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Abstract 

The complex behavior of two‑phase flow particularly in microchannels can be unpredictable. Experimental meas‑
urements are near impossible because of the unavailable compatible assessment equipment. Meanwhile, repeated 
experiments for reliability of outcomes are costly and involved much time and effort. Environmentally friendly 
propane is currently being considered as a replacement for hazardous coolants in available refrigeration and air‑
conditioning systems. This paper reports a system identification (SI) analysis of the collected experimental data of 
two‑phase flow of refrigerant R290 in a microchannel test rig. An ARX model was chosen as the dynamic model, and 
the modeling of the input–output data was done using a new methodology based on particle swarm optimization 
(PSO) technique. Measured temperature difference across the microchannel test section and the mass flow rate were 
the input and output, respectively. The performance of the particle swarm optimization with discoverer (PSOd) was 
investigated and compared to the original PSO technique. The model was then validated by mean‑squared error 
(MSE). Results demonstrate the advantages of discoverer in PSOd over its standard counterpart with a smaller MSE 
of 6.2629 ×  10−11 and a faster convergence. The SI allows a better prediction of the mass flow rate before any further 
experiments to obtain the heat transfer coefficient are done. The model provides better management of design of 
experiments that involve the complex two‑phase flow in a microchannel, consequently saving experimental time and 
cost.

Keywords Particle swarm optimization, Particle swarm optimization with discoverer, System identification, Two‑
phase heat transfer, Microchannel

1 Introduction
Over the last decade, numerous studies both experimen-
tally and numerically have been performed to appraise 
the heat transfer properties and their role in energy 

systems, especially in microchannels [1, 2]. A microchan-
nel had shown a good thermal performance with its large 
heat transfer surface to volume ratio. It is proven to be 
able to dissipate heat flux effectively from localized hot 
spots over a small surface area [3]. Boiling heat trans-
fer in a microchannel is a subject discussed by various 
researchers studying energy models or processes in a 
heat exchanger. The results of various published research 
drew different conclusions on the characteristics of the 
heat transfer coefficient in microchannels [4]. However, 
most has reported that their biggest obstacles are to min-
imize pressure drop and maximize heat transfer through-
out the process without the uncertainties of parameters 
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[5, 6]. Thus, predicting the heat transfer coefficients or 
their parameters has been addressed to enhance the 
advantages of the two-phase heat transfer system in 
microchannels [6, 7].

Additionally, the usage of environmentally friendly 
refrigerants has been favored nowadays. Propane is an 
environmentally friendly refrigerant, where it is a natu-
ral refrigerant with zero ozone depletion potential (ODP) 
and global warming potential (GWP) that can reduce 
the risk of damaging the atmosphere [8]. This potential 
natural replacement is a promising long-term solution 
yet lacked reliable studies. Therefore, it is necessary to 
develop an appropriate method for preparing and pre-
dicting the heat transfer parameters. This study ana-
lyzed the data of boiling heat transfer coefficient with 
propane as the working fluid in a microchannel system. 
Parameters like heat transfer coefficient or temperature 
difference in two phases are usually a function of many 
independent groups, valid over a finite range of values. 
The relationship between these parameters and their 
relevance to heat transfer coefficients can be deduced 
using new optimization techniques. Besides, the diffi-
culty in heat transfer systems that experience the drastic 
effect due to some parameters or coefficient changed may 
reduce the overall performance [9]. It could bring large 
errors or instability to the experiments besides the rela-
tively high expenses of experimental procedure. This has 
motivated the current study to provide a promising tech-
nique which can be applied to predicting heat transfer 
parameters with the use of modeling based on an optimi-
zation method.

Modeling a heat transfer system has been shown to 
save time, lower the risk, and reduce the expenses of 
experiments by understanding the dynamic behav-
ior of the heat transfer analysis. The construction of 
the dynamic model also has allowed the estimation of 
parameters and efficiency of prediction that are crucial 
for the system. Since this system is complex, an appro-
priate model can be established using a well-known 
modeling method of system identification (SI) technique. 
System identification is the estimation process in each 
mathematical model structure that is equivalent to the 
identified system based on the measured input–output 
data [10]. Using this method, the derivation approach can 
be avoided which is relevant for difficult and nonlinear 
systems. This method is well developed and widely used 
[11]. Tafarroj et al. [12] applied artificial neural network 
(ANN) modeling for a heat sink in a microchannel. His 
objective function was to predict the Nusselt number, 
and they obtained 0.3% relative error. Meanwhile, Felde 
et  al. [13] demonstrated the determination of inverse 
heat transfer coefficient using particle swarm optimiza-
tion (PSO) on the surfaces of a cylindrical workpiece. It 

was shown that implementation of PSO methods had 
provided less time consumed and produced an accurate 
estimation for inverse heat conduction problems. Simi-
lar work had been done by Vakili and Gadala [14] where 
three variations of the PSO method had been introduced 
and they showed that PSO could reduce the stability 
problems of the classical methods. Besides, Yassin et al. 
[15] explored application of binary PSO (BPSO) for mod-
eling a heat exchanger system. Results showed a good 
model fit between actual and predicted data. These inves-
tigations have shown that system identification can and 
had been able to solve many heat transfer problems.

Evolutionary algorithm (EA) is a practical alternative 
for solving computationally complex and mathematically 
intractable problems. Due to its wide applications such as 
in identification of complex dynamical systems, remark-
able attention has been given to EA during the recent era. 
Nature-inspired evolutionary algorithms have a powerful 
performance and are highly efficient in solving any types 
of global optimization problems. One algorithm from 
that class is particle swarm optimization (PSO) which is 
generally used as an intelligent optimizer to compute any 
dynamics problems. PSO that was introduced by Ken-
nedy and Eberhart in 1995 has been successfully proven 
to solve any optimization problem [16]. PSO algorithm is 
widely used and rapidly developed for its easy implemen-
tation, is simple in concept yet computationally efficient, 
and has a higher convergence rate [17].

Recently, the use of PSO algorithm in diverse applica-
tions has been widely investigated by researchers to solve 
optimization problems. However, many have reported 
that PSO algorithm can easily suffer a premature con-
vergence of the optimization problems as particles con-
verge to one solution at an early stage [18, 19]. Since the 
introduction of PSO, many researchers have worked on 
adjustments and improvement to the basic PSO algo-
rithm in various ways. Other applications other than heat 
transfer analysis are also considered to highlight the con-
tribution of modified PSO in identification modelling.

Chen et  al. [20]. had implemented a hybrid algo-
rithm between PSO and genetic algorithm (GA) tech-
nique (HPSO-GA) for identification of energy demand 
in a greenhouse. Their identification included param-
eters such as inertias and heat transfer constants. It 
was concluded that HPSO-GA was superior to each 
GA and PSO alone, had a fast convergence process, 
and avoided premature convergence on the parameter 
estimation. Additionally, Xing and Pan [11] applied 
an improved PSO based on a Gauss function for sys-
tem identification as compared to the basic and binary 
PSO. It was found that improved PSO provided better 
results. Recently, Muyao et  al. [21]. studied an ame-
liorated PSO (APSO) to solve the Bouc-Wen model 
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parameter identification problem of a piezoelectric 
actuator. APSO introduced nonlinear dynamic acceler-
ation coefficients and modified particle position update 
approach in its methodology. Identified Bouc-Wen 
model was experimentally verified and showed its fast 
convergence to a steady state.

PSO is a global, stochastic optimization technique 
inspired by social behavior of bird flocking and fish 
schooling [22]. The main strength of PSO is it has only 
a few parameters to be adjusted which promotes easy 
implementation with a higher rate of convergence [23]. 
Some studies on heat transfer using the PSO method have 
been carried out by some researchers [24–26]. Although 
many different methodologies have been applied in the 
basic PSO algorithm, there is still a limited amount of 
research that proposed a modified PSO as an optimiza-
tion tool, especially in the field of heat transfer analysis 
in a microchannel. Thus, this research introduced a new 
methodology of PSO algorithm known as particle swarm 
optimization with discoverer (PSOd) to improve the opti-
mization parameters for modeling the two-phase heat 
transfer analysis in a microchannel using system identi-
fication (SI). Firstly, series of experiments on two-phase 
heat transfer in a microchannel had been completed in a 
test rig with data on the temperature difference and mass 
flow rate collected. Next, PSOd identification was carried 
out using the input–output data acquired experimen-
tally. The validity of the obtained model was investigated 
using input/output mapping, smallest mean square error 

(MSE), and correlation tests. Performance assessment of 
PSOd was then compared with the basic PSO.

2  Two‑phase heat transfer in microchannel system
In this work, an experimental rig for two-phase heat 
transfer in a microchannel system was set up as illus-
trated in Fig.  1 [5]. The main observation was on the 
test section heated by an electrical heater. The test sec-
tion was a horizontal tube with a diameter of 500  µm 
and length of 0.5 m. The propane temperature flowing in 
the test section was measured by attaching K-type ther-
mocouples at the top and bottom of the test section, as 
shown in Fig.  1. There were five temperature measure-
ment locations at the test section. Measured temperature 
difference (dT) along the channels was calculated and 
recorded as the input for modelling. Moreover, inserted 
thermocouples and pressure transmitters were installed 
at the inlet and outlet of the test section. A condens-
ing unit was used to condense the evaporated propane. 
After the condensation process, the liquid refrigerant was 
pumped by a magnetic pump. A cooling bath was placed 
after the magnetic pump to maintain the working fluid in 
a liquid phase condition. A Coriolis flowmeter was used 
for measuring the flow rate of the refrigerant and taken 
as the output data for modelling. Before the propane 
entered the test section, it was flowed in a preheater to 
adjust the inlet temperature of the working fluid. There 
were sight glasses at the inlet and outlet of the test sec-
tion for observation of the phase of the propane. The 

Fig. 1 Experimental setup [5]
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uncertainties of temperature, heat from the heater, 
and mass flow of working fluid are ± 0.42  °C, ± 0.05 W, 
and ± 0.05%, respectively.

3  System Identification (SI) using Particle Swarm 
Optimization with discoverer (PSOd)

Increasing demand from industries for the application 
of heat transfer technology in microchannels, especially 
in the electronic field, has increased due to their ben-
efits. However, to control the effect of heat transfer when 
parameters are varied is difficult. Thus, the construction 
of the appropriate model for efficient parameters predic-
tion is crucial. In this study, modeling of the two-phase 
flow of a propane system was conducted using a model 
structure of autoregressive with exogenous variables 
(ARX). Meanwhile, the optimization approach included 
the basic PSO and improved PSO, namely the particle 
swarm optimization with discoverer (PSOd). Basic rela-
tion of system identification can be expressed as in Fig. 2.

In this modeling, the experimental input was extracted 
from the measured temperature difference (dT) along the 
tube in the microchannel system, which is obtained from 
the results of experimental measurements. Meanwhile, 
the experimental output was recorded from the mass 
flow rate readings from the Coriolis meter. For the heat 
transfer system model, dT was the system input, u(t), 
fed into the system; the mass flow rate was the measured 
output, ym(t); and the estimated output generated was 
y(t). Prior to that, an appropriate order and parameters 
for the model were essential to be determined that best 
fit the relation between inputs and outputs. The most 
basic relationship of an ARX model structure is given by 
the following [10]:

where
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z−1 is a backshift operator, n is the order of the model, 
and white noise, ξ(t) = 0, and [a1,…,an,b1,…,bn] are model 
parameters that need to be optimized. Polynomials of 
A(z−1) and B(z−1) consist of model parameters that need 
to be optimized too and can be expressed as in a transfer 
function form, H(z−1), as follows:

The accuracy of the predicted output is measured in 
terms of the mean squared error, MSE, which is defined 
by the following:

where S is the number of samples. Equation  (3) is the 
objective function to be minimized, optimizing the 
parameters in Eq.  (2). The generated optimized param-
eters were later used to update the system model. This 
process was repeated until the maximum iteration 
number was reached or a minimization criterion was 
achieved. In this study, validation tests were carried out 
based on input/output mapping, mean squared error 
(MSE), and correlation tests.

PSO was initialized with the population called swarm 
of random particles, “fly” in the d-dimensional search 
space of an optimization problem. Every particle is 
updated with the two “best” values at each iteration. 
The first one is the best position a particle has visited 
so far, called pbest (Pid). Secondly, the best position 
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Fig. 2 System identification relationship
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obtained so far by any particle in the swarm is called a 
global best or gbest (Pgd). Both best positions are mem-
orized, and then, the particle is accelerated towards 
those two best values by updating the particle position 
and velocity using the following set of equations [22]:

vid(t) and xid(t) are the current velocity and position vec-
tor for i-th particles at time t respectively. There are two 
acceleration coefficients, usually C1 = C2 = 2 as suggested 
in the literature [22], and rand is the random number 
between 0 and 1. w is the inertia that serves as memory 
of the previous direction, preventing the particle from 
drastically changing direction. A high value of inertia 
promotes global exploration and exploitation which is 
preferable at the early part of optimization. Meanwhile, 
a low value of inertia leads to a local search during the 
latter part when the algorithm converges to the optimal 
solution. A balance between the global and local search 
are preferable and thus linearly decreasing w during 
the search process over time which can be expressed as 
follows:

Tmax is the maximum number of time steps the swarm 
is allowed to search. wstart and wend are the start and end 
point of inertia weight, respectively, defined as linearly 
decreasing from 0.9 to 0.25.

Although PSO has been proven to solve many optimi-
zation problems, many have reported that the swarm in 
PSO might undergo diversity loss as iteration proceeds. 
Some particles may become passive and lose their global 
and local search capability in the next iteration and only 
“fly” within a quite small area. This leads to a premature 
convergence of the optimization problems [20]. In the 
worst situation where the particle is flying in a small area 

(4)
vid(t) = wvid(t − 1)

+C1.rand.(Pgd − xid(t − 1))

+C2.rand.(Pgd − xid(t − 1))

(5)xid(t) = xid(t − 1)+ vid(t)

(6)w(t) = wstart −
(wstart − wend)

Tmax
.t

with its position and pbest close to gbest, and almost zero 
velocities at the latter stage, the swarm is said to be in sta-
tionary, and no possibility of evolution is expected [27].

PSOd is proposed to solve the problem of getting stuck 
to a local minimum while maintaining the main strength 
of the basic PSO, thus improving the overall performance 
of the algorithm. Inspired by the behavior of scout bees in 
the artificial bees colony (ABC) algorithm, similar behav-
ior is injected into the PSO algorithm, namely as PSO 
with discoverer (PSOd). For sustainable development, 
a discoverer was introduced to satisfy the requirements 
that take the swarm away from the equilibrium state and 
avoid a premature convergence. The discovery searching 
of a particle can be illustrated as in Fig. 3.

Furthermore, diversity of the swarm can be enhanced 
since the discoverer can explore new potential positions, 
and thus, passive particles can be replaced. The discov-
erer was constructed in the algorithm under a situation 
where the particles fitness values have been maintained 
for a certain limit of iterations to avoid loss of good par-
ticles. After a limit has been reached, a particle will be 
given their personal best position and a new velocity to 
explore a new potential search space as in Eq.  (4). The 
discoverer position was replaced by their pbest value 
to allow the discovery of a more promising region so 
that the searching will not become chaotic and random 
but associated with a random velocity to avoid stagna-
tion state at zero velocity. The pseudo code of PSOd is 
depicted as in Fig. 4.

Figure  5 shows the flowchart of the PSOd with the 
methodology of discoverer as highlighted.

4  Results and discussion
It is crucial to identify a satisfactory and accurate model 
of the microchannel heat transfer system so that the best 
parameters estimation can be achieved to prevent a per-
formance drop or drastic change during a heat transfer 
analysis. To date, experimental data on the heat transfer 
of propane in a microchannel is still scarce due to the 
large amount investment necessary: cost, time, and effort. 
Consequently, the performance of PSOd in modeling the 

Fig. 3 Passive particle become discoverer
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heat transfer in a microchannel system as shown in Fig. 1 
was studied in comparison with the standard PSO.

The input–output data that was collected was not large 
but varied in power input supply, thus contributing to 
many data sets. The SI was performed for each set of 
data. For each input power supply, the total number of 
data collected was less than 100. Only 20% of the total 
data was used for training, while the rest was used for 
testing. The ratio of training data to the testing data was 
small because within that training range, crucial behavior 
of the system was successfully captured. Acquired input–
output data was then fed into a system identification (SI) 
method.

With the new modification of the standard PSO algo-
rithm, PSOd is expected to improve the performance 

of global optimization. The model performance was 
observed in input/output mapping, the value of MSE, 
convergence of parameters, and correlation tests. Both 
PSO and PSOd are stochastic search methods where 
the solutions produced by the algorithms may vary each 
time. It is important to select the right model order in the 
identification process. Therefore, simulations were car-
ried out by varying the number of particles, number of 
iterations, and orders until the smallest MSE value was 
recorded. It was started by varying the number of parti-
cles in order of 2. Then, the tuning is initialized by setting 
the number of iterations to 50 and varying the number of 
particles from 50 to 150. After the best number of parti-
cles is achieved, PSO and PSOd modeling was observed 
with increment of iterations from 50 to 200. Next, 

Fig. 4 Pseudocode of PSOd

Fig. 5 Flowchart of PSOd
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maintaining the best number of particles and iterations, 
model order was varied until satisfactory results were 
obtained. Figure 6 recorded the best results that achieved 
minimum MSE value for each of the dataset.

From Fig. 6, it is noted that at all the dataset of varying 
input power supply, PSOd is able to capture the lowest 
MSE value as compared to the standard PSO. This situ-
ation becomes obvious at input 14.2 Watt where a very 
large difference of MSE value is obtained between PSOd 
and PSO. The ability of the discoverer to discover a new 
potential area position and prevent particles from a stag-
nant state may cause this situation to happen. It can be 
concluded that the absolute minimum MSE that is best 
recorded by both PSOd and PSO is at 31.4 W. Table  1 
shows comparative results between PSOd and PSO mod-
eling in achieving minimum MSE.

From Table  1, both models achieved the best results 
with an order of 2. The smaller MSE is obtained by PSOd 
modeling with 6.2629 ×  10−11. Superiority of the PSOd 
can be seen with the lesser number of particles needed 
which is 100 with a faster iteration number compared to 
PSO to converge to the best MSE value. This fast con-
vergence of PSOd may be due to a wider exploration 
and promising potential area of discoverer to reach the 
global optimum. Discoverers shared their best informa-
tion within particles and were often quick to identify 
good solutions, thus contributing to better fitness with 
less iteration.

Next, from the best model obtained, the parameter 
convergence of PSOd and PSO was investigated as in 
Fig.  7 to observe the effect of discoverer on diversity of 
swarm in heat transfer modeling.

When a particle becomes a discoverer, its new posi-
tion will be replaced with its own pbest position in his-
tory as can be seen in Fig. 7c where the new explorations 
are not too random and fluctuated but still away from 
being trapped. This is to avoid the searching becom-
ing random searching and thus loss of potential posi-
tion. From Fig. 7a, it is noted that the model parameter 
of PSO has already converged at an early stage. There 
is a high possibility of premature convergence, and the 
evolution of particles almost stagnated at equilibrium 
state. Meanwhile, the advantages of the discoverer can 
be seen in parameter convergence of PSOd as shown in 
Fig. 7b and c. As particles start moving towards an opti-
mum solution, passive particles will become discovered 
to avoid stagnation state and add diversity to the swarm. 
As in Fig. 7b, model parameters have an active path and 
only converge after 100th iterations. Discoverers prevent 
particles from being stuck on local minima because gbest 
will be updated if an acceptable solution is present on 
the moving trajectory of the discoverer. However, if the 
discoverer’s position does not contribute to the better fit-
ness, gbest value of the entire swarm is maintained, and 

Fig. 6 Minimum MSE values of PSOd and PSO for each dataset

Table 1 Comparative assessment

Characteristics PSO PSO with 
discoverer 
(PSOd)

Number of particles 150 100

Number of iterations 200 150

Model order 2 2

MSE 6.2635 ×  10−11 6.2629 ×  10−11
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particles are within the locality of the best position as 
illustrated in Fig. 7c.

Besides, it is revealed that with the addition of the new 
pseudocode in PSOd algorithm to reflect the discoverer 
work, the execution time of the algorithm during optimi-
zation is not extended as shown in Fig. 8. It proves that 
complex searching of discoverer to find the potential area 
position does not affect the computational effort and thus 
lagging the computing execution time.

Thus, the best model of heat transfer analysis in a 
microchannel system has successfully been identified by 
PSOd algorithm that describes the dynamic of the sys-
tem. The advantages of the discoverer have increased 
the diversity of the swarm, prevent particles from being 
trapped at a local minimum, promisingly find quality 
optimal solutions, and thus enhance the performance 
of the PSOd to outperform their standard counterparts. 
This obtained PSOd best model needs to be validated by 
input–output mapping and correlation tests to determine 
the effectiveness of the developed model. Figure 9 shows 
the convergence profile of PSOd in achieving a mini-
mum MSE value. The model parameters optimized by 
PSOd can be represented in a transfer function form as 
in Eq. (2) as follows:

Figure  10 shows the simulated mass flow rate of best 
PSOd modeling against the actual mass flow rate meas-
ured. It is noted that the output response almost matched 
one another where the PSOd modeling tried to find the 
best line between a drastic change that occurred in the 
actual output of the two-phase microchannel system. 
The error of output between actual and PSOd predic-
tion is shown in Fig. 11 based on the difference between 
the measured and estimated data. It is noted that at the 
beginning, there is a sudden difference in error due to the 
adjustment of the algorithm to learn the dynamic of the 
system during the training data. However, after 20% of 
the data was trained, PSOd modeling adjusted to match 
the output response closely and reduced the error. A 
correlation test was then used to validate the developed 
model as shown in Fig. 12. Figure 12a shows the autocor-
relation to represent the similarity between an input and 
its lagged data in time domain, and Fig. 12b is a cross cor-
relation to track the movements of input sets over time 
and its ability to match up with each other. From Fig. 12, 
it was found that both correlations are within 95% confi-
dence interval which indicates a satisfactory correlation 
and acceptable model fit of identification. This concludes 
that PSOd has been successful in preventing the particles 
from being trapped in a local minimum and performed 
well in acquiring promisingly a good quality global 

(7)H1(s) =
−0.225s2 − 119.8s + 348.1

s3 + 23.75s2 + 1168+ 5299

Fig. 7 Parameter convergence a in PSO, b in PSOd, c discoverer 
convergence in PSOd
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minimum fitness value. PSOd has outperformed its 
standard PSO in terms of faster convergence in achiev-
ing the objective function, consistent in every heuris-
tic dataset, and easy implementation. It has performed 

well in modeling the two-phase heat transfer analysis in 
a microchannel system which gives the best representa-
tion of the physical system with a minimum MSE value 
and a good correlation test indicating an effective PSOd 

Fig. 8 Average execution time

Fig. 9 PSOd algorithm convergence
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Fig. 10 PSOd modeling and actual output

Fig. 11 Error of the output
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model. This representation of an identified model will 
provide a good platform to be used in parameter predic-
tion before adapting to the actual experiment. The out-
comes obtained in this study show savings expected with 
prior prediction of the mass flow rate with changes in 
the temperature differences measured. This encourages 
continuous efforts in experimental analysis of potential 
new refrigerants in our move towards a more sustainable 
environment.

5  Conclusion
In this study, a new tuning optimization technique 
namely the PSOd strategy has been utilized to iden-
tify a two-phase microchannel heat transfer system 
behavior, expected mass flow rate with variations in the 
temperature difference across an experimental test rig. 
PSOd performance was compared to the standard PSO 
algorithm. Validation tests were carried out through 
input–output mapping, MSE, and correlation tests. For 
the system identification (SI), acquired experimental 
input/output was fed into the algorithms, and the error 
between the actual and estimated output was mini-
mized to achieve a good model of the system behav-
ior. Results showed that the modelled output almost 
matches the measured data with a 95% confidence level 
attained. It is noted that the PSOd modeling technique 
has outperformed its standard algorithm. The SI with 
PSOd has successfully modelled the experimental rig 
with the temperature difference across the test section 

as the input and the mass flow rate as the output. The 
model with PSOd can provide useful expectations 
of experimental outputs before the experiments are 
done. Consequently, much time and effort can be saved 
with the predicted behavior of the two-phase flow in a 
microchannel. The outcomes shown in this study also 
point towards possible better multiple input–output 
predictions of experimental parameters.
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