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Abstract Biclustering models allow simultaneous detection of group observations that
are related to variables in a data matrix. Such methods have been applied in biological
data for classification. Collinearity is a common feature in biological data as there exist
interactions between genes and proteins in their respective pathways. These relationships
could seriously reduce the efficiency of biclustering models. In this study, synthetic data
are generated to investigate the effect of collinearity on the performance of biclustering
models. Specifically, the data are generated and induced with varying degrees of collinear-
ity using Cholesky decomposition, and are implanted with biclusters to produce different
sets of synthetic data. The effectiveness of three models namely Biclustering by Cheng
and Church (BCCC), Spectral Bicluster (BCSpectral) and Plaid Model in correctly de-
tecting three types of biclusters in the generated data matrix were compared. The results
show that all the models investigated are sensitive to changes in the level of collinearity.
At low collinearity, all biclustering models detected the implanted biclusters in the data
correctly. However, as the level of collinearity in the data increased, the proportion of
detected biclusters captured by the models reduced. In particular at high collinearity,
BCCC outperformed the other two models with Jaccard coefficients as high as 0.75 and
0.873 for one and two implanted biclusters respectively.
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1 Introduction

Advanced technology has enabled the gathering of large volumes of data from throughput
biological experiments within a short space of time. The substantial amount of data generated
from these experiments, and the amalgamation of different biological sources and systems leads
to the creation of biological big data which is more difficult to analyze [1–4]. In order to mine
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information from such datasets, many multivariate statistical techniques have been developed
including biclustering [5, 6].

Biclustering model, also known as two-way clustering, is a clustering method that can con-
currently detect groups or layers of observations that are related with respect to certain variables
such that the within-group dissimilarity is minimal. These models consist of algorithms that
allow the sub-partitioning of rows and columns in a data matrix in the form of submatrix known
as bicluster. Certain overlapping biclustering models are able to capture member clusters con-
tained in two or more biclusters in the data matrix. Such methods have been applied to many
biological data for the classification and identification of biological entities [7–9].

An inherent feature of biological data is collinearity. Collinearity is a measure of the linear
dependency among the predictor variables in a multivariable process and it is an intrinsic
property in many multivariable data especially from biological experiments [10]. The presence of
collinearity is likely to lead to non-unique and unreliable estimates as a result of the singularity
in the covariance matrix [11–14]. Hence, it is important to ensure that the collinearity level in
a dataset is within tolerable limits before reliable inferences can be made from any given set of
observations.

Different algorithms in the biclustering models cater to different data behaviors. For exam-
ple, Plaid Model is suitable for additive biclusters while other models such as the Maximum
Similarity Biclustering model are appropriate for multiplicative biclusters [15]. Studies have
also been conducted to investigate the performance of several biclustering models under differ-
ent data structures. For instance, [16] investigated the biclustering algorithms with different
percentage of missing data; Another study by [17], introduced an approach to assess the impor-
tance of local patterns in biclusters with additive, multiplicative, symmetric, order-preserving
and plaid coherencies. Other studies include the evaluation of the bicluster’s size and recov-
ery score on different biclustering models [18–20]. In addition, [21] tested the performance of
the biclustering algorithms for noisy data by embedding non-overlapping constant and addi-
tive patterns of columns and rows with Gaussian noise of variance ranging from 0.1 to 0.5;
Also, [22] studied the effect on the presence of noise to identify simultaneous clusters of gene
expressions. They recommended the control of noise in biclustering algorithms to get reliable
results. The presence of noise in gene expression data which may lead to phenotic variability
has been particularly highlighted by [23].

In this study, a different type of data behaviour was investigated, focusing on collinear and
invariant features in the data. Specifically, the reliability of several biclustering models in the
presence of collinearity, featuring at least one bicluster whose entries are constant, constant in
the rows, and constant in the columns respectively. The three biclustering models examined in
this study are Biclustering by Cheng and Church (BCCC), Plaid Model, and Spectral Bicluster
(BCSpectral). These models are chosen since they are amongst the common methods used in
bioinformatics. In order to evaluate their performances, the level of collinearity in a dataset was
progressively increased and several biclusters were implanted at different levels of collinearity:
low, moderate, and high. Then, the ability of the models to detect the implanted bicluster
at that level of collinearity was examined. At each level of collinearity, one and two known
biclusters are added. This is to verify whether the number of biclusters in the data matrix has
any effect on the ability of the investigated models to resist collinearity. Also examined was
whether the models are sensitive to the type of bicluster. This was done by varying the types of
biclusters planted into the datasets, and carrying out the analysis using the respective models
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The rest of the paper is organized as follows: Section 2 presents the biclustering techniques
used in the study and Section 3 explains the procedure for simulating the generated datasets
used in the comparison of biclustering models. In Section 4, the results and findings on the
model performance comparison correctly detecting biclusters in the presence of collinearity in
the simulated data were discussed. Section 5 concludes the findings of the study.

2 Biclustering Models

A biological dataset can be presented in the form of a rectangular data matrix, Y , with elements
yij such that i = 1, . . . , n; j = 1, . . . ,m; i and j are the row index for n samples and column
index for m features respectively. A bicluster is a subset of rows that show similar behaviors
across a subset of columns, and vice-versa, displayed as a submatrix of Y . The models to be
investigated in this study are Biclustering by Cheng and Church (BCCC), Plaid Model (PM)
and Spectral Bicluster (BCSpectral). Each algorithm is applied to the generated datasets in the
form of data matrix Y and the resulting biclusters are observed. these algorithms are presented
in this section. Also presented is a discussion of some applications of biclustering.

2.1 Biclustering by Cheng and Church (BCCC)

The BCCC is a biclustering algorithm that extracts clusters that have constant values through-
out, or constant values in either the rows or in the columns [24, 25]. It is also called the δ-
biclustering algorithm because it seeks for biclusters with a mean squared residual score less
than a given threshold (δ). The threshold can be determined by a greedy iterative search
method as recommended by [26]. Given a data matrix and its submatrices, the mean squares
residual score is given by the following,

ψ(Y ) =
1

nm

n∑
i=1

(yij − αi − βj − µ)2 (1)

where µ is the mean for the overall values, while αi and βj are the row and column means
respectively, as defined in equations (2) - (4).

µ =
1

nm

n∑
i=1

m∑
i=1

yij (2)

αi =
1

m

m∑
j=1

yij (3)

βj =
1

n

n∑
i=1

yij (4)
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2.2 Plaid Model

The Plaid model expresses a data matrix, as a sum of additive-biclusters [27–29]. Every object
in the bicluster is expressed within, and only within, those objects in bicluster k. Algebraically,
each entry in the data matrix corresponds to the following expression:

Yij = µ0 +
K∑
k=1

µkρikκjk (5)

where µ0 is the overall mean of the data, µk is the mean in bicluster k, ρik is 1 if observation i
is in the k th bicluster (zero otherwise), and ρjk is 1 if variable j is in the k th bicluster (zero
otherwise).

In order for every object and every variable to be in exactly one bicluster, the stipulated
conditions are that

∑
kρik = 1 for all i, and

∑
kκjk = 1 for all j, respectively. Thus, for

overlapping clusters to be detected, it is allowed that
∑
kρik > 1 for some i, or

∑
kκjk > 1

for some j. However, to allow these conditions to exist, there are likely to be some objects or
variables that do not fit well into any of the k th-biclusters. These are called ragbag biclusters,
and the scenario is modeled by

∑
kρik = 0 for some i, or

∑
kκjk = 0 for some j.

2.3 Spectral Bicluster (BCSpectral)

The BCSpectral constructs a checkerboard structure with the given dataset [30,31]. The algo-
rithm reorders the data and computes a singular value decomposition to get eigenvalues and
eigenvectors. It then detects biclusters starting with the largest or second largest eigenvalue.
The bicluster detection is guided by the normalisation method chosen. The three normali-
sation methods are Independent Rescaling of Rows and Columns (IRRC), in which the rows
and columns are rescaled independently; bistochastization, in which simultaneous recalling of
rows and columns are carried out; and log transformation is applied to the given data matrix.
Biclusters are reported if they satisfy the conditions of minimum number of rows, minimum
number of columns and maximum variation allowed within each bicluster.

3 Simulation Procedures and Model Evaluation

3.1 Simulated Data

In order to effectively evaluate the performance of the biclustering models, the effects of
collinearity on sets of simulated data were used. The use of these generated synthetic data
offers the opportunity to investigate the effectiveness of the models in detecting implanted
biclusters on various characteristics of data. A total of 540 datasets were generated and exam-
ined. Specifically, each dataset is composed of 100 row observations and 50 column variables
that form a 100× 50 data matrix Y , with its base elements sampled from an i.i.d standard
normal distribution. This distribution is selected since biological expression data are typically
generated in multiples of thousands, and would tends toward normality asymptotically [32,33].

Each generated data matrix contains one or two implanted biclusters. Each bicluster consists
of four rows and four columns for each one of three types i.e. constant biclusters, constant
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row biclusters, and constant column biclusters. These biclusters are planted in the dataset
for the purpose of detection by the algorithms. Figure 1 illustrates three types of implanted
biclusters: Figure 1(a) shows an example when all entries in the implanted matrix contain the
same values, indicating constant bicluster; Figure 1(b) shows an example when certain row-
wise entries contain similar values, indicating constant row biclusters; and Figure 1(c) shows
an example when certain column-wise entries contain similar values, reflecting constant column
biclusters. Thus, each element yij in the simulated data Y can be expressed as in the equation
yij = xij + εij where xij is the element in the implanted bicluster and εij is the background
element sampled from a standard normal distribution.

In addition, each dataset was perturbed with different levels of collinearity using Cholesky
decomposition. Cholesky decomposition is a method of matrix decomposition that splits a
positive definite square matrix into its lower triangular matrix and its transpose. The Cholesky
decomposition has been shown to simplify calculations involving correlations and reduce the
errors of approximation [34,35].

(a)


20 20 20 20
20 20 20 20
20 20 20 20
20 20 20 20

 (b)
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 (c)


10 25 20 15
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Figure 1: Ilustration of implanted biclusters (a) constant biclusters, (b) constant row biclusters,
and (c) constant column biclusters.

3.2 Performance and Evaluation

There are several methods that can be used to ascertain the degree of collinearity in a dataset,
such as Variance Inflation Factor, Condition Index, Condition Number, and Tolerance [36,37].
In this study, Condition Number (CN) was used as the test statistic to gauge the level of
collinearity. Let a matrix Y consist of m-dependent variables, and λ1, λ2, . . . , λm, are the

eigenvalues of Y TY . The CN is given by
λi
λmax

. Thus, with respect to the maximum eigenvalue

of λmax, if there are small λ′is, then there exists multicolinearity in the data matrix Y . As a
guideline, CN <100 indicates low collinearity; 100≤ CN ≤1000 indicates moderate collinearity
while CN >1000 implies that there exists a strong linear relationship among some of the
variables [38]. The strength of each biclustering model is tested by its ability to detect true
biclusters on data with different degrees of collinearity. The variation in the settings will
indicate the extent of failure or success of the models as a result of the induced collinearity. A
measure called the Jaccard coefficient index is used to measure the model’s success by comparing
the implanted bicluster with the bicluster produced from the biclustering model [39, 40]. The
Jaccard coefficient (JC) index for two sets of biclusters, b1 and b2, is given by

JC = S(b1, b2) =

∣∣∣∣b1 ∩ b2b1 ∪ b2

∣∣∣∣ ∈ [0, 1] (6)
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Table 1: Model performance using Jaccard coefficient indices based on data containing three
levels of collinearity and one implanted bicluster with different types.

Degree of Collinearity
Model Bicluster Type Low Moderate High
BCCC Constant 1.000 0.875 0.750

Constant Row 1.000 0.739 0.499
Constant Column 1.000 0.750 0.750

BCSpectral Constant 1.000 0.590 0.390
Constant Row 1.000 0.380 0.106
Constant Column 1.000 0.044 0.245

Plaid Constant 1.000 0.333 0.289
Constant Row 1.000 0.750 0.750
Constant Column 1.000 0.333 0.282

where b1 ∩ b2 is the number of cells in their intersection, and b1 ∪ b2 is the number of cells in
their union. The Jaccard coefficient is the percentage of cells shared by both biclusters. A
maximum score of 1 indicates that both algorithms identified exactly the same biclusters. A
score of 0 indicates that both models identified completely different biclusters.

4 Results and Finding

In order to ensure that the effects of the biclustering models are properly investigated, different
numbers of implanted biclusters are conditioned to the generated data. This section presents the
results following the execution of the biclustering models on the simulated data. The strength
of each biclustering model is tested by its ability to detect true biclusters based on the degree of
collinearity between the variables in the data, the number of implanted biclusters, and the type
of bicluster. The numerical results of the Jaccard Coefficient (JC) indices obtained from the
three models for three levels of collinearity at one and two implanted biclusters are shown in
Table 1 and Table 2 respectively. The implanted biclusters also contain one of three behaviours
of constant bicluster, constant row bicluster and constant column bicluster as described in
section 3.1. Each entry in the table represents the JC index results based on the average of
100 runs of simulations. A maximum JC index value of 1 indicates that the model was able to
detect exactly the implanted biclusters in the data. The lowest JC index value of 0 indicates
that the model was not able to detect any of the implanted biclusters.

It can be observed that BCCC, BCSpectral and Plaid are sensitive to changes in the level
of collinearity and bicluster types, regardless of the number of biclusters that exist in the data.
As shown in Table 1 and Table 2, all models indicate JC index values of one at low level of
collinearity when detecting one or two implanted biclusters respectively. As the collinearity
increases from moderate to high, the JC index values for all models appear to reduce with
varying results. These patterns can be seen in the downward trend of the graphs in Figure
2. Figure 2 shows the performance of the models in detecting the implanted biclusters with
respect to collinearity. The different colours in the graph shows the different bicluster types of
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Table 2: Model performance using Jaccard coefficient indices based on data containing three
levels of collinearity and two implanted biclusters with different types.

Degree of Collinearity
Model Bicluster Type Low Moderate High
BCCC Constant 1.000 0.936 0.873

Constant Row 1.000 0.746 0.746
Constant Column 1.000 0.873 0.866

BCSpectral Constant 1.000 0.000 0.140
Constant Row 1.000 0.000 0.456
Constant Column 1.000 0.000 0.000

Plaid Constant 1.000 0.414 0.406
Constant Row 1.000 0.512 0.481
Constant Column 1.000 0.000 0.000

constant, constant row and constant column implanted in the data.
It appears that BCCC seem to perform comparatively better than the other models since the

degree of reduction of JC index values is less prominent, as collinearity in the data increased for
all bicluster types. Specifically, it shows a maximum JC index value of 0.875 and a minimum JC
index value of 0.499 (Table 1) for one-bicluster experiment; and JC index values ranging 0.936
to 0.74 for a two bicluster experiment (Table 2). BCSpectral appear to detect less than 50%
of the implanted biclusters at high collinearity for one-bicluster and two-bicluster experiments
respectively. At one-bicluster experiment, Plaid Model performed well for the constant row
experiments at all levels of the collinearity, detecting about 75% of the implanted biclusters.

The robustness of the three models also vary as the number of implanted biclusters with
different types are implanted in the data. The BCSPectral and Plaid Model appear to be
severely affected as the collinearity is steadily increased. When two biclusters of type constant
column were implanted, these models were unable to detect any of the implanted biclusters
at moderate and high levels of collinearity. On the other hand, BCCC performed even better
as the number of implanted biclusters are added. For this model, increasing the number of
biclusters leads to an increase in the total number of objects in the search space. This leads to
higher success in the detection when compared to fewer biclusters in the dataset.

5 Conclusion

Biclustering provides an approach to extract two-way characterisation of behaviour from a bi-
ological dataset by detecting biclusters. Biological datasets are often rich in collinear features,
reflecting the interconnectedness of biological processes. However, collinearity can confound
biclustering models, making it challenging to uncover distinct and biologically meaningful pat-
terns. In this study, challenges posed by collinear biological data when applying biclustering
models are explored based on simulated studies. Other features including the presence of mul-
tiple biclusters and different bicluster types are also considered in the generated data. It can
be seen that although that the three models: BCCC, BCSpectral and Plaid Models have the



C. N. Nnamani and N. Ahmad / MATEMATIKA 39:3 (2023) 227–238 234

ability to identify meaningful subsets of data that exhibit coherent block structure patterns,
they behaved differently as the level of collinearity is increased. Also, if there are more than
one cluster with similar behaviour in the data, the robustness of the three models would vary
as well. Based on the simulated data, BCCC outperformed the other models for moderate
to high collinearity, for at least two implanted biclusters. To address the challenges posed by
collinear biological data, several recommendations could be considered prior to applying the bi-
clustering models. These include using data-prepocessing techniques such as feature selection,
dimensionality reduction, and data transformation to help prepare the data for more effective
biclustering. In addition, as these biclustering models use an optimization approach, fine-tuning
the algorithm parameters should be considered, particularly when dealing with collinear biolog-
ical data. Researchers should seek to strike a balance between capturing biologically relevant
biclusters and avoiding overfitting.

In conclusion, the challenges associated with biclustering models when confronted with
collinear biological data and multiple biclusters highlight the need for a thoughtful and holistic
approach. By implementing the recommended strategies, researchers can overcome these limi-
tations and advance their understanding of complex biological systems, ultimately contributing
to advancements in biomedical research.
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