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Abstract

Chitosan is a low-cost natural adsorbent. Its derivatives from chemical and physical modification processes possess superior 
properties for wide applications to meet the growing demands. The chemical modification includes replacement reactions, 
chain elongation and depolymerization, while the physical modification is to obtain polymeric forms such as powders, 
nanoparticles and gels. This paper is aimed to highlight the present trends in chitosan preparation and modification, the 
enhancement in adsorptive properties and the remarks into future directions. The mechanisms involved in adsorption by 
chitosan derivatives and how the spent adsorbent can be regenerated were also discussed. Meanwhile, for the adsorption of 
heavy metals from wastewater, chitosan modified with activated carbon showed a better adsorption capacity of 90.90 mg g-1 
for Cr(VI) and 50.50 mg g-1 for Cd(II), and for dye adsorption, chitosan modified with activated neem leave showed better 
adsorption capacity of 90.8 mg g-1 for methylene blue, and for phenol removal, chitosan modified with salicylaldehyde and 
P-cyclodextrin polymer showed better adsorption capacity of 179.73 mg g-1.
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1 Introduction

Chitosan is a post-deacetylation chitin derivative and one of 
the most abundant post-cellulose polysaccharides in nature 
[1, 2]. It has found wide applications in biotechnology, 
agriculture, medicine and so on, due to growing demands 
[3- 5]. In general, shrimp, crab, crayfish and krill shell can be 
used to prepare chitosan [6, 7]. However, studies have also 
shown that alternative sources of chitin (basic raw materials 
for chitosan preparation) are bees, fungi, coral and crusta­
cean resting eggs [8]. This basic raw material (chitin) for 
chitosan preparation can be processed through chemical 
processes involving deproteinization, demineralization and
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deacetylation [9, 10]. Annually, 2000 tons of chitosan is pro­
duced mainly from shrimps and crab shell waste [11, 12].

Crustaceans are found to be more suitable for deacetyla- 
tion and have different degrees of deacetylation-based solu­
bility and swelling characteristics which are attributable to 
the parallel arrangement of their main chains due to weak 
intermolecular hydrogen bonding [13, 14]. This swelling 
property allows adsorption, floating and chitosan drug dif­
fusion mechanism [15- 17]. Chitosan is also one of the most 
available sustainable products in the natural environment, 
obtained as a result of the chemical or enzymatic deacetyla- 
tion of chitin in the biosynthesis process [18]. This method 
leads to partial or complete elimination of acetyl groups 
from the chitosan group of acetyl-amino. Chitosan’s name 
is applied to the altered chitin which contains less than 25% 
of the acetyl groups [19, 20]. Figure 1 presents the chemical 
structures of chitin and chitosan.

(1 ^  4 ) -2 -A c e ta m id o -2 -d e o x y -p - D -g lu c a n  and 
(1 4)-2-amino-2-deoxy-p-D-glucan are the basic struc­
tures of Chitin and chitosan, respectively (Fig. 1). Never­
theless, the difference between them is the degree of dea- 
cetylation and their solubility in dilute acid media [22, 23]. 
When the chitin degree of deacetylation drops to about 50%, 
it becomes soluble in aqueous acidic media and is called
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Fig. 1 Chemical structure of 
chitin and chitosan [21]

chitosan [24, 25]. Depending on the source, there are three 
crystalline polym orphic forms of chitin. These include 
shrimp and crab shell a-chitin, squid pen B-chitin and cepha­
lopoda stomach cuticles y-chitin [26].

To improve the sorption potential, resistance to low pH 
and mechanical strength of chitosan, several physical and 
chemical modification methods have been applied [27]. 
Physical modifications include the preparation of chitosan 
for all applications in various forms such as powder, nano­
particles, gel beads, membranes, sponges, type structure 
of “honeycomb” and various types of fibre [16]. Chemical 
modifications include cross-linking with glutaraldehyde,

B-cyclodextrin oxidized, ethylene glycol diglycidyl ether 
or epichlorohydrin [28]. Figure 2 presents a schematic rep­
resentation of the cross-linking reaction of chitosan with 
glutaraldehyde.

Chitosan has found numerous applications in various 
industries, such as textiles, paper, cosmetics, pharm aceu­
tical, agricultural, medical and environmental engineering 
[31- 33]. It is primarily used in environmental engineering 
as an effective biosorbent [34].

The advantages of chitosan over other adsorbents 
include its abundance as biopolymer in nature, the pres­
ence of characteristics free amino and hydroxyl functional

Fig. 2 Schematic representation 
of the cross-linking reaction of 
chitosan with glutaraldehyde 
[29, 30]
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groups which makes it chelate five or more metals than 
other adsorbents [35] and the presence of positions that 
can be modified in its chemical structure [36]. In metal 
sorption, chitosan is selective because it does not take up 
alkaline and alkaline earth metal ions but transition and 
post-transition metal ions [17]. These properties of sorp­
tion were used for environmental, separation and analytical 
purposes [16]. Other advantages include its low price, high 
sensitivity to a variety of contaminants, chemical stability, 
high reactivity and pollution selectivity [16, 37].

Chitosan modification results in the formation of chi- 
tosan derivatives w hich possess better properties and 
an increased number of adsorption sites and adsorption 
capacity [36, 38]. Wang et al. [39] and Kulkarni et al. 
[40] reported chitosan modification methods to include 
N-substitution, O-substitution and free radical graft copo­
lym erization. LogithKum ar et al. [41] discussed recent 
research in chitosan modifications by quaternization, car- 
boxyalkylation, hydroxylation, phosphorylation, sulpha- 
tion and copolym erization for bone tissue engineering. 
Seedevi et al. [42] showed an increase in the antioxidant 
property of chitosan from sepia prashadi by chlorosul- 
fonic acid in ^,^-dim ethylform am ide. Campelo et al. [43] 
recorded an increase in the roughness and hydrophilicity 
and a decrease in calcium deposit of chitosan by sulpha- 
tion modification for m etallic im plants when in contact 
with blood. Galhoum  et al. [44] showed an increase in 
uranyl removal onto chitosan grafted with diethylenetri- 
amine. Vakili et al. [45] reported an improve adsorption 
capacity of colorant blue 4 by chitosan modified with 
hexadecylamine and 3-aminopropyl triethoxysilane. Fur­
thermore, chitosan hydrogels used in wastewater treatment 
have been greatly improved when modified by protonation, 
carboxylation and grafting with glutaraldehyde, epichlo- 
rohydrin, ethylene glycol, diglycidyl ether and sodium 
tripolyphosphate [46- 48]. Stabilization of enzymes like 
amylase from Aspergillus carbonarius was achieved when 
chitosan was modified with phthalic anhydride [49] and 
the stabilization of horseradish peroxide was achieved 
when chitosan was covalently modified using phthalic 
anhydride [50].

Several review papers have been published on chitosan 
extraction [15], chitosan and modified chitosan as low- 
cost adsorbent [20 , 36, 37], chitosan application in the 
industry, agriculture and medical science [3, 31, 41, 51] 
and chitosan and m odified chitosan regeneration [52]. 
However, this review attempts to discuss the underlying 
background of chitosan preparation, its inherent proper­
ties for industrial applications and life cycle assessment, 
highlight the physicochemical modifications leading to the 
enhanced adsorptive properties of chitosan derivatives for 
water pollutants removal and nutrient recovery, and sum­
marize the adsorption mechanisms and recovery of spent

chitosan derivatives with the view to shedding insight into 
future directions.

2 Life cycle assessment

The environmental impact of most disposable waste has been 
evaluated and comparison made using life cycle assessment 
(LCA). This allowed for the quantification and comparison 
of the environmental impact among or between stages of 
production or services within their life cycle [53]. Laceta 
et al. (2013) reported on the environmental assessment of 
1 m2 chitosan-based films after conducting a comparative 
environmental assessment between polypropylene (PP) com­
mercial food packaging film and developed chitosan-based 
biodegradable film. Their environmental load in diverse life 
cycle stages such as material extraction, film manufacture 
and end of life was studied and a comparison was made. The 
result revealed that PP films had a higher impact on fossil 
fuels and carcinogens impact categories. However, chitosan- 
based films had a higher environmental load in land use, 
minerals and respiratory inorganic categories. Munoz et al. 
(2017) also reported on life cycle assessment of chitosan 
production from cradle to gate in India and Europe from 
the viewpoint of the supply chains of their raw materials 
(snow crab and shrimp waste shells in Canada and India, 
respectively), their processing in China and India and chi- 
tosan manufacture in Europe and India. The result showed 
a difference in the environmental profiles of both chitosan 
from crab and shrimp waste shells, which were reflections 
of the difference in supply chains of raw materials, produc­
tion location and applications. Beach et al. [54] reported on 
alternatives for investing microalgae by flocculation using 
chitosan, ferric sulphate and alum by building a life cycle 
inventory. The result from the life cycle inventory showed 
the superiority of chitosan from the viewpoint of the envi­
ronment as a flocculant for microalgae harvesting.

3 Preparation of chitosan

The process of chitosan preparation involves the deproteini- 
zation of autolyzed crustacean shells in 3-5% (w/v) NaOH 
solution at room temperature for few hours. This is accom­
panied by demineralization (through processing, extraction 
of the inorganic minerals) with 3-5% (w/v) HCl aqueous at 
room temperature to obtain a white to beige coloured chitin. 
Next, it is treated at 90-120 °C for 4-5 h with 40-60% (w/v) 
NaOH solution, resulting in chitin deacetylation to form chi- 
tosan. The insoluble precipitate is washed with water. The 
deacetylation conditions determine the molecular weight 
of the polymer and the degree of deacetylation [13, 55]. 
Meanwhile, just as chitin undergoes alkaline deacetylation
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Fig. 3 Molecular reactions between chitin and chitosan with HCl and NaOH [56]

in the presence of sodium hydroxide to give chitosan, it also 
undergoes hydrolysis in the presence of hydrochloric acid to 
produce glucosamine as shown in Fig. 3 [56].

4 Properties of chitosan for industrial 
applications

Different chitosan properties determine their end uses. For 
example, strong hydrophilicity often due to a large number 
of highly reactive hydroxyl and amine functional groups, 
specific surface and stability of polymer chain are favourable 
attributes of chitosan in water pollutants removal [57, 58].

Chitosan is a large number of biopolymers with different 
degrees of N-deacetylation (40-98%) and molecular weight 
(50,000-2,000,000 g mol-1). It is characterized by the pres­
ence of amine and hydroxyl functional groups which influ­
ence its properties. It is a soft base with a D-glucosamine 
residue and a pKa value of 6.2-7.0 [57, 59]. Chitosan is 
nontoxic, biodegradable and in the acidic environment, the 
amine groups of chitosan are protonated to form soluble, 
positively charged polysaccharides with a high load density 
[60, 61].

Viscosity is a property of chitosan that increases as its 
degree of deacetylation and concentration increases, and 
temperature decreases [16]. It is often in the range of 60 
and 780 cPs. Therefore, concentration and temperature are 
critical factors in determining the viscosity of chitosan solu­
tion. The increase in the degree of deacetylation of chitosan

that results in the increase in viscosity can be attributed to 
the difference in conformity in an aqueous solution of high- 
and low-deacetylated chitosan. Chitosan with strong dea- 
cetylation has an extended conformation with a more flexible 
chain due to the load repulsion in the molecule. Meanwhile, 
low load density in the polymer chain of chitosan molecule 
results in the formation of rod-like or coiled shape at a low 
degree of deacetylation [16].

Chitosan materials possess a density in the range of 0.15 
and 0.3 g mL-1 due to their porous nature as in the case 
of chitosan from marine crab and squilla and commercial 
chitosan [55, 62].

Fourier transform infrared (FTIR) analysis of chitosan 
shows a broad absorption band in the range of 3000 to 
3500 cm-1 which is attributed to O -H  stretching vibrations 
and the 3263 cm-1 to the vibration of N -H  [59, 62]. The 
stretching vibrations of C-H occur at 2854 cm-1 and the 
absorption peak at 1558 cm-1 corresponds to the N -H  bend­
ing vibrations. The amide II band is used as the characteris­
tic band of N-acetylation. The spectra of chitosan show the 
different vibration that occurs after deacetylation process, 
which shows that the C =  O vibration at 1627 cm-1 region 
associated with chitin has been reduced in chitosan, as well 
as the emergence of the absorption band at 894 cm-1 on 
chitosan which is the vibration for NH2 [62].

Water binding capacity (WBC) of chitosan is within the 
range of 138 and 805% as reported by [62] for chitosan from 
Pessu river crab shell, [63] for chitosan synthesized from fish, 
crab and shrimp, Sarbon et al. (2015) for chitosan from mud

1  n



B io m ass  C o n v e r s io n  a n d  B iore finery  (2023)  1 3 :5 5 5 7 - 5 5 7 5 5561

Table 1 Physicochemical properties of chitosan from different sources

Source of 
chitosan

Yield (%) Molecular
weight (g
mol-1)

Moisture
content
(%)

Ash content (%) Loss on drying pH Solubility Degree of 
deacetylation 
(%)

Reference

Prawn 57.69 159,653 4 1.86 2 6.7 Acetic acid 87 Tarafdae and 
Biswas [65]

Shrimp 34 1,599,558 - 0.25 9.34 8.5 - 89.79 Puvvada et al. 
[66]

Fish 7.72 1.01 x  105 0.691* 0.53* 78.2 Sakthivel et al. 
[67],*Satpathy 
et al. [68]

Crab 41.37 - 10.8 - - - - 80.8 Abdullin et al. 
[69]

Fungi - - 10.9 0.89 - - Acetic acid 85 Kumaresapillai 
et al. [70]

Bacterial 16/10 - - - - - - - Kaur et al. [71]
Crayfish - - 9.6 - - - - 89.6 Abdullin et al. 

[69]
Mealworm 31.9 - - - - - - - da Silva et al. [34, 

72]
Leucaena leu- 

cocephala pod
70.9 - - - - - - - Aridi et al. [73]

crab and [64] for commercial chitosan from shrimp and crab. 
It is hydroscopic in nature with less than 10% moisture content 
and often reveals a split amide band and crystalline polymorph 
due to its parallel structure [55]. Table 1 presents the syn­
thesized chitosan materials from different sources and their 
physicochemical properties.

Chitosan’s ability to chelate metal ions has made it a poten­
tial natural antioxidant for stabilizing and prolonging the shelf 
life of lipid foods [74]. The presence of organic diacid anhy­
dride in chitosan is useful in the manufacture of cosmetics 
like shampoos, hair colourants, styling lotions, hair sprays, 
hair tonics, moisturizer, nail enamel foundation, mouth washer, 
chewing gum, lipstick and eye shadow [51]. Furthermore, the 
inherent characters of morphology, size, non-toxicity and 
density are important in the release of drugs in chitosan base 
dosage during drug delivery [75]. The biocompatibility and 
biodegradability properties of chitosan have made it useful in 
biomedicine and tissue engineering. Low molecular weight 
chitosan is used as a carrier for solid drug formulations in the 
drug delivery system. The cationic property of chitosan has 
found applications in gene therapy system because it provides 
strong electrostatic interaction with anionic DNA, thus protect­
ing it from nuclease degradation [51, 76]. The antimicrobial 
property of chitosan has made its film great potential for food 
preservation [77].

5 Chitosan modification procedures

Physicochemical modification of chitosan has been a grow­
ing interest to improve water-acid solubility and adsorption 
properties, while broadening its applications. The chemical 
modification involves replacement reactions, chain elonga­
tion (cross-linking, copolymerization of graft and polymer 
networks) and depolymerization, while the physical modifi­
cation is generally aimed at obtaining conditioned polymeric 
forms such as powders, nanoparticles and gels (beads, mem­
branes, honeycombs or hollow fibres) [78].

Repo et al. [79] improved the reactivity of chitosan by 
ethylenediam inetetraacetic acid (EDTA) and diethylen- 
etriaminepentaacetic acid (DTPA) functionalization. Chi- 
tosan is dissolved in 10% (v/v) acetic acid and diluted with 
methanol. EDTA anhydride in methanol is added, and the 
mixture is stirred vigorously at room temperature for 24 h. 
The precipitate is mixed with ethanol and washed with 
NaOH solution (pH 11) to remove unreacted EDTA. A 
similar method was adopted for DTPA-functionalized chi- 
tosan. EDTA- and DTPA-modified chitosan exhibit effec­
tive adsorption for Co(II) and Ni(II) at 93.0% to 99.5% 
in 100 mg L -1 aqueous solutions. Figure 4 illustrates the 
synthesis route of EDTA- and DTPA-modified chitosan.

01 Springer



5 56 2 B iom ass  C o n v e r s io n  a n d  B iore finery  (2023)  1 3 : 5 5 5 7 - 5 5 7 5

Fig. 4 Synthesis of EDTA- and/ 
or DTPA-modified chitosan [80]

Hariani et al. [81] synthesized bentonite-modified chi- 
tosan. Bentonite is added into the chitosan-CH3COOH solu­
tion at pH 4. The mixture was stirred for 2 h. The composite 
is centrifuged and washed with deionized water to a neutral 
pH. The calcium-rich bentonite/chitosan composite showed 
an improved capacity of phenol at 12.5 mg g-1 in 125 mg 
L-1 solution at a pH of 7 for 30 min.

M oosa et al. [82] noted chitosan m odification using 
granulated activated carbon. Activated carbon is immersed 
in chitosan acetic acid solution at a ratio of 10:50 (w/v) at 
25 °C for 24 h. The filtrate is soaked in 0.1 mol L-1 NaOH 
for 3 h to precipitate the chitosan on activated carbon. Next, 
it is washed with distilled water prior to use. The material 
demonstrates a 95.81% removal of methylene blue as against 
85.85% by the unmodified one (Table 3).

Saifuddin and Kumaran [83] encapsulated chitosan onto 
acid-treated oil palm shell charcoal. The process involves 
the preparation of chitosan gel using 10 wt% oxalic acid at 
50 °C. The charcoal is slowly added to the gel solution, and 
the mixture is agitated for 24 h to form beads. The process is 
repeated thrice to form a thick chitosan coating. The material 
shows an increase in chromium ion removal of 154 mg g-1.

Okoya et al. [84] modified chitosan with cocoa husk char. 
A 100 mL of the chitosan gel in oxalic acid is diluted with 
water, wherein cocoa husk char is added. The mixture is 
agitated for 24 h. Then, the composite is soaked in 0.5% 
(w/v) NaOH solution for 3 h and rinsed with deionized 
water. The material depicts the Cr6+ and Pb2+ adsorption 
of 333 mg g -1 and 263.16 mg g-1, respectively, while the 
unmodified one records the values of 136.98 mg g -1 and 
125.0 mg g-1, respectively.

Kyzas and Deliyanni [85] recognized the modification 
of magnetic chitosan by cross-linking with glutaraldehyde 
(GLA). GLA-cross-linked chitosan is prepared by adding 
15 mL of GLA (approximately 2:1 aldehyde groups (-CHO) 
of GLA per initial amino group (-N H 2) of chitosan) in a 
400 mL of acetic acid solution (2% v/v) bearing 2 g of dis­
solved purified chitosan. The mixture is stirred at 25 °C for
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3 h, and the precipitate is washed with ethanol and distilled 
water and dried in a vacuum oven at 45 °C. Magnetic nano­
particles are prepared by dissolving 3.5 g of FeCl2 ■ 4H2O 
and 9.5 g of FeCl3 ■ 6H2O in 400 mL of distilled water at 
60 °C for 1 h under nitrogen flow. Ammonia solution is 
added dropwise to a pH of 10. The precipitate is decanted 
and freeze-dried. For magnetic cross-linking, 0.75 g of mag­
netic nanoparticles is added into chitosan solution and the 
mixture is sonicated for 30 min. This is followed by the same 
procedures for GLA cross-linking. The modified chitosan 
derivatives display enhanced reusability upon regeneration. 
Similarly, GLA-cross-linked chitosan shows an improved 
Hg(II) capacity of 145 mg g-1, while that with magnetic 
nanoparticles is 152 mg g-1. Figure 5 illustrates the sche­
matic preparation of cross-linked chitosan with GLA and 
magnetic nanoparticles and the possible interactions with 
Hg(II).

Vafakish and Wilson [86] reported the grafting of aniline 
and acetaldehyde onto chitosan. Aniline renders a light-yel­
low viscous chitosan solution, while acetone forms a white 
low-viscous solution. The reaction mixtures are stirred at 
70 °C for 18 h. A 3 mol L-1 NaOH solution is added gradu­
ally under stirring to a pH 7, at which pink precipitate is 
evolved. The precipitate is separated from the supernatant, 
washed with water and ethanol, and dried in a vacuum oven 
at 50 °C for 6 h. The modification enhances the specific 
surface of chitosan and its capacity towards fluorescein dye 
to 61.8 mg g-1. Figure 6 presents the synthesis of chitosan 
by grafting with aniline and acetaldehyde.

Al-Ghamdi et al. [87] noted the modification of chi- 
tosan by p-bromo-p-ketosulfone. The solvent, p-bromo-p- 
ketosulfone is prepared by refluxing a mixture of 2 mmol 
sodium benzene sulfinate and 2 mmol ethanolic solution 
of 4-brom o-4-brom oacetophenone for 6 h, and the solid 
product is washed w ith water and recrystallized . The 
solid is dissolved in chitosan solution, and the residual 
phase is recovered by evaporated and dried. The m odi­
fied chitosan exhibits a 122.47 mg/g of Hg(II) removal.
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Fig. 5 Preparation of magnetic cross-linked chitosan for Hg(II) removal [85]

Fig. 6 One-step synthesis of chitosan by grafting with aniline and acetaldehyde [86]
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Fig. 7 Preparation of p-bromo- 
p-ketosulfone for chitosan 
modification [87]

Significant im provement can be observed from the sur­
face morphology as opposed to the pristine chitosan, but 
the thermal stability decreased. The synthesis routes are 
shown in Fig. 7 .

Hastuti et al. [88] reported the removal of Cr(VI) by 
epichlorohydrin-modified chitosan. Chitosan gel was pre­
pared by adding NaHCO in chitosan acetic acid solution at 
ratio of 0.2:2.0 (w/w). The gel is sprayed with 5% NaOH 
solution to form chitosan beads. The solid is coated in ben- 
zaldehyde solution for 2 h. The cross-linking process is car­
ried out by dispersing the beads into dioxane. One mole 
per litre NaOH solution is slowly added to the stirred solu­
tion, followed by epichlorohydrin. The mixture is refluxed 
for 6 h, and the precipitate is washed with ethanol and 
water. The modified chitosan demonstrates an improved 
porosity, increased resistance against acidic medium and 
enhanced capacity of 89% as com pared to 74% by the 
unmodified one. Figure 8 shows the reaction of chitosan 
with epichlorohydrin.

Soni et al. [89] disclosed the modification of chitosan- 
activated carbon composite with tripolyphosphate. A water 
in paraffin oil emulsion is added into the homogenous chi- 
tosan-charcoal suspension in acetic acid. The mixture is 
agitated for 2 h to form a stable emulsion. A 0.1 mol L-1 
tripolyphosphate is added dropwise to form nanocompos­
ite particles. The solid is washed with toluene and acetone. 
The adsorbent exhibits an outstanding phenol adsorption 
capacity of 409 mg g -1. Similarly, Liu et al. [90] recorded

the effective removal of phenol and Cu2+ of over 80% by 
chitosan-activated carbon membrane composite.

M arrakchi et al. [91] revealed a superior removal of 
methylene blue and reactive orange 16 at 40.99 mg g-1 and 
190.97 mg g-1, respectively by epichlorohydrin-cross-linked 
chitosan-sepiolite composite. Sepiolite powder is dispersed 
into a chitosan acetic acid solution. The mixture is then 
added dropwise into a 1 mol L-1 NaOH solution. The solid 
is washed and to a neutral pH and added into epichlorohy- 
drin solution at 50 °C for 6 h.

Sharififard et al. (2016) used 0.2 mol L-1 oxalic acid to 
dissolve chitosan at 40 °C to form a viscous gel. A 20 g 
of acid-treated activated carbon is mixed with chitosan gel 
and stirred at 40 °C for 12 h to form a chitosan-activated 
carbon composite. The composite was added in dropwise 
into a 0.7 mol L-1 NaOH precipitation bath to form beads. 
The modification has improved its capacity for metal ions, 
i.e., 90.9 mg g-1 for Cr(VI) and 52.63 mg g-1 for Cd(II). 
The pristine one recorded the values of 41.94 mg g-1 and 
10 mg g-1, respectively. Regunton et al. [92] also attempted 
similar procedures, where the modified chitosan composite 
shows a methylene blue removal of 99.77%.

Huang et al. [93] reported the modification of chitosan- 
activated carbon membrane by cross-linking using epichlo- 
rohydrin. Epichlorohydrin-to-membrane ratio is 20 mL g-1, 
and the cross-linking reaction occurs for 12 h. The cross­
linked mem brane is treated w ith concentrated HCl for 
90 min for surface protonation and washed with deionized
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Fig. 8 Reaction of chitosan with 
epichlorohydrin [88]

water to a neutral pH. Epichlorohydrin is proven as a suit­
able cross-linker to boost the phenol and Cr(VI) to 95% at 
maximum concentrations of 50 mg L-1 and 200 mg L-1, 
respectively.

Lopez-Cervantes et al. [94] modified chitosan beads by 
glutaraldehyde cross-linking for direct blue 71 removal. The 
wet chitosan beads from the NaOH bath are suspended in 
a 0.025 mol L-1 glutaraldehyde solution (beads-to-solution 
ratio of 1:10) at room temperature for 16 h and washed with 
distilled water and ethanol.

Auta and Hameed [95] showed that the preparation of 
epichlorohydrin-cross-linked chitosan-activated carbon

beads. The chitosan acetic acid solution with dispersed waste 
tea activated carbon is added dropwise into 0.067 mol L-1 
NaOH solution to form beads. The beads are cross-linked 
with epichlorohydrin at 50 °C for 6 h and freeze-dried to 
preserve the texture. The modified adsorbent is promising 
for cationic and anionic dyes removal.

Asokogene et al. [62] recognized the synthesis of neem 
leave-chitosan composite in oxalic acid solution. The acti­
vated neem leave is slowly added into the mixture at 50 °C 
for 2 h. The dried composite is soaked in 0.5% (w/v) NaOH 
solution for 3 h, rinsed with distilled water and dried. The 
modified chitosan possesses a better specific surface leading
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Fig. 9 Chitosan synthesis from chitin and some widely used functionalized chitosan derivatives structures [96]

Table 2 Chitosan modification procedure, some important advantages and limitations

Modification strategy Description Advantages Disadvantages Reference

Chemical modification

Physical modification

Replacement reaction, chain 
elongation (cross-linking 
and copolymerization of 
graft polymer networks) 
and depolymerization

Formation of conditioned 
polymeric materials like 
powder, nanoparticles and 
gels (beads membrane, 
honey comb or hollow 
fibres)

1. Formation of chitosan 
derivatives with superior 
physicochemical proper­
ties

2. Enhancement of chitosan 
adsorption capacity

3. Resistance in extreme 
media condition (acidic)

4. Increased number of 
adsorption sites

5. Improved chemical 
stability

1. Formation of compos­
ite with unique porous 
structure

2. High specific surface area
3. Improved mechanical 

strength and heat resist­
ance

4. Enhanced selectivity and 
regeneration

Cross-linking reaction 
slightly decrease the 
adsorption capacity of 
chitosan because some 
functional groups of 
chitosan (-N H 2 or -O H ) 
are bound with the cross­
linker and cannot interact 
with the pollutant in the 
medium

Low chemical stability in 
extreme media condition 
(acidic)

Vafakish and W ilson [86], 
Hastuti et al. [88], Mar- 
rakchi et al. [91], Kyzas 
and Dimitrios [36]

Asokogene et al. [62], 
Sharififard et al. (2016), 
Auta and Hameed [95]

to a higher methylene blue capacity of 90.8 mg g-1 at a dye Nevertheless, chitosan synthesis from chitin and some 
concentration of 300 mg L-1. widely used functionalized chitosan derivatives struc­

tures is presented in Fig. 9 [96]. Furthermore, in chitosan
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modification procedures, some important advantages and 
disadvantages are summarized in Table 2 .

6 Chitosan derivatives for water pollutants 
removal

Among the toxic contaminants in water are heavy m et­
als, phenol and dyes. These solutes are harmful if directly 
ingested, and their accumulation in the food renders a threat 
during meat, vegetables and fish consumption. Reactive 
hydroxyl and other functional groups, strong hydrophilicity 
and stability of polymer chain endow chitosan with a high 
adsorption ability towards toxic contaminants in water [57, 
97, 98].

Sharififard et al. [99] evaluated the adsorption of Cr (VI) 
and Cd (II) by chitosan adsorbents. The modified chitosan 
shows an increase of specific surface at 362.30 m2 g-1 as 
opposed to the pristine one (16.37 m2 g-1). Similarly, the 
adsorption capacities for Cr (VI) and Cd (II) improved to 
90.90 and 50.50 mg g-1, better than the unmodified one 
at 41.60 mg g-1 and 10.00 mg g-1, respectively (Table 3). 
The increase in the surface area offers more interaction

probabilities between the solutes and active sites for greater 
removal. Hastuti et al. [88] studied the adsorption of Cr 
(VI) from batik industrial wastes using chitosan m odi­
fied with epichlorohydrin. The modified chitosan shows 
a solubility resistance to acids and an improved capacity 
from 7.4 mg g-1 (unmodified chitosan) to 8.9 mg g-1 at 
30 min contact time and pH 3. Bahador et al. [100] investi­
gated the effect of chitosan (CS) and iron ore (Fe3O4) mag­
netic nanoparticles on chromium (Cr) removal behaviour 
of Moringa leifera activated carbon (AC). The adsorption 
capacity showed the following: AC (56.78 mg g-1), CS/AC 
(114.80 mg g-1), Ac/Fe3O4 (121.70 mg g-1) and CS/AC/ 
Fe3O4 (130.80 mg g-1). Modified AC and Fe3O4 nanoparti­
cles by CS increased Cr removal.

It is very difficult to purify sewage-containing dyes 
because colouring is generally resistant to biological oxida­
tion and chemical oxidants in some cases. Adsorption at 
low cost and by means of widely available natural adsor­
bents is an alternative to the traditional and conventional 
processes. Advanced oxidation methods are effective but 
relatively expensive in the degradation of colourants and 
pigments in wastewater. Chitosan is a promising biosorb­
ent to remove dyes from water [103]. Vafakish and Wilson

Table 3 Adsorptive properties of modified and unmodified chitosan

Modifier Pollutant Modified Adsorption
operating
parameter

Unmodified Reference

Specific
surface
area(m2/g)

Total pore
volume
(cm3/g)

Adsorption 
capacity, Qe 
(mg/g)

Specific
surface
area(m2/g)

Total pore
volume
(cm3/g)

Adsorption 
capacity, Qe 
(mg/g)

Ca-bentonite Phenol - - 12.5 pH 6,
90 min

- - Hariani et al. 
[81]

Granulated
activated

MB 795 - 11.99 25 °C, pH 6, 
5 h

7.45 - 11.04 Moosa et al. 
[82]

carbon
Acetalde-

hyde-
Fluorescein

dye
- - 61.8 23 °C, pH 7, 

24 h
- - 1.96 Vafakish and 

Wilson [86]
aniline

Epichloro-
hydrin

Cr(VI) - - 8.9 pH 3,
90 min

- - 7.4 Hastuti et al. 
[88]

Activated
carbon

Cu2+
Phenol

- - 34.19
74.35

20 °C, pH 7 
240 min

- - - Liu et al. [90]

Epichloro-
hydrin-

MB 
RO 16

45.46 0.10 40.99
190.97

30 °C,
1800 min

- - - Marrakchi 
et al. [91]

sepiolite
Activated

carbon
Cr(VI)
Cd(II)

362.30 0.23 90.90
50.50

pH 6 
150 min

16.37 0.02 41.60 Sharififard 
10.00 et al. (2016)

Activated
carbon

Cr(VI)
Phenol

- - 50.58
28.15

- - - - Huang et al. 
[93]

Oxalic acid- 
neem leaf

MB 389
351

0.22490.8 
0.133 47.23

30 °C, pH 6, 
72 h

226 0.125 29.93 Asokogene 
et al. [62]

Bentonite
nanoclay

n h 4+n - - 82.11% pH 6 - - 43.19% Haseena et al. 
[101]

Magnetite Glyphosate - - 90% 60 min - - - Soares et al. 
[102]
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[86] studied the aniline-modified chitosan for the removal of 
anionic fluorescein dye. The adsorption capacity increased 
from 1.96 to 61.8 mg g-1. Similarly, Asokogene et al. [62] 
reported the potential of activated neem leave-chitosan 
composite for methylene blue removal. The specific surface 
increased from 226 to 389 m2 g-1, while the capacity rose 
from 29.93 to 90.8 mg g-1. Carvalho et al. [104] evaluated 
the adsorption potential of chitosan films from shrimp waste 
on anthocyanin pigment from red cabbage with the view to 
providing information about the immobilization of antho- 
cyanin molecules onto chitosan films. The adsorption capac­
ity of the chitosan film was 140 mg g-1. Pinheiro et al. [105] 
evaluated the adsorption potential of chitosan from shrimp 
waste and alginate beads on anthocyanins from Pinot Noir 
grape skin with the view to demonstrating the possibility of 
concentrating different molecular structures of anthocyanins 
onto chitosan and alginate beads. The adsorption capacity of 
chitosan and alginate beads was 216 mg g-1 (65%) at pH 8 
and 126.4 mg g-1 (38%) at pH 4, respectively.

Chitosan has been successfully used to extract ani­
ons from water in recent years. Chatterjee and Woo [106] 
used chitosan beads to remove nitrates. The capacity of 
92.1 mg g-1 was recorded at pH 3, initial nitrate concen­
tration of 1 g dm-3 and temperature of 30 °C. In a related 
work, the protonated cross-linked glutaraldehyde chitosan 
gel beads displayed a pH-independent process of nitrate 
extraction [107]. The protonated chitosan beads had also 
been applied as defluoridating medium [108]. The presence 
of other coexisting anions shows that the adsorption var­
ied with pH, whose maximum capacity lies between 4.72 
and 7.32 mg g-1. The hydrogen bonds are indicated as the 
sorption mechanism between the positively charged amino 
groups of chitosan and fluoride ions. Affonso et al. [109] 
evaluated fluoride adsorption from fertilizer industry efflu­
ent using carbon nanotubes stabilized in chitosan sponge 
(CNT-CS) as adsorbent. The removal capacity of fluoride 
was 975.4 mg g-1, which was an indication of the potential 
of hybrid material to remove fluoride from the real matrix. 
Further evaluation showed that after 5 cycles of regenera­
tion, the reuse of adsorbent kept similar adsorption capaci­
ties in all cycles.

Chitosan has also been used for the adsorption of nutri­
ents from an aqueous solution. Safie et al. [110] carried out 
an adsorption performance comparison on ammonium ion 
(NH4+) of natural zeolite (NZ), activated NZ (ANZ) with 
high molecular weight chitosan (HMWC) and low molecular 
weight chitosan (LMWC). The result showed that HMWC, 
NZ and ANZ attained adsorption equilibrium at 15 h and 
LMWC at 20 h. However, the removal capacity was 0.769, 
0.331, 2.162 and 2.937 mg g-1 for LMWC, HMWC, NZ 
and ANZ, respectively. Haseena et al. [101] also prepared a 
novel composite adsorbent of chitosan and bentonite nano­
clay in the form of thin films and its adsorption potential for

ammonium-nitrogen (NH4+N) from an aqueous solution was 
investigated and compared with unmodified chitosan. The 
removal of ammonium-nitrogen from an aqueous solution of 
initial concentration of 15 ppm, pH of 6 and adsorbent dos­
age of 0.5 g was 43.19 and 82.11%, respectively for unmodi­
fied and modified chitosan (Table 3). The removal efficiency 
of modified chitosan was almost twice that of the unmodified 
chitosan. This was an indication that the modified chitosan 
possessed more surface area for adsorption.

Zhao et al. [111] fabricated a cost-effective, biomass- 
derived and novel adsorbent by coating polydopamine on 
lanthanum-chitosan hydrogel (La-CS@PDA) which is rich 
in amine groups for the adsorption of phosphate in waste­
water. Phosphate adsorption was enhanced by the diffusion 
structure of the channel-network of La-CS@PDA,hence, the 
adsorption capacity was 195.3 mg g-1 which was superior 
to other phosphate adsorbent materials in literature. Nev­
ertheless, in the presence of other competitive anions like 
Cl- , SO42-, HCO3- , NO3- , F-  and HCrO4- , La-CS@PDA 
demonstrated distinct selective adsorption for phosphate due 
to the presence of selective binding sites of La species in the 
composite.

Phenols are among the most toxic contam inants in 
water. They are toxic to aqua species even at low concen­
trations, in addition to the risk of loss of taste and aroma. 
New alternative methods to remove phenols effectively 
from water are continuously sought and investigated. The 
classical approaches using the biological treatm ent and 
activated carbon adsorption reveal low efficiency, while 
the advanced phenol extraction/oxidation methods are sat­
isfactory but costly [112]. Li et al. [113] examined chitosan 
derivatives by chemical modification using salicylaldehyde 
and 6-cyclodextrin polymer for phenol, p-nitrophenol and 
p-chlorophenol removal. The performance of chitosan for 
phenols removal is initially poor (1.98-2.58 mg g-1), while 
the modification strategies boost the removal to as high as 
179.73 mg g-1. Table 3 generalizes the effects of chitosan 
modification on its texture and performance as an adsorbent 
for solutes removal.

7 Adsorption mechanisms

The adsorptive interactions of chitosan depend on pH, crys- 
tallinity, water affinity and deacetylation (amino group con­
tent) [114]. Adsorption could also govern by complex for­
mation or electrostatic attraction in acid media, ion exchange 
with protonated amino groups and chelation at amino groups 
[115]. Chitosan chelates metals in solution five to six times 
due to the presence of free amino groups in the chitosan 
chain. This property is widely used for the uptake, separa­
tion or recovery of valuable metals and dyes for environ­
mental purposes. The use of chitosan is somewhat limited
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in industrial applications due to the cost of materials, the 
variance of characteristics and the availability of resources, 
hence the need for its synthesis [16].

The adsorption properties of chitosan are due to its func­
tional groups including improved hydrophilicity by poly­
mer hydroxyl groups, which also helps to increase the dif­
fusion of polymer networks and enables metals and dyes 
to be adsorbed from the aqueous solution. In several ways, 
hydroxyl and amino groups can react with aqua solutes. The 
amino groups are very important for adsorption processes 
as compared to the hydroxyl groups, for which the degree 
of deacetylation is an important parameter for assessing 
the quality of chitosan biopolymer [57]. Figures 10 and 11 
illustrate the working mechanisms of methylene blue and 
chromium, respectively, by chitosan derivatives [116, 117].

Yet, certain challenges can occur in the chemical sys­
tem, including the susceptibility of chitosan solubility in

acidic solution, for which it is not desirable to withstand 
its insoluble texture [16]. Hence, cross-linking reactions 
may improve the stability of chitosan under acidic and 
alkaline conditions,however, this process can reduce the 
adsorption traits.

High nitrogen content in chitosan works as active sites 
for several chemical reactions in water. The amine groups 
in chitosan are weak enough to deprotonate water [57],

Chitosan -  NH2 +  H20  =  Chitosan -  NH+ + OH+

The pKa value of chitosan (6.3) increases its solution 
pH when in contact with water [57]. Chitosan adsorption 
is dependent on solution pH due to the direct effect of an 
acid-base reaction. The amine groups serve as a binding 
site for metals via chelation mechanisms in the deproto- 
nated form of chitosan. Chitosan may also bear electro­
static properties for ion-exchange mechanisms to adsorb 
aqua metals [57].

Fig. 10 Adsorption mechanism 
of methylene blue on chitosan 
beads [116]

Fig. 11 Mechanisms of chro­
mium ions removal by chitosan- 
magnetite nanocomposite strip 
[117]
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8 Recovery of spent chitosan

Spent chitosan/chitosan derivatives are in most cases non- 
biodegradable and toxic after adsorption due to the deposit 
of adsorbates. The regeneration is carried out by chemi­
cal treatment with mineral acids (H2SO4, HCl and HNO3), 
complexing or chelating, agent (EDTA, EDTA-disodium 
(Na2EDTA)), alkaline (NaOH, NH4OH), salt (NaCl, KNO3’ 
Na2CO3, Na2SO4), organic acid (citric acid) solution and 
distilled water because of the simplicity, convenience, effec­
tiveness and low cost of these desorption agents to restore 
the properties of chitosan materials [118- 121]. Thermal and 
biological desorption methods for chitosan are not common 
because chitosan cannot withstand high temperature [122] 
and the ease of biodegradability due to accessibility for the 
microorganism in biological desorption [123].

Mineral acids are mostly used as desorption solvents for 
cationic pollutants because of the favourable adsorption 
nature in the basic environment of these cationic pollut­
ants and the mechanism involved in their adsorption on 
chitosan and chitosan derivatives adsorbents. Therefore, 
in desorption, these mineral acids supply a high number 
of cation (H+) which weakens the interaction between the 
cationic pollutants and their adsorption groups. M ean­
while, the anions from these mineral acids form a com ­
plex with the cationic pollutants and are released into the 
solution [124]. Complexing or chelating agents like EDTA 
and EDTA-disodium (Na2EDTA) in desorption of cationic 
pollutants form complexes because of their high-affinity 
constant which replace the functional groups on the chi­
tosan and its derivatives adsorbent complexed with ions 
and com plexate with ions [125- 127]. Alkali desorption 
agents are mostly used to desorb the anions in pollutants 
from chitosan and its derivative adsorbents due to the 
higher affinity of these anions to react with Na+ or NH4+

than the adsorption sites, thus weakening the adsorbate 
and adsorbent bonds in alkali conditions [128, 129]. Salt 
desorption agents are considered as suitable because of 
their ability to weaken the interaction between cationic 
pollutants and the binding sites on the chitosan and its 
derivatives surface in order to form complexes that are 
stable [130, 131].

The weak or strong adsorptive forces between the sorb­
ent surface and the sorbate molecules in the regeneration 
media often determ ine the efficiency of desorption [95, 
132]. Therefore, the adsorption of adsorbate after adsor­
bent regeneration depends on the efficiency of regenera­
tion of adsorbents after adsorbate desorption. Deposited 
adsorbates are desorbed using a cheap and eco-friendly 
agent and the adsorbent regenerated for another cycle. 
Regeneration is im portant for keeping the adsorption 
process cost low [133, 134]. Desorption and regeneration 
of chitosan and its derivatives are found to increase with 
increased tem perature, contact time and agitation speed 
[135, 136]. O ther factors include the increased concen­
tration of desorption and regeneration agents. However, 
an excessive increase in concentration could lead to the 
disintegration of the chitosan structure [135]. Meanwhile, 
the low mechanical and chemical stability of chitosan as 
well as its biodegradability are factors that affect chitosan- 
based adsorbent regeneration [52]. Figure 12 shows the 
schematic representation of the chitosan adsorbent regen­
eration procedure.

Desorption efficiencies and other parameters affecting 
the regeneration of chitosan and its derivatives adsorbents 
using various agents are summarized in Table 4 . However, 
limited data from the literature on desorption agents and 
their operating conditions, such as adsorbate concentra­
tion, pH, temperature and eluent concentration has made 
it difficult to compare the performance of the eluents.

Fig. 12 Schematic representa­
tion of adsorption-desorption in 
chitosan [52]
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Table 4 Regeneration of chitosan and its derivatives

Adsorbent Adsorbate Regeneration agent Desorption
efficiency
(%)

Desorp­
tion
cycle

Reference

Chitosan-coated sand Cu(II) 1.0 m o lL -1 HCl, pH 1 99.22 1 Wan et al. [137]
1.0 m o lL -1 HCl, pH 3 13.06 1

Chitosan/clay composite Rose FRN dye 0.1 mol L -1 HCl 87 1 Kausar et al. [132]
Chitosan beads CU(II) 0.1 mol L -1 HCl 94 3 Osifo et al. [138]

0.0001 m o lL -1 EDTA 65.24 1 Ngah et al. [139]
Chitosan Cd(II) 0.01 mol L -1 HNO3, pH 1 68 1 Rangel-Mendez et al. [140]

Cr(VI) 0.01 mol L -1 HNO3, pH 3 44.8 1 Bhuvaneshwari et al. [135]
0.1 mol L -1 H2SO43 88 1

ECH cross-linked chitosan fibre Pb(II) 2 mol L -1 HNO3 thio­ 95.6 3 Zhao et al. [141]
urea-1.0 mol L -1 HCl

Chitosan/sodium silicate As(V) L-Cysteine 100 1 Boyaci et al. [142]
Magnetic chitosan nanoparticles/a- CU(II) 0.1 m o lL -1 Na2 EDTA 91.5 1 Zhou et al. [143]

ketoglutaric acid
Quaternary chitosan-magnetite nanosorb- Glyphospate 0.1 mol L -1 HCl 80 4 Soares et al. [102]

ent
Phosphate chitosan/ethyl hexadecyl dime- Cr(VI) 5% NH4OH 70 10 Kahu et al. [144]

thyl ammonium bromide
Ferric hydroxide chitosan beads As(III) 0.1 mol L -1 NaOH 100 5 Padilla-Rodrfguez et al. [128]

1.0 m o lL -1 NaOH 100 5
Chitosan/bentonite Cu(II) 0.1 mol L -1 NaCl 36 3 Futalan et al. [130]

Ni(II) 47 3
Pb(II) 13 3

Magnetic chitosan U(VI) 1.1 g L -1 Na2CO3 94 - Stopa and Yamaura [145]

GLA-cross-linked chitosan/aminoguanidyl Ag(II) 2.0 mol L -1 KNO3 95 1 Ahamed et al. [146]
Au(II) 85 5

9 Conclusion and future prospects

The m odification strategies of chitosan have greatly 
improved the properties of chitosan derivatives for com ­
petitive applications especially in water and wastewater 
treatment and nutrient adsorption/recovery. The existence 
of amino and hydroxyl groups creates the positions for sur­
face modification either by chemical or physical means. 
Chitosan derivatives generally hold superior properties of 
hydrophilicity, mechanical strength and solubility resistance 
to acids, specific surface, porosity and adsorption. Chitosan 
also shows superior life cycle assessment from the viewpoint 
of environmental impact.

A large volume of works may have been published over 
the years on chitosan and its derivatives for various pollut­
ants removal. Nonetheless, only few of these works clearly 
presented novel modifications, advantages and limitations, 
and life cycle assessment of the chitosan structure, while 
most are still focusing on routine studies by testing the 
modified adsorbent on different adsorbates. The potential 
of modifying chitosan is still large and yet to be unlocked 
and can be significantly developed in the future. Future quest 
for novel modifiers should ensure that modification strate­
gies are carried out without altering the biodegradability,

antimicrobial and antifungal properties and non-toxicity of 
the pristine chitosan. Secondly, future research areas should 
make efforts to employ natural resources as chitosan modifi­
ers because of the safety and health concerns associated with 
end applications. This development will further promote the 
use of chitosan derivatives on a larger scale because of the 
impact it will have on bioprocessing, cosmetics and food 
industries, among others.
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