]. Further, microwave imaging
(MWI) has recently attracted a lot of attention from researchers for medical applications
because of its remarkable characteristics, such as non-ionizing radioactivity, penetration
capability with low power, non-invasiveness, ionization risk-free for the human body, and
cost-effectiveness with a low profile [10,13–16]. Nowadays, researchers have been using
microwave imaging technology to overcome the drawbacks of traditional medical imaging
modalities [16–21]. Antennas play an important role in microwave brain imaging (MBI)
technology, where a single antenna acts as a transmitter and others as receivers. Receivers
receive the backscattered biosignals, which are then post-processed by the image recon-
struction process. The data is then post-processed using the image generation procedure to
produce reconstructed images. Different image reconstruction algorithms have been used
in microwave head imaging modalities to detect brain tumors [15,18,20–26]. However, the
main limitations of the developed MBI modalities are (i) noisy, blurry, and low-resolution
images created by the system; (ii) identification of the tumor and its location is complicated
for a non-expert physician and radiologist; and (iii) difficulty in classifying the tumor in
RMB images. In order to overcome such limitations, researchers have been applying deep
learning techniques to microwave imaging systems [27–32].

Deep learning (DL) is a subdomain of machine learning that uses the convolutional
neural network (CNN) model to classify images. The CNN has convolutional layers
for feature extraction and densely connected layer(s) for classification. Recently, image
classification has become an essential role of medical image analysis, in which deep con-
volutional neural networks (DCNNs) have been used for the last ten decades. The image
classification identifies whether the target object or disease is present or not in the image
of the investigation. A fine-tuned DenseNet201 (FT-DenseNet201) deep learning model
was developed to classify the MRI tumor images [33]. The model achieved 95% accuracy,
but it shows less accuracy when classifying the small-sized tumor images. In another
study, a pretrained DenseNet201 (PT-DenseNet201) model was proposed to classify the
tumors [34]. It is based on multilevel features and concatenation characteristics that can
diagnose the tumor at an early stage. The approach achieved 99.34% testing accuracy,
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but the precision and specificity scores were only 92% and 83%, respectively. The dual
pathway DenseNet (DP-DenseNet) architecture model was proposed in [35] to classify
tumors. The architecture was evaluated on the BRATS 2017 MRI dataset. The reported
precision, F1 score, and dice score were 85%, 88%, and 89%, respectively. The network
model can only classify large-sized tumor-based images but not small-sized tumor images,
resulting in comparatively poor classification performances. A deep neural network with
a generative adversarial network (DGAN) model was proposed in [36] to classify brain
tumors based on MR images. The DGAN model used 64 × 64 sized images as input, and
it achieved 93% accuracy. It showed low classification performance due to input image
size limitations. A pre-trained Inception-v3 classification model was used to classify brain
tumors. The approach employed the concatenation method with the Softmax classification
technique to classify tumors from the MRI images. The differential deep convolutional neu-
ral network (differential-DCNN) model was presented in [37]. The model was evaluated
using 17,600 MRI brain images for the classification of the different types of tumors. As a
classification performance, the model achieved 95% sensitivity and 93% specificity. In [38],
a conventional multi-pathway CNN (CMP-CNN) architecture was presented for tumor
classification by using MRI brain images. The model assessed 3064 images for three types of
tumor classification and attained 94% sensitivity. A multi-class tumor image classification
by ResNet-50 was proposed in [39]. The model used a global average pooling mechanism
to enhance the classification accuracy, but it achieved 97.08% mean accuracy and a 90.02%
F1 score. A fine-tuned ResNet101 model was presented in [40] for brain tumor classification.
The model used a differential evaluation method and a swarm optimization algorithm to
improve classification performance. The classification accuracy achieved by this model was
94.4%. Nevertheless, the model may fail to classify noisy, blurry, and small sized images.
However, the pros and cons of existing models are summarized in the following Table 1.

Table 1. Summarizes the pros and cons of the existing models mentioned in the literature review.

Ref.
Name of the

Existing Model
Pros Cons

[33] FT-DenseNet201
The Entropy Kurtosis based technique is used in this

model for feature extraction to improve the accuracy of
the system and reduce the time of classification.

The fusion process of the model increases the
computational time and shows less accuracy in

classifying the small-sized tumor images.

[34] PT-DenseNet201
The multi-level features Information is extracted from
different bottom layers of the model, which enhances

its capability to classify the tumors.

It requires a large amount of computational time and
shows a low precision score and specificity score for

noisy images.

[35] DP-DenseNet

The model is a combination of residual networks and
dilated convolutional layers that can solve the

vanishing gradient problem. It enhances image
resolution and classification accuracy for multimodal

brain tumor samples.

The network model can only classify large-sized
tumor-based images but not small-sized tumor images,

resulting in comparatively poor classification
performances. Further, it increases the

computational time.

[37] Differential-DCNN

The model uses a differential operator with contrast
calculation for analyzing the pixel-directional pattern
of images. It is very good at accurately classifying a

large set of tumor images.

The model may fail to achieve high performance due
to large dataset constraints, which increases the testing

loss. As a result, the model failed to classify the
small-sized tumor images.

[38] CMP-CNN

The CMP-CNN model employs three convolutional
pathways for extracting discriminant texture features

of different kinds of tumors and uses a multi-scale
processing strategy for improving the tumor

classification performance.

It takes a long computational time to train the model
and has caused false positives in a number of testing
images due to the lack of variability among the three

tumor types.

[39] ResNet-50
The global average pooling method is used to solve the
problems of vanishing gradient and overfitting in the

deep network-based ResNet-50 model.

It is computationally expensive as it uses a deep neural
network. The classification accuracy is slightly lesser

when compared to other classes.

[40] Fine-tuned ResNet101
The model utilizes the differential evaluation method
and particle swarm optimization algorithms to reduce

redundant features and computational overhead.

The computational time increases during the testing
process because of the fusion process, which achieves
less accuracy in classifying the small tumor images.
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In the last couple of years, deep learning-based transformer architecture has been
employed for classifying medical images instead of CNN models. An nn-TransUNet
model has been used for MRI medical image segmentation tasks [41]. The model used
vision transformers and convolution layers in the encoder for enhancing the segmentation
and classification performance. The main benefit of the model is that it reduces time
complexity and makes it possible to manually tune the hyperparameters for improved
training accuracy, but it requires a large amount of memory and a high-performance GPU
to train the model. Another transformer architecture-based model, Vision Transformer
(ViT), has been used for classifying images and image recognition [42]. The ViT model
used linear projections of flattened patches for image classification. The encoder of the
transformer model uses multiheaded self-attention and residual connections in every
block for increasing classification performance. A residual vision transformer (ResViT)
architecture model has been applied for multimodal medical image classification [43].
In [44], the authors have used a zero-shot learned adversarial transformer (SLATER). The
SLATER model combines a deep adversarial network with cross-attention transformers to
reduce noise in medical MRI images and enhance image classification performances. It is a
suitable network architecture for high-performance MRI image acceleration, but it takes a
long time to train the model.

Recently, operational neural networks (ONNs) have been applied as a diverse network
model for image analyzing, classification, and processing due to their non-linear properties,
low computational complexity, simplicity in structure, and high performances. A self-
organized ONN (Self-ONN) model was proposed in [45,46] to classify the biomedical
images. It is seen that the Self-ONN model can perform better than conventional CNN
models if the model architecture and parameters can be tweaked carefully.

Since all the above-mentioned works used deeper architectures, it is natural that these
networks require longer training and inference times and are not suitable for portable
device deployment. Therefore, there is a demand to design a lightweight deep learning-
based classification model to classify the RMB images with better classification performance.
The main contributions of this work are specified below:

1. According to the authors’ knowledge, this is the first study to propose a lightweight
classification model called microwave brain image network” (MBINet) to classify
RMB tumor images using a new machine learning paradigm called the Self-organized
operational neural network (Self-ONN) architecture.

2. The proposed MBINet model is implemented and investigated on the RMB tumor im-
ages to classify the brain images into six classes: non-tumor (NT), single benign tumor
(BT), single malignant tumor (MT), double benign tumor (BBT), double malignant
tumor (MMT), and single benign and single malignant tumor (BMT).

3. The Implementation of a sensor-based microwave brain imaging (SMBI) system
with a fabricated tissue-imitating brain phantom model to investigate the imaging
performance for generating the RMB tumor image dataset.

4. A new Self-ONN model, MBINet, four other Self-ONN models, two conventional
CNN models, and three pretrained models (DenseNet201, ResNet50, and ResNet101)
are investigated on the RMB tumor images to classify six classes to show the usefulness
of the suggested MBINet classification model.

5. The proposed MBINet model is compared with the seven most recent state-of-the-art
models to verify the classification outcomes.

The remaining part of the manuscript is structured as follows: Section 2 explains the
SMBI implementation setup and image reconstruction process. The research methodology
and materials, including dataset preparation and experimental methods, are discussed
in Section 3. Section 4 discusses the results of the classification models for the raw RMB
images. In the end, the paper is concluded in Section 5.
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2. Stacked Antenna Sensor-Based Microwave Brain Imaging (SMBI) System
Development and Image Reconstruction Process

2.1. Design and Development Process of the Sensor-Based Stacked Antenna

An experimental stacked antenna sensor-based microwave brain imaging (SMBI)
system has been developed in this research to reconstruct microwave brain (RMB) images
and examine system performance. It is worth mentioning here that a wideband antenna
sensor with high gain and unidirectional characteristics is required with a frequency band
of 1 GHz to 4 GHz for the MBI system [10,14,17,18,20,21,25,47–49]. A new metamaterial
(MTM)-inspired 3D wideband stacked antenna sensor has been printed on inexpensive
Rogers RO4350B and RT5880 substrate materials. Three (03) substrate layers, together
with two air gaps, comprise the antenna sensor. Double-sided foam tape is used to attach
the layers together. The bottom layer (BL) is printed on an RO4350B substrate, while the
top and middle layers are printed on a RT5880. The air gap in the middle is 2 mm. In
the top and middle layers, a single 1 × 4 MTM array component is employed, while a
single 3 × 2 MTM array component is employed in the BL. In order to improve antenna
performance in terms of effectiveness, realized gain, bandwidth, radiation directionality
in open space, and near proximity to the head model, MTM array elements are utilized in
layers. The optimized dimension of the antenna sensor is 50 × 40 × 8.66 mm3. The antenna
was measured in both free space and near the head model to ensure antenna performance.
The measurements reveal that the antenna has an appropriate field penetration in the head,
a fractional bandwidth (FBW) of 79.20 percent (1.37 to 3.16 GHz), 93 percent radiation
efficiency, a 98 percent maximum fidelity factor, and 6.67 dBi gain. The fabricated antenna
and reflection coefficient (S-parameters) measurements are shown in Figure 1. These results
ensure that the antenna is able to produce the desired RMB images from the implemented
SMBI system. We utilized our new MTM loaded 3D wideband stacked antenna in the SMBI
system framework to generate RMB images for this research.

                   
 

                        ‐
                         

   
(a)  (b) 

                         

                   
      ‐   ‐              
                           

                             
                             

                             
                          ‐  
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              ‐          
         

   
   

Figure 1. (a) Fabricatted 3D stacked antenna, (b) Measured and simulated reflection coefficient.

2.2. Phantom Model Fabrication Process and SMBI System Implementation Process

At first, a six-layered, tissue-imitating phantom with tumor (benign and malignant)
tissues was made for validating the SMBI system. The layers and tumors were constructed
as stated in the recipe in [50]. The electrical characteristics of the tumors (i.e., malignant
and benign) were deemed to be stated quantities in [51]. The malignant tumor was formed
in an irregular elliptical and triangle shape, whereas the benign tumor was created in a
roughly round form with a typical shape [51]. Later, layer by layer, the tissue-imitating
phantoms and tumors were added to the 3D head model. For the purpose of performing the
measurement using the brain imaging equipment, the benign and malignant tumors were
put into the model at various locations. The benign and malignant tumors were embedded
into the skull model in various places. The simulated and measured S-parameters of the
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antenna sensor with the formulated tissue-imitating head model, including tumors, are
shown in Figure 2a.

 

(a) (b) 

 

(c) 

 
Figure 2. Antenna sensor measurements and experimental setup for the SMBI system: (a) Measured
and simulated results of the antenna sesnor with a fabricated head phantom model, (b) MTM loaded
3D stacked antenna sensor inside the helmet, (c) Overall SMBI system model.

Additionally, nine antenna sensor arrays set up inside the helmet are shown in
Figure 2b. Figure 2c indicates the complete experimental SMBI system. The system com-
prised nine stacked antenna sensor arrays, a stepper motor, an adjustable stand, a custom-
made helmet, an RF switch, a PNA E8358A transceiver, and a microcontroller. The movable
platform, to which the stepper motor is attached, turns counterclockwise with a 7.2◦ angle
at each step to cover the entire (360◦) area. The helmet is tightly attached to the motor’s
shaft. The diameter of the helmet is 300 mm. Through the use of double-sided foam tape
(DSFT), the antenna sensor is secured inside the helmet. In order to cover the entire system,
there must be a 40◦ angle between each antenna. The sensor location is set 100 mm up from
the lowest point of the helmet to fine-tune the phantom head position. Through the GPIB
port, the PNA is connected to the computer. Port A is linked to the transmitting antenna,
while Port B is linked to an RF switch to receive backscattered signals. For assessing the
effectiveness of the system, a six-layered 3D phantom model is constructed and mounted
in the middle of the helmet. The PNA accumulated the reflected sensor signals (S21, S31,
. . . S91) after each 7.2-degree rotation.

Thereafter, the obtained sensor waves were processed and operated by the iteratively
corrected delay-multiply-and-sum (IC-DMAS) image generation algorithm [52] to produce
RMB images. It is notable that recently, in vivo imaging technology has been applied in
medical science for brain tumor diagnostic purposes. Due to the fact that it is non-invasive,
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it can visualize living organs (for example, brain tumor imaging) and accurately detect
target object locations in the region of interest. However, a live object such as an animal
or human body is needed to produce an image, which is very challenging and a medical
permission issue. In this research, we cannot use a live brain or human body for generating
tumor-based images because of clinical trial limitations in our research lab. As a result, we
are unable to collect in vivo image samples. Thus, we used a fabricated tissue-mimicking
brain phantom model, which has the actual properties of a real brain, and collected all
data from the system. Following that, all of the phantom-based data was analyzed and
processed in order to generate brain tumor-based images for further evaluation. However,
our future aim is to collect in vivo images for further evaluation, which will help medical
doctors classify the tumor easily.

2.3. Illustration of RMB Image Samples

Figure 3 depicts samples of the tissue-mimicking phantom, different tumor scenarios,
and corresponding RMB images. Figure 3a depicts the layout of the phantom model
for visual comprehension. In addition, the tumors were positioned at various locations
on the head model. Figure 3a–f depict the six image classes: the NT image, a single BT
image, a single MT image, a double BBT image, a double MMT image, and a single benign
and malignant tumor (BMT) image. After that, we collected nine hundred twenty (920)
samples, including all classes, to make the original RMB image dataset. Later, different
pre-processing steps were applied to the images to train, validate, and test the classification
models. The proposed classifier was investigated by utilizing the original RMB images.
Image preprocessing and augmentation processes were applied to the collected image
samples to produce a large enough training dataset.

                   
 

           
            ‐          

                           
                         
                                 
                               

                       
                         

‐                          
                     

                     
                   

       
(a)  (b) 

 
 

 
 

(c)  (d) 

       
(e)  (f) 

          ‐                 ‐
                                     
             

   

Figure 3. Samples of formulated tissue-imitating head phantom models with RMB images: (a) Non-
tumor (NT), (b) Single BT image, (c) Single MT image, (d) Two BBT image, (e) Two MMT image,
(f) Single benign and single malignant tumor (BMT).
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3. Methodology and Materials

This segment explains the methodology, dataset clarification, preprocessing method,
data augmentation processes, and investigational analysis. The summary of the overall
research methodology is stated in Figure 4. This research work utilized reconstructed mi-
crowave brain (RMB) images, which were collected from two data sources: (i) this research
work (implemented experimental MBI system), and (ii) our previous research work [53]
to enrich the dataset for classification models. Generally, the research has primarily fo-
cused on two distinct categories of images, such as (i) healthy brain (i.e., non-tumor (NT)
images) and (ii) unhealthy brain (i.e., tumor-based images). The unhealthy brain images
are categorized into five classifications: (i) single benign tumor (BT) images, (ii) single
malignant tumor (MT) images, (iii) two benign tumor (BBT) images, (iv) two malignant
tumor (MMT) images, and (v) single benign and single malignant tumor (BMT) images.
The work explored the proposed lightweight microwave brain image network (MBINet)
classification model; four Self-ONN classification models; two CNN-based models; and
two pretrained models were used to inspect the classification performances for the six class
classifications: NT, BT, MT, BBT, MMT, and BMT.

                   
 

       
                 

                     
                        ‐
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            ‐            

                          ‐
                          ‐

                           
                    ‐

      ‐         ‐        
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Figure 4. The flowchart for the complete research process.
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3.1. Preparation of Image Dataset

In this research, the dataset is prepared by collecting the image data from two sources:
our currently implemented MBI system, and our previous research [53]. The combination
of two datasets enriches the training dataset for better classification performance. The
dataset consists of a total of 1320 original RMB images, where there are three hundred
(300) images for the NT class, two hundred fifteen (215) images for each BT and MT class,
two hundred (200) images for each BBT and MMT class, and one hundred ninety (190)
images for the BMT class. Some samples of the original RMB images for all classes are
displayed in Figure 5. The source code and original RMB image dataset can be found at:
https://github.com/Amran038/Microwave-Brain-Image, accessed on 20 November 2022.

                   
 

                               
                                 
                             

                               
                               

‐ ‐            

       
(a) 

       
(b) 

       
(c) 

       
(d) 

       
(e) 

       
(f) 

                               
                             Figure 5. Randomly selected RMB image samples from the original dataset: (a) NT class, (b) Single

BT class, (c) Single MT class, (d) BBT class, (e) MMT class, (f) BMT class.

https://github.com/Amran038/Microwave-Brain-Image
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3.2. Data Preprocessing and Augmentation Process

This section illuminates the data preprocessing and dataset formulation for the ex-
perimental deep learning models. The data preprocessing is the starting stage of a DL
model because of model’s input constraints. The different classification network models
have different input size requirements. Thus, image data is pre-processed (resized and
normalized) before training the models. For the raw RMB tumor image classification
purposes, the images are resized to 224 × 224 pixels for four Self-ONNs, two vanilla CNNs,
two pretrained models (DenseNet201 and ResNet50), and the proposed MBINet models.
The original dataset’s images are normalized using the z-score normalization approach,
the mean (M), and standard deviation (SD) of each image. Deep learning models typically
require a large image dataset to effectively train the model to classify the images.

The image augmentation technique is employed in this study to build a large training
dataset because the small dataset is insufficient for training the models. Instead of gathering
additional information or samples, image augmentation might improve the performance
of the models. It can significantly increase the diversity of data available for training the
models as well as create a rich dataset from a small sample image dataset, which helps
to enhance network performance. Different types of image augmentation techniques can
be used to enrich the training dataset, such as rotation, scaling, translating, horizontal
and vertical flipping, zooming, cropping, anatomically guided distortion elimination,
etc. In addition, in particular, realistic augmentation based on recent state-of-the-art
image synthesis techniques can be considered for image or data augmentation. This
augmentation approach can be very useful for multimodal MRI-CT and multi-contrast MRI
medical images (i.e., MRI, CT, PET, X-ray mammography, etc.). For example, SynDiff is
the adversarial diffusion model, which is used for medical image synthesis and translation
purposes [54]. This model is also used for image sampling. A diffusion probabilistic
model was used for image synthesis and data scaling as an augmentation process [55].
In data scaling, authors have assumed that an image dataset consists of integers in the
range of 0 to 255 as a pixel value, which scales linearly to [−1, 1] for reducing the data
dimensionality [55].

Furthermore, in our microwave imaging technology, the produced images are two-
dimensional and almost noiseless, and the target object’s (i.e., tumor) perceptibility is
good. As a result, anatomically guided distortion and adversarial diffusion augmentation
processes are not needed to apply to RMB images. For this reason, four different image
augmentation techniques (e.g., rotation, scaling, translating, and flipping) were used in this
investigation to generate the training dataset.

The images are rotated in both clockwise and counterclockwise directions at an angle
ranging from 10 to 40 degrees. The tumor objects are thus relocated at various locations
within the images. Scaling is the process of reducing or enlarging an image. Here, 10% to
12% image magnifications are employed. The image translation technique shifts the tumor
objects to different locations in the images by translating the images by 10% to 15% in
both the vertical and horizontal directions. The vertical flipping method is also used as an
augmentation technique. This study used a five-fold cross-validation technique for training,
validation, and testing purposes. Eighty percent of the total images were utilized for
training, and twenty percent were used for testing in order to do five-fold cross-validation.
Additionally, 20% of the training dataset, which comprises 80 percent of the dataset, is
used for validation to prevent overfitting. After augmentation, 13,200 images were created
for training, 264 images for testing, and 231 images for validation per fold. The complete
dataset explanation is shown in Table 2. However, after pre-processing and augmentation,
samples of the augmented images for all classes are demonstrated in Figure 6.
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Figure 6. Samples of the augmented training set (six classes): (a–f) Pre-processed original images,
(g–l) After rotating all class images by 30 degrees both clockwise and counterclockwise, (m–r) All
class images after 10% horizontal and vertical, and 8% horizontal and 12% vertical translation, and
(s–x) All class images after vertical flipping.

Table 2. Description of the training, testing, and validation datasets.

Dataset
Number of

Original
Images

Image
Classes

Training Dataset

Number of Images Per Class Augmented
Train Images

Per Fold

Testing
Images Per

Fold

Validation
Image Per

FoldThis Work Ref. [53] Total

Raw RMB
Image

Samples
1320

Non-Tumor
(NT) 200 100 300 3000 60 48

Single Benign
Tumor (BT)

140 75 215 2150 43 35

Single
Malignant

Tumor (MT)
140 75 215 2150 43 35

Two Benign
Tumors (BBT) 150 50 200 2000 40 32

Two
Malignant

Tumors
(MMT)

150 50 200 2000 40 32

Single Benign
and Single
Malignant

Tumor (BMT)

140 50 190 1900 38 31

Total 920 400 1320 13,200 264 213

3.3. Experiments

This study uses the PyTorch library with the Python 3.7 version to construct and
run nine alternative classification models, including the proposed MBINet model, on the
Anaconda distribution platform. The tests are carried out on a 64-bit version of Windows 10
with 128 GB of RAM and a 3.30 GHz 64-bit Intel(R) Xeon(R) W-2016 processor. Additionally,
the network training performance is accelerated using an 11 GB NVIDIA GeForce GTX
1080Ti GPU. The classification performance metrics of the five folds were calculated.
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3.4. Proposed Microwave Brain Image Network (MBINet) Model—Brain Tumor
Classification Model

Recently, an operational neural network (ONN)-based model was established in [56]
to overcome the linear nature of the CNN. The ONN is a heterogeneous network that has
demonstrated promising performance in a number of applications (image denoising, image
restoration, and image classification) [46,57]. It uses a fixed set of nonlinear operators to
learn complicated patterns from any input. However, the fixed set of operator libraries
restricts ONN’s ability to learn. Self-ONN (Self-organized ONN) is employed to address
this issue [58]. Instead of a fixed collection of operator libraries, Self-ONN inevitably
discovers the best set of operators throughout the training phase. This develops a more
vigorous model that can carry out a wider range of events and generalize effectively in
practical situations. Self-ONN networks choose the best set of operators during the training
process, which can be a combination of any standard function or some other function that
we do not know. The output OL

k at kth neuron of Lth layer of any ONN can be illustrated
as follows:

OL
k = bL

k + ∑
NL−1
i=1 ΨL

ki

(

wL
ki, yL−1

i

)

(1)

where, bL
k and wL

ki are the weights and biases connected to that layer and neuron, yL−1
i is

the input from the previous layer, NL−1 is the kernel size of layers, ΨL
ki is the nodal operator

of neurons and layers. If ΨL
ki is linear than the equation simply corresponds to conventional

CNN. In ONN, the combined operator Ψ can be formed by a set of standard functions as
follows:

Ψ(w, y) = w1sin(w2y) + w3exp(w4y) + . . . . . . + wqy (2)

Here, w denotes the q-dimensional array of parameters, which is composed of internal
parameters of the individual functions and weights. The combined nodal operator Ψ can
be built using a Taylor series function rather than a predefined set of operators. The Taylor
series is a function f (x), near point, x = a is stated by the following equation:

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′ (a)

2!
(x − a)2 +

f ′′′ (a)

3!
(x − a)3 + . . . . . . +

f n(a)

n!
(x − a)n (3)

The Equation (3) can be used to construct the nodal operator as follows:

Ψ(w, y) = w0 + w1(y − a) + w2(y − a)2 + . . . . . . + wq(y − a)q (4)

Here, wq =
f (n)(a)

q! denotes the qth parameter of the qth order polynomial. In Self-ONN, Tanh

has been employed as an activation function that has a [−1, 1] range-boundary. So, for tanh, a is equal
to zero in Equation (4).

We developed a new lightweight classification model called microwave brain image Network
(MBINet) for classifying the RMB tumor images into six classes: (i) NT, (ii) BT, (iii) MT, (iv) BBT,
(v) MMT, and (vi) BMT. The MBINet is constructed by utilizing a self-organized operational neural
network (Self-ONN) architecture. The overall architecture of the MBINet classification model is
depicted in Figure 7. From Figure 7, it is observed that the MBINet has a total of eight layers,
including seven Self-ONN layers and one MLP (multilayer perception) layer. In the architecture,
the first five layers have eight neurons, two have 16 neurons, and one has 32 neurons, respectively.
Through the self-organization of its nodal operators, it can accomplish the required non-linear
transformations to extract optimal features from the brain tumor images. The kernel sizes are set to
×3 for all Self-ONN layers. The kernel size of max pooling layers is set to 2 × 2 for the 1st, 3rd, 5th,
and 7th layers, and 3 × 3 for the 8th layer to make it lightweight. Moreover, the Q value is set to 3 as
the order of qth order polynomial for all operational layers. The input image dimension is set to 224
× 224 with 3 channels that are fed to the input layer of the model. Images are propagated through the
Self-ONN and Max polling layers, and features are extracted into various feature maps. A flattening
layer with 512 neurons is used to convert the output of the convolutional layer into a one-dimensional
feature vector and apply it to the final MLP layer. The MLP layer is the final classifier of the network.
It uses six neuron layers followed by the SoftMax activation function to classify the upcoming images
into six classes: NT, BT, MT, BBT, MMT, and BMT classes.



Biosensors 2023, 13, 238 14 of 23

                   
 

                ‐            
                                   

                        ‐
                       

 
                    ‐  

           
                      ‐

                          ‐
                ‐ ‐           ‐
                        ‐

  ‐   ‐     ‐            
                            ‐
                      ‐

                             
                             
                               
                                     

                           
                                     
                                  ‐  
                       
   

             

               
                          ‐  

         
           

               
             
               

                     

                             
                         

                                   
                         

Figure 7. Proposed Microwave Brain Image Network (MBINet) model using Self-ONN.

Experimental Analysis of the Classification Models

In this section, we discuss six classification experiments to investigate the classification per-
formances of the proposed MBINet by using the RMB images. However, the proposed MBINet
model and four variations of the Self-ONN-based model, such as two Self-ONN models with 4
operational layers and two with 6 operational layers (Self-ONN4L1DN, Self-ONN4L, Self-ONN6L,
and Self-ONN6L1DN), as well as two vanilla CNN models with 6 and 8 layers (Vanilla CNN6L and
Vanilla CNN8L), and two pretrained models (DenseNet201 and ResNet50), were investigated and
the results were compared separately using the raw RMB tumor images. In the model names, “4L”
means the model consists of four layers, “6L” means the model consists of six layers, and “1DN”
means the model consists of one dense layer in the final stage. The training was executed using
a learning rate (LR) of 0.0005 for a maximum of 30 epochs, a batch size of 16, utilized the Adam
optimizer for network optimization, and set stop criteria based on training loss. The Q order value is
a significant factor during training the models; Q = 1 is set to train the two vanilla CNNs and the
three pretrained models, and Q = 3 is set for the Self-ONN and MBINet models. The hyperparameters
for the classification models are presented in Table 3.

Table 3. Hyperparameters for all classification models.

Parameter’s Name Assigned Value Parameter’s Name Assigned Value

Input Channels for Color Image 3 Q order 1 for CNN, 3 for Self-ONNs

Optimizer Adam Batch Size 16

Image Size 224 Stop Criteria Loss

Maximum Number of Epochs 30 Epochs Patience 5

Maximum Epochs Stop 10 Learning Factor 0.2

Number of Folds 5 Learning Rate (LR) 0.0005

Standard Deviation (STD) [0.4116, 0.3645, 0.2597] Mean (M) [0.2552, 0.4666, 0.8804]

It is obviously true that overfitting is a major issue in machine learning models, which degrades
the performance of the model. Overfitting occurs when the selected model fits more data than is
required and tries to capture every piece of data fed to the model. Hence, the model starts capturing
noise, imbalance, and inaccurate data or images from the dataset, which reduces its performance
and shows high variance and low bias. In order to avoid overfitting problems, four criteria were
used in the proposed model: (i) the cross-validation method, (ii) training with more data samples,
(iii) stop criteria based on validation loss, and (iv) epochs of patience. In this experiment, a five-fold
cross-validation dataset was used, along with random shuffling of the dataset. Following that, the
dataset is split using five-fold stratified cross-validation for training, validation, and testing. Eighty
percent of the total images were utilized for training, and twenty percent were used for testing in
order to do five-fold cross-validation. Additionally, 20% of the training dataset, which comprises 80
percent of the dataset, is used for validation purposes. As a result, the dataset was more generalized,
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which reduced the biasedness of the model during training and testing result evaluation. If validation
loss remained constant after 5 epochs of training, the training process was terminated. Otherwise,
training of the model continued up to 30 epochs. Then, the fold-wise performance of the MBINet
model was observed. The training, validation, and testing accuracy and loss plots for five folds
with respect to epochs of the proposed MBINet model are illustrated in Figure 8. It is seen from
Figure 8a that when the model was trained with the Fold-1 dataset, it got saturated after 10 epochs
and stopped training after 15 epochs. However, the model achieved very low testing and validation
accuracy. On the other hand, the model achieved high testing and validation losses (Figure 8b), but
was not overfit. Moreover, when the model was trained with the Fold-2, Fold-3, and Fold-4 datasets,
it showed that the testing and validation accuracy gradually increased, and the corresponding losses
gradually decreased. Additionally, when the model trained with the Fold-5 dataset, it achieved high
training, validation, and testing accuracy with low losses, which are shown in Figure 8i,j. In Fold-5,
the model performance gets saturated after 5 epochs, and the model is not overfitted and converges
well. Furthermore, the model tried to capture every image fed to it to enhance the classification
performance. As a result, the training, testing, and validation accuracy and corresponding losses are
almost similar, which ensures the better performance of the model. It is notable that the data splits
may permit an unbiased evaluation of the model. As a result, the proposed model is able to classify
the RMB images reliably with high classification performance.
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Figure 8. Training, validation, and testing accuracy and loss graphs for five-fold cross-validation
dataset: (a,b) Fold-1, (c,d) Fold-2, (e,f) Fold-3, (g,h) Fold-4, (i,j) Fold-5.

3.5. Evaluation Matrix for the Classification Model

The classification performance of the various CNN and Self-ONN models is assessed by the
five assessment matrices, such as: (i) overall accuracy (A), (ii) weighted recall or sensitivity (R), (iii)
weighted specificity (S), (iv) weighted precision (P), and (v) weighted F1-score (Fs). The evaluation
metrics are computed by applying the subsequent equations:

A =
(NTP + NTN)

(NTP + NFN) + (NFP + NTN)
(5)

R =
NTP

(NTP + NFN)
(6)

S =
NTN

(NFP + NTN)
(7)

P =
NTP

(NTP + NFP)
(8)

Fs =
(2 × NTP)

(2 × NTP + NFN + NFP)
(9)
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where NTP denotes the number of tumor samples detected as tumors, NTN represents the number of
non-tumor image samples recognized as non-tumors, NFP denotes the number of samples incorrectly
recognized as tumors, NFN denotes the number of samples with tumors that were missed by the
network.

4. Results and Discussion

4.1. Raw RMB Image Classification Performances

In this study, the main advantages of the MBINet model are: (i) a lightweight architecture that
uses non-linear operations to increase network diversity as well as classification effectiveness; (ii) the
ability to optimize the learning weight of each layer during the training process; and (iii) the ability to
achieve superior classification performances while significantly reducing computational complexity
compared to conventional CNN models. This section discusses the four Self-ONNs (Self-ONN4L1DN,
Self-ONN4L, Self-ONN6L, and Self-ONN6L1DN), two vanilla CNNs (vanilla CNN6L and vanilla
CNN8L), three pretrained models (DenseNet201, ResNet50, and ResNet101), and proposed MBINet
classification models to investigate the classification effectiveness by applying the original RMB
images. The classification models can classify the images into six classes: non-tumor (NT), single
benign tumor (BT), single malignant tumor (MT), two benign tumors (BBT), two malignant tumors
(MMT), and single benign and single malignant (BMT) tumor classes.

In addition, all classification models were trained using the raw RMB brain tumor images.
The comparative classification performance outcomes of the models for the raw RMB brain tumor
images are presented in Table 4. It was found that conventional deeper CNN networks have achieved
lower performances than the four Self-ONNs models, but the proposed MBINet model was the
best model among all networks and achieved the highest performances. The MBINet has exhibited
accuracy, precision, recall, specificity, and an F1 score of 96.97%, 96.93%, 96.85%, 97.95%, and 96.83%,
respectively, for the raw RMB brain images. In addition, the mean (M) and standard deviations (STD)
were considered for quantitative assessments. Further, in these assessments, the test dataset was split
into five folds, where every fold consists of 264 images. The calculated average M and STD for five
folds are presented in Table 5. It is noted from Table 5 that the proposed model showed lower STD
values than other models, which means there was very little variance. Therefore, it is concluded that
the proposed classification model exhibited better performance than the other models for classifying
the RMB brain images into six classes.

Table 4. Classification results of all models for the RMB brain images. Bold represents the best-
performing model.

Image Type Name of the Network Model
Overall Weighted

Accuracy (A) Precession (P) Recall (R) Specificity (S) F1 Score (Fs)

RMB Images

Self-ONN4L1DN 93.90 93.48 93.77 94.34 93.50

Self-ONN4L 93.76 93.56 93.76 94.28 93.75

Self-ONN6L 94.19 94.85 94.29 95.47 94.58

Self-ONN6L1DN 95.50 95.53 95.20 96.11 95.31

Vanilla CNN8L 92.95 92.89 92.92 93.95 92.78

Vanilla CNN6L 92.83 92.76 92.90 93.87 92.45

DenseNet201 94.58 94.55 94.28 95.84 94.80

ResNet50 95.89 95.94 95.29 96.81 95.16

ResNet101 95.90 95.96 95.89 95.89 95.86

MicrowaveBrainImage
Network (MBINet)

96.97 96.93 96.85 97.95 96.83
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Table 5. Quantitative assessments of all models. Bold represents the best-performing model.

Name of the
Network Model

Accuracy
(A)

Precession
(P)

Recall
(R)

Specificity
(S)

F1 Score
(Fs)

M STD M STD M STD M STD M STD

Self-ONN4L1DN 0.9390 0.0129 0.9348 0.0133 0.9377 0.0130 0.9434 0.0125 0.9350 0.0133

Self-ONN4L 0.9376 0.0130 0.9356 0.0132 0.9376 0.0130 0.9428 0.0125 0.9375 0.0131

Self-ONN6L 0.9419 0.0126 0.9485 0.0119 0.9429 0.0125 0.9547 0.0112 0.9458 0.0122

Self-ONN6L1DN 0.9550 0.0112 0.9553 0.0111 0.9520 0.0115 0.9611 0.0104 0.9531 0.0114

Vanilla CNN8L 0.9295 0.0138 0.9289 0.0139 0.9292 0.0138 0.9395 0.0129 0.9278 0.0140

Vanilla CNN6L 0.9283 0.0139 0.9276 0.0140 0.9290 0.0139 0.9387 0.0129 0.9245 0.0143

DenseNet201 0.9458 0.0122 0.9455 0.0122 0.9428 0.0125 0.9584 0.0108 0.9480 0.0120

ResNet50 0.9589 0.0107 0.9594 0.0106 0.9529 0.0114 0.9681 0.0095 0.9516 0.0116

ResNet101 0.9590 0.0107 0.9596 0.0106 0.9589 0.0107 0.9589 0.0107 0.9586 0.0107

MBINet 0.9697 0.0092 0.9693 0.0093 0.9685 0.0094 0.9795 0.0076 0.9683 0.0095

4.2. Receiver Operating Characteristics (ROC) Analysis

In multi-class classification issues, the ROC curve is a crucial evaluation metric. A classification
model’s performance across all thresholds can be seen using the ROC curve. Additionally, it demon-
strates the ability to distinguish across classes. Figure 9 depicts the classification ROC and area under
the curve (AUC) for all classification models across all thresholds. Figure 9 exhibited the ROC with
AUC for raw RMB image classification and showed that the proposed MBINet model performed
better. The computed AUCs for Self-ONN4L1DN, Self-ONN4L, Self-ONN6L, Self-ONN6L1DN,
vanilla CNN8L, vanilla CNN6L, DenseNet201, ResNet50, and the proposed MBINet are 88.49%,
88.60%, 90.03%, 88.41%, 89.70%, 89.55%, 91.83%, 95.13%, and 97.21%, respectively. It is observed that
the MBINet model performed better than other state-of-the-art models, and it can be reliable for RMB
image classification.
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Figure 9. Receiver Operating Characteristics (ROC) curve with AUC.

4.3. Performance Analysis

It was determined from the classification performances in Tables 4 and 5 that the best classifi-
cation model was MBINet for classifying the RMB images. The overall classification accuracy was
96.97% for the raw images. For classification results, the confusion matrix of the MBINet model for
the raw RMB brain images is illustrated in Figure 10. It is observed from the confusion matrix that
the model has been classified at 100%, 97.67%, 97.20%, 96.00%, 96.50%, and 96.84% for NT, BT, MT,
BBT, MMT, and BMT classification. It is illustrated that a total of 32 images were misclassified out of
920 images during the testing of the model. For instance, eight misclassified images from four classes
(BT, MT, BBT, and MMT) are illuminated in Figure 11.
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Figure 10. The confusion matrix of the proposed MBINet classification model for the raw RMB
brain images.
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Figure 11. Some misclassified image samples by the MBINet model for the raw RMB images: (a) BT
images were misclassified as a NT class, (b) MT images were misclassified as a BT class, (c) BBT
images were misclassified as a NT class, and (d) MMT images were misclassified as a BBT class.

Figure 10 shows that the BT images were incorrectly classified as NT, MT, and BBT classes;
the MT images were incorrectly classified as NT, BT, MMT, and BBT classes; and the MMT images
were incorrectly classified as MT, BBT, and BMT classes. In addition, the misclassification rate
was comparatively low for the proposed model. However, through the training of Self-ONNs, the
optimum non-linear parameters can be learned to exploit the learning performance and attain a
superior classification performance in terms of non-tumor and tumor images. Finally, the comparison
outcomes of the proposed model with the existing models by applying the same dataset (i.e., the
experimental image dataset) are presented in Table 6. The performance metrics: Accuracy (Acc.),
Precision (Prc.), Recall (Rec.), Specificity (Spec.), F1-score (Fs), and Overall Classification Performance
(OCP) of existing models were calculated and presented in Table 6. It is observed from Table 6 that
the proposed MBINet model performed better and showed satisfactory outcomes than other models
for the RMB tumor image classification. Finally, it is concluded that the MBINet classification model
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improved the classification performance and is applicable in the SMBI system for classifying the RMB
tumor images into six classes.

Table 6. Comparison results of the proposed model with the existing models. Bold represents the
best-performing model.

Ref. Year
Name of the

Existing Models
Acc.
(%)

Prc.
(%)

Rec.
(%)

Spec.
(%)

Fs

(%)
OCP
(%)

[33] 2022 FT-DenseNet201 94.58 94.55 94.28 95.84 94.80 94.81

[34] 2020 PT-DenseNet201 94.66 94.62 94.76 94.68 93.95 94.53

[35] 2019 DP-DenseNet 93.10 93.88 94.09 94.87 94.98 94.18

[37] 2021 Differential-DCNN 95.80 95.73 95.62 95.61 95.11 95.57

[38] 2021 CMP-CNN 91.87 91.85 91.82 92.95 91.72 92.04

[39] 2021 ResNet-50 95.89 95.94 95.29 95.71 95.16 95.59

[40] 2022
Fine-tuned
ResNet101

95.90 95.96 95.89 95.89 95.86 95.82

Proposed 2023 MBINet 96.97 96.93 96.85 97.95 96.83 97.10

5. Conclusions and Future Directions

This paper presents the brain tumor classification from the RMB tumor images through a
lightweight, deep learning-based microwave brain image network (MBINet) model. The MBINet
is based on a self-organized operational neural network. In the beginning, a compact 3D stacked
wideband nine antenna array sensor was utilized to implement the SMBI system that produced
reconstructed microwave brain (RMB) images, and then 920 raw RMB image samples were collected.
In addition, another RMB dataset was collected from our previous work to enrich the training dataset.
Later, a lightweight microwave brain image network (MBINet) classifier model was applied to classify
the raw RMB images into six classes (NT, BT, MT, BBT, MMT, and BMT). MBINet uses non-linear
operations to boost network diversity, increase computational effectiveness, and attain superior
classification performance. Furthermore, the MBINet, four Self-ONN classification models, two
conventional CNN models, and three pretrained models were examined using the original RMB
images, and the classification outcomes were compared. Compared with the state-of-the-art models,
the proposed MBINet classification model performed better. The achieved accuracy, precision, recall,
specificity, and F1 score of the MBINet model are 96.97%, 96.93%, 96.85%, 97.95%, and 96.83%,
respectively, for six class classifications using the raw RMB images. The MBINet model showed better
classification results than other models. Further, it is concluded that the MBINet model can be used
for consistently classifying the brain tumor(s) from the RMB images and can be utilized in the SMBI
system.

5.1. Research Shortfalls and Future Improvement

We used the M-DMAS image reconstruction algorithm in this study, which can only reconstruct
non-tumor images and two tumor-based images, which is one of the algorithm’s shortfalls. However,
if more than two tumors or any other types of tumors, such as meningiomas, pituitary adenomas,
craniopharyngiomas, etc., are formed in the brain, the algorithm will not reconstruct the images. On
the other hand, in the proposed classification model, the learning outcomes of the MBINet depend
on the nodal operators and Q-order parameter values, which must be fixed in advance, which is
another shortcoming of the model. In other words, if the right operator setting for proper learning
is lacking, the learning outcomes will decrease. Moreover, there is an inadequate discrepancy due
to the usage of one nodal operator set for every one of the neurons in a hidden layer. Keeping in
mind the mentioned limitations, we can focus on improving the following for our future work: (i)
Implementation of a new image reconstruction algorithm that will reconstruct different types of
tumors with high-resolution images; (ii) Proper ingredient selection and quantity for fabricating the
different types of tumors; (iii) Assessment of the classification performance of the proposed model
for classifying different types of tumors by optimizing learning parameters and Q-order.

5.2. Future Directions

Based on our evaluations of the research that has already been done, we can suggest a few
directions for future research: (i) There is an opportunity to adapt a better optimization algorithm (i.e.,
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AdaGad [59], SGD [60], Adam [61], RMSProp [62]) for training, which should be a modified MBINet
model for proper functioning, (ii) Determine an optimal Q-order value that can be automatically used
in layers for enhancing the classification performance instead of fixing the Q-value; (iii) Computational
complexity is the crucial issue for the Self-ONN model, so finding a computational complexity and
inference time reduction mechanism is another research opportunity; and (iv) The model can be
assessed by using a large multi-modal or 3D microwave brain image dataset.
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