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Abstract
Electrical discharge machining (EDM) is a widely used non-conventional machining technique in manufacturing industries, 
capable of accurately machining electrically conductive materials of any hardness and strength. However, to achieve low 
production costs and minimal machining time, a comprehensive understanding of the EDM system is necessary. Due to the 
stochastic nature of the process and the numerous variables involved, it can be challenging to develop an analytical model of EDM 
through theoretical and numerical simulations alone. This paper conducts an extensive review of the various experimental (or 
empirical) modeling techniques used by researchers over the past two decades, including a geographic and temporal analysis of 
these approaches. The major methods employed to describe the EDM process include regression, response surface methodology 
(RSM), fuzzy inference systems (FIS), artificial neural networks (ANN), and adaptive neuro-fuzzy inference systems (ANFIS). 
Additionally, the optimization methods used in conjunction with these methods are also discussed. Although RSM is the 
most commonly used empirical modeling technique, recent years have seen an increase in the use of ANN for providing the 
most accurate predictions of EDM process responses. The review of the literature shows that most of the investigations on 
experimental EDM modeling were conducted in Asia.
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1 Introduction

Electrical discharge machining (EDM) is an electro-thermal-
based subtractive manufacturing process that uses repetitive 
electrical discharges to remove material from a conductive 
workpiece. Since there is no direct contact between the 
workpiece and the tool, EDM eliminates the problems 
encountered in conventional machining, like mechanical 
stresses, tool chatter, and vibration. Hence, it is an excellent 
alternative to traditional mechanical cutting methods such 
as drilling, turning, milling, grinding, and sawing. Due to its 
unique ability to erode every conductive material to produce 
complex 3D cavities, regardless of its hardness and strength, 
it is widely used in the aerospace, automotive, medical, and 
oil and gas industries [1]. The process can remove precise 
amounts of material from a surface to create cavities, 
grooves, and other geometries. During the EDM, controlled 
and repeated sparks create small channels in the workpiece 
that are perfect for guiding fluids and gasses.

In 1770, English scientist Joseph Priestly found that 
electrical discharges or sparks could erode metal, laying 
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the groundwork for EDM [2]. However, not until 1943, the 
destructive features of electrical sparks were first utilized for 
productive application by two soviet scientists at Moscow 
University. B. R. Lazarenko and N. I. Lazarenko figured out 
how to machine difficult-to-cut metals by vaporizing par-
ticles off the metal’s surface in a controlled manner. The 
Lazarenko system pioneered using a resistance-capacitor 
power supply in EDM machines in the 1950s, and its design 
has since been adopted by other manufacturers [3]. Simul-
taneously, the efforts of three American engineers, Stark, 
Harding, and Beaver, served as the foundation for the vac-
uum tube EDM systems. Their patented servo mechanism 
maintained the necessary gap between the electrode and 
workpiece for sparking [4]. The evolution of EDM technol-
ogy has brought significant advancements in manufacturing 
industries, from using RC supplies and vacuum tubes to fast-
switching transistors and implementing computer numerical 
control (CNC) mechanisms. These developments have not 
only brought economic benefits but also sparked research 
interest in the field.

The basic premise of EDM is to put a piece of conductive 
material known as a workpiece in a tank of dielectric fluid 
with a sacrificial (tool) electrode, as shown in Fig. 1. The 
tool electrode is connected to an electrical power source 
that generates an extremely high voltage. The metal removal 
procedure is carried out by applying high-frequency pulsed 

electrical current to the workpiece through the electrode 
either by a transistor-based or an RC-based circuit, as shown 
in the inset of Fig. 1. The above-described mechanism allows 
the material to be removed from the workpiece in a controlled 
manner. When the power source is activated, an electrical 
discharge occurs between the electrode and the workpiece. 
The controlled repeated discharges cause the material to 
be removed from the workpiece because of melting and 
vaporization, with the interfacial temperatures reaching 
as high as 20,000 °C [5]. The electrode is retracted when 
the process is completed leaving the desired geometry on 
the workpiece. It is to note that the electrode also wears off 
during the process; however, it is far more insignificant as 
compared to the material removal from the workpiece.

The working principle explained above is the 
mechanism of one particular variant of EDM known 
as die-sinking EDM, which is the focus of this paper’s 
discussion. Die-sinking EDM, also known as conventional 
or sinker EDM, is a process that utilizes an electrode 
that has been precisely machined to match the inverse 
shape of the desired end product. The electrode or die, 
usually made from graphite or copper, is lowered towards 
the workpiece submerged in a dielectric fluid, and the 
material is removed through spark erosion [6]. It is used in 
applications where the quality of machined products is the 
primary goal [7]. Micro-EDM, a type of EDM, evolved as 

Fig. 1  Schematic diagram of a die-sinking EDM system showing the RC and transistor-based power supplies at the inset of the figure, the con-
troller system with feedback to run the motors in the three axes, and the dielectric flow system to maintain a constant flow of fresh fluid
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a need to generate intricate high aspect ratio micro features 
on very hard and brittle materials [8]. It includes micro 
die-sinking EDM, micro wire EDM, micro-milling, and 
drilling EDM with the ability to machine parts accurately 
to 5–10 µm [9]. Other modifications of the traditional 
EDM systems to improve machining performance exist, 
such as ultrasonic vibration-assisted EDM, powder-mixed 
EDM, and magnetic field-assisted EDM [10–12].

The dynamic complexity of the EDM process and 
its dependence on various factors make it essential, both 
technologically and economically, to attain a high level 
of responsiveness in output. EDM has several controlla-
ble parameters, such as gap voltage, peak current, pulse 
on-time, pulse off-time, and duty cycle. Table 1 lists the 
abbreviations of the most commonly used output param-
eters in EDM studies. Modifying any of these variables will 
significantly affect the various EDM performance measures 
such as MRR, EWR, SR, surface integrity, OC, and taper. 
Incorrectly assigned input parameters may result in unde-
sirable impacts on the workpiece, such as surface cracking, 
excessive electrode wear, poor MRR, and reduced yield [13]. 
Furthermore, parameters are often adjusted based on the 
operator’s prior expertise, which is prone to human errors. 
Thus, even for skilled engineers, it might be challenging to 
find the right balance between input parameter optimization 
and machine output consistency. Developing a proper rela-
tionship between the performance measures and machining 
factors is crucial for accurately predicting output in a sto-
chastic manufacturing process like EDM. Implementation of 
modeling and optimization methods allows for a more sub-
stantial enhancement in decision-making with a new techni-
cal solution that can simultaneously meet and regulate the 
several diverse and conflicting goals of the EDM process.

Research on modeling and simulation techniques for 
studying the relationship between input and output variables 
of EDM processes has been the object of attention in recent 

years. These models can generally be grouped as theoretical, 
numerical, and empirical [14]. Theoretical modeling, also 
known as analytical modeling, is the earliest modeling 
approach that involves the utilization of thermodynamic 
principles to describe the spark erosion process in EDM. 
This technique assumes that heat erodes metal, with 
conduction being the primary mode of heat transport. 
Popular methods include (1) the two-dimensional heat 
transfer model, where the plasma channel formed between 
the electrodes is assumed to be a disc heat source [15], and 
(2) the cathode erosion model, where the photoelectric effect 
is assumed to be the primary source of energy supplied 
to the cathode surface rather than ion-bombardment and 
the variable mass [16], and (3) cylindrical plasma model 
where superheating is the dominant mechanism for erosion 
[17]. However, these thermal analysis-based models have a 
limited scope of application as they make assumptions on 
specific processes such as fixed discharge radius, point heat 
source, uniform shape, and stable thermal characteristics 
of workpieces and tool materials [18]. Moreover, such 
methods carry considerable uncertainties due to the poor 
correlation between experimental data and theoretical 
results of the heat transfer equations. Numerical modeling 
generally employs finite element method (FEM) or finite 
difference method (FDM) to numerically solve differential 
equations related to heat transfer in the EDM process [19]. 
With the advent of more powerful computer systems and 
simulation software, this technique gained much attention; 
however, it suffers from the same discrepancies as the 
analytical method since the input to the numerical (or 
simulation) models is not based on real-time data. Most 
theoretical investigations have focused on small metal 
removal processes caused by a single spark, modeling the 
effects using heat conduction principles and thermodynamic 
factors. Even though theoretical and numerical models are 
based on EDM physics, these models cannot be extrapolated 
to explain the actual multispark process of EDM. Factors 
such as stochastic electrical discharge distribution between 
electrodes, the simultaneous effects of two successive 
sparks on the surface of the workpiece, and the inherent 
generalizations and simplification strategies make the 
analytical and simulation models different from reality [5]. 
The contemporary process of modeling the complex EDM 
system is based on the experimental method. This modeling 
technique is based on finding the mathematical function 
defining a system based on a given set of inputs and outputs. 
This function may be as simple as a linear equation to a 
complex neural network consisting of nodes and activation 
functions. The principal advantage of experimental 
modeling in EDM is that it enables the prediction and 
control of the machining process. In addition, this modeling 
approach can be employed to optimize the EDM process 
to improve the efficiency and accuracy of the machining 

Table 1  Nomenclature

MRR Material removal rate WLT White layer thickness

EWR Electrode wear rate DA Dimensional accuracy
SR Surface roughness DR Drilling rate
OC Overcut DE Discharge energy
EW Electrode wear SCD Surface crack density
CIR Circularity WR Wear rate (EWR: MRR)
CR Crater radius AR Aspect ratio
CYL Cylindricity CD Crater depth
Hd Hole dilation HC Hole conicity
Ht Hole taper ratio MT Machining time
MH Micro-hardness RLT Recast layer thickness
PER Perpendicularity SGT Side gap thickness
TWR Tool wear ratio HD Hole diameter
RWR Relative wear ratio (MRR: EWR) DPN Discharge pulse number
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operation. This can help minimize cost, time, and material 
consumption while obtaining the desired quality of the 
machined surface.

In this paper, an in-depth literature study has been con-
ducted to explore the various empirical techniques employed 
to help comprehend the correlation between the input and 
output of the EDM process over the past twenty years. The 
research articles were searched in established databases 
such as SCOPUS, Google Scholar, Science Direct, Springer, 
MDPI, and Taylor and Francis. Based on the relevant terms 
related to the empirical modeling of EDM, the following 
keywords have been used to facilitate the search process: 
EDM, Experimental modeling, optimization, regression, 
RSM, fuzzy logic, ANN, and ANFIS. The following sec-
tions explore the experimental methods: statistical regres-
sion, RSM, FIS, ANN, and ANFIS, used to model the EDM 
operation. Metaheuristic search-based optimization algo-
rithms such as genetic algorithm (GA), desirability-function 
approach (DFA), and particle swarm optimization (PSO), 
along with some less common techniques to determine 
the Pareto optimal solution set in an EDM process, have 
also been discussed. In addition, optimization techniques 
such as grey relational analysis (GRA) and the Taguchi 
method, which provide a unique optimal solution set, have 
been reviewed. Finally, the article is concluded with a geo-
graphical and temporal research trend of the experimental 
modeling strategy.

2  Experimental modeling techniques used 
for the EDM process

Various input parameters influence the different system 
responses in the EDM operation. The EDM process is 
considered to be stochastic due to the random nature 
of the electrical discharges, the interaction between the 
different factors and responses, and the thermos-physical 
distortions of the machined area [20, 21]. Hence, for the 
success of this machining operation, direct control over the 
setting of these parameters is highly critical. The ability to 
predict performance metrics based on a particular set of 
input values is a valuable tool to satisfy all the conflicting 
objectives of the EDM process, such as high MRR and low 
TWR and SR. However, due to the inherent complexity 
and unpredictability of the EDM manufacturing process, 
conventional modeling approaches, such as theoretical 
and numerical modeling, can only provide rough estimates 
of expected outcomes. Accordingly, researchers used 
several soft computing approaches, widely used to forecast 
process output due to their remarkable ability to learn from 
experimental data, to describe the relationship between input 
parameters and the predicted process responses. Numerous 
researchers over the past few decades have applied different 

empirical techniques to establish a correlation between 
machining variables and important EDM outputs like 
MRR, SR, EWR, and OC. This section provides an in-depth 
literature review that confined its attention to studies of the 
traditional EDM process between 2002 and 2022 to present 
a comprehensive explanation of empirical methodologies for 
modeling and optimization.

2.1  Regression‑based experimental modeling 
method

Predictive modeling methods, such as statistical regres-
sion analysis, encompass all strategies for modeling and 
evaluating multiple variables where the emphasis is on the 
correlation between a dependent variable and one or more 
independent variables. The goal of a regression model is to 
produce a mathematical function

that characterizes the causal relationship between a set of 
explanatory variables Xi with a response or target variable 
Yi , with scalar unknowns and residual or experimental error 
terms denoted by � and er , respectively [22]. The function 
f
(

Xi, �
)

 depends on the type of regression implemented. The 
most widely used method for the multivariable process is the 
multiple linear regression function

where i = n observations and p is the number of independent 
variables [22]. This function assumes a linear connection 
between the variables. In the case of non-linear regression, 
the function f

(

Xi, �
)

 is replaced with some non-linear 
equation like exponential, power, or logarithmic function. 
The choice of regression function in both methods depends 
on the degree of non-linearity of the process being modeled. 
However, linear regression can still accommodate non-linear 
curves when polynomial terms are included in the regression 
equation. The procedure to obtain a regression model from 
experimental data is shown in Fig. 2. After a regression 
model has been developed, it becomes necessary to validate 
the model’s goodness-of-fit and the statistical significance 
of the predicted parameters. The coefficient of determination 
(R-squared) is the most common metric to evaluate 
goodness-of-it. It can only take values between 0 and 1 and 
describes how the change in the independent variables may 
explain the variance in the dependent variable. A value of 
0 implies that independent factors cannot anticipate the 
result, while 1 suggests that the independent variables can 
accurately predict the outcome. An F-test of the general fit 
and then t-tests of each parameter can be utilized to verify 
statistical significance. The whole process, nowadays, is 
done with statistical software programs.

(1)Yi = f
(

Xi, �
)

± er

(2)f
(

Xi, �
)

= �0 + Xi1�1 + Xi2�2 + ... + Xip�p
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The regression method, one of the earliest techniques, 
is still popular among researchers for modeling the EDM 
process. Initial experimental works were primarily based on 
multiple input single output (MISO) systems. Çogun et al. 
[23] used multiple non-linear regression to model the inner 
and outer edge wear of a hollow tool electrode. Circular, 
exponential, and power functions were used to model the 
edge wear characteristics by altering input discharge current, 
pulse time, and dielectric flushing pressure. Observations 
indicate that the exponential function adequately represents 
the edge wear patterns of the electrodes, with 99 out of 
104 profiles having significant correlation coefficients. 
Keskin et al. [24] investigated the effect of power, pulse 
on-time, and off-time on surface roughness using copper 
electrodes on a steel workpiece. The authors conducted 

504 experiments and modeled the process using multiple 
linear regression analysis. The R-squared value obtained 
from the equation was calculated to be 0.96, although pulse 
off-time was omitted. The researchers asserted that only the 
interaction of input power and spark time was statistically 
significant. Azadi et  al. [25] employed three different 
regression functions, linear, curvilinear, and logarithmic, to 
model the input–output relationship in an EDM of AISI-
2312 steel. Among the models tested for validation, the 
curvilinear model produced the lowest prediction error 
with 6.34%, 3.54%, and 4.25% for MRR, SR, and EWR, 
respectively. Kuriachen et al. [26] established a second-
order linear regression function to determine the relationship 
between voltage and capacitance with spark radius during 
micro-EDM of titanium grade 5 alloy. The model achieved 

Fig. 2  Regression process flow 
chart to develop a regression 
model from experimental data 
with statistical techniques to 
verify model fit
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an R-squared value of 0.9379 with a strong correlation 
between capacitance and spark diameter. However, only 
13 experiments were conducted to develop the model, 
although the authors cited a prediction error of 4.258% 
from validation runs. Optimization algorithms are usually 
employed with systems modeled with multiple inputs and 
multiple outputs (MIMO). Dang et al. [27] developed an 
intelligent model based on the Kriging regression (KR) 
technique to predict MRR, EWR, and SR in the EDM of 
P20 steel. Consequently, the PSO algorithm was used to 
optimize input parameters voltage, current, pulse on-time, 
and pulse off-time to improve MRR and reduce EWR with 
SR assumed as a constraint. The R-squared value of 0.97, 
0.96, and 0.93 was achieved along with relative percentage 
errors of 3.7%, 5.4%, and 2.0% between predicted and actual 
experimental values for MRR, EWR, and SR, respectively. 
Kumaresh et al. [28] carried out a comparative study on 
the performances of four modeling techniques polynomial 
regression (PR), KR, radial basis function (RBF), and gene 
expression programming (GEP) on two different EDM 
processes. It was concluded that GEP outperforms all other 
methods in both processes, having maximum R-squared 
value for both examples, followed by PR, Kriging and RBF. 
However, a limited number of data were used for training 
and testing. Numerous researchers have conducted modeling 
studies of die-sinking EDM using linear regression functions 
with an average determination coefficient of 0.9 [29–40]. 
However, few works employed non-linear regression 
functions for modeling since non-linear behavior can still be 
modeled with linear regression and needs less computation 
[41–43].

A summary of the EDM process modeling using the regres-
sion technique is highlighted in Table 2. Some common input 
variables among the reviewed works include current, voltage, 
pulse on-time, and pulse off-time. Similarly, MRR, EWR, and 
SR have been the widely measured modeling response param-
eters with regression. The average value of the determination 
coefficient for the regression equations is approximately 0.911, 
with a mean percentage prediction error of around 8.55%. Based 
on the results of previous works, it is evident that regression mod-
els have predictive strength that is comparable to other competing 
models. However, even though regression produces a straight-
forward equation based on elementary statistical ideas like cor-
relation and least-squares error, they have some shortcomings. 
For example, regression models do not automatically handle 
nonlinearity. Hence, a user must consider adding additional 
terms required to enhance the fit of the regression model. The 
dependability of regression models also reduces as the number 
of factors increases. Moreover, regression models are subject to 
collinear issues. If the independent variables are highly linked, 
their predictive power will diminish, and the regression coeffi-
cients will become less robust. Additionally, if more training data 
is needed to enhance the model, the regression technique requires Ta
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that the modeling process be restarted from the beginning, which 
is time-consuming.

2.2  Response surface methodology (RSM)

RSM is a collection of statistical techniques first introduced by 
Box et al. [44] in 1951 for analyzing the relationships between 
independent and dependent variables with context to chemis-
try. The method is used to find the optimum combination of 
independent variables that result in the maximum or minimum 
value of a function, which is typically a response function. 
RSM can be used to optimize processes by finding the ideal 
values of input parameters that result in the desired output. 
Moreover, response surface plots can be used to study how 
changes in input parameters affect output responses and to 
identify regions where process performance is optimal. The 
flow chart for the RSM process is displayed in Fig. 3. RSM 
involves utilizing data obtained from design of experiments 
(DOE) techniques such as fractional factorial design or cen-
tral composite design (CCD) and constructing a mathematical 
model that describes the relationship between the explanatory 
factors and the outcome variables. The process parameters can 
be numerically expressed in RSM as

where Y  is the output response, f  is the response function, 
X1,X2,X3,… ,XN are the input factors, and er is the experi-
mental error [45]. A response surface plot in two or three 
dimensions is obtained by graphing the expected response 

(3)Y = f
(

X1,X2,X3,… ,XN

)

± er

Y against one or two input variables, respectively. The 
response function f  is not known and might be quite com-
plex. Hence, RSM attempts to represent f  by an appropriate 
lower-order polynomial function in some areas of the inde-
pendent process variables. However, if there is a curvature 
in the surface plot, higher-order polynomial functions like 
quadratic equations can be used. Usually, the whole pro-
cess, nowadays, can be achieved with the aid of computer 
programs.

RSM has been used by various researchers to determine 
the relationships between EDM process parameters and 
machining criteria and to investigate the impact of these 
variables on the responses. The EDM system behavior is 
modeled with quadratic equations, and the R-squared value 
is used to check the appropriateness of the model. Kung et al. 
[46] investigated the influence of discharge current, spark 
time, particle size, and concentration of aluminum powder 
on MRR and TWR in a powder-mixed EDM process using 
RSM. The face-centered CCD technique was used to plan 
the experiment with 30 runs. The second-order polynomial 
equations obtained had an R-squared value of 0.9798 and 
0.9562 for MRR and EWR, respectively, indicating the 
goodness-of-fit of the developed model. From the response 
surface, the authors concluded that MRR improved with a 
concentration of aluminum powder, then decreased after a 
specific threshold. Sohani et al. [47] explored the effects 
of electrode tool shape, size, and area on MRR and EWR, 
along with the process value of current, pulse on-time, and 
pause time. Based on 31 experimental observations designed 
with CCD DOE and the impact of each tool shape modeled 
with RSM, the authors concluded that the circular-shaped 
tool led to improved MRR and less EWR with R-squared 
values above 0.98 for all four electrode shapes. The 
percentage prediction error of the proposed models was 
calculated to be between ± 5%. Kalajahi et al. [48] used RSM 
to model the MRR in EDM of AISI H13 steel. By removing 
insignificant factors from ANOVA analysis, the authors 
surmised that a quadratic model with an R-squared value of 
0.9955 is appropriate in predicting the MRR. Mohanty et al. 
[49] combined RSM and multiobjective PSO optimization 
techniques to improve the EDM performance of Inconel 718 
alloy using different electrode materials. Process parameters 
such as voltage, current, pulse on-time, duty cycle, and 
dielectric flushing pressure were used as input to model the 
process using data from 54 experimental runs designed with 
the Box-Behnken experimental design strategy. R-squared 
values of 0.97, 0.97, 0.9337, and 0.992 were obtained for 
MRR, TWR, SR, and OC, respectively. It was concluded that 
graphite electrodes performed better than copper and brass 
in most machining aspects. Nishant et al. [50] conducted 
a comparative analysis between RSM and semi-empirical 
modeling through dimensional analysis in a gas-assisted die-
sinking EDM of chromium steel. The authors concluded that 

Fig. 3  Statistical model devel-
opment flow chart for RSM 
using experimental data from 
various DOE techniques
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both models had similar performance with a prediction error 
of less than 5% for SR. Phate et al. [51] compared three 
different modeling techniques, dimensional exponential 
model (DEM), RSM, and adaptive neuro-fuzzy inference-
based system (ANFIS), for predicting SR based on input 
variables such as workpiece material constitution, spark 
time, pause time, and current. The authors found ANFIS 
and RSM performance to be similar but better than that of 
DEM, each having R-squared values of 0.999958, 0.995649, 
and 0.830626, respectively. However, data from only 18 
observations were used to develop the model. Papazoglou 
et al. [52] combined heat transfer analysis and RSM to 
develop a semi-empirical model to predict MRR, TWR, and 
WLT in EDM of titanium grade 2 alloy. R-squared values 
of 0.9586, 0.7871, and 0.965 were obtained for the output 
responses. Research works based on CCD [53–61] and BBD 
[62–67] DOE technique of RSM have been explored widely 
with different factors and responses. Other less utilized RSM 
strategies include Taguchi OA [68–70] and full-factorial 
design [71].

A synopsis of the literary works utilizing the RSM-based 
empirical modeling technique is provided in Table 3. Similar 
to the regression method, current, voltage, spark time, and 
pause time are the four input variables considered chiefly in 
RSM. In addition, MRR, EWR, and SR are also the most often 
assessed modeled response parameters. However, compared to 
regression, a slightly better average percentage prediction error 
of 7% and a mean R-squared value of 0.933 can be achieved 
with RSM. Based on the articles reviewed, the number of 
datasets used to develop an RSM-based model ranges from 9 
to 54. Hence, a considerable quantity of information may be 
gained from a minimal number of experiments which is less 
expensive and timesaving than the traditional experimental 
techniques and ways of data assessment. However, although 
RSM can evaluate the interaction effects of input parameters 
on an observed response via response surface plots, it cannot 
be utilized to understand why such interactions have occurred. 
Moreover, second-order polynomials used in RSM typically 
fail to handle data fitting for systems with considerable 
curvature adequately.

2.3  Fuzzy inference systems (FIS)

FIS allows the prediction of an output response from a set of 
input variables using fuzzy logic. First introduced in 1965 
by Lotfi Zadeh [72], fuzzy logic relies on multivalued logic, 
where the logical value of a variable can be any number in 
the range of 0 and 1. Such systems can deal with a spectrum 
of truth values, from entirely true to utterly false, mimicking 
how humans make decisions. Therefore, it is distinct from 
binary or classical logic, which has just two possible truth 
values (1 or 0, True or False, Yes or No). Figure 4 illus-
trates the complete fuzzy logic process. A FIS operates on Ta
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four basic steps: fuzzification, formation of knowledge base, 
decision-making, and defuzzification. Fuzzification is the 
process of mapping each point of an input variable to inter-
mediate membership values, known as fuzzy sets, between 0 
and 1 by means of membership functions. A knowledge base 
must then be formed using a list of if–then statements called 
fuzzy rules. The decision-making unit transforms these 
intermediate fuzzy sets using logical operators to arrive at 
a final output set whose memberships represent degrees of 
satisfaction with respect to some objective criterion defined 
in the fuzzy rules. As a final step, the defuzzification step 
translates the fuzzy conclusions to crisp output values. Two 
popular types of FIS used in literature are Mamdani infer-
ence systems [73] and Sugeno inference systems [74]. The 
methods used to determine the outputs in these two inference 
systems are quite different. From control theory to artificial 
intelligence applications, FIS is widely used to model and 
optimize various process responses.

Many researchers have applied FIS to model the numer-
ous responses to EDM processes since the early 2010s. 
Shabgard et al. [75] used the fuzzy logic technique to model 
the conventional EDM process and ultrasonic vibration-
assisted EDM (UA-EDM) using pulse width and spark cur-
rent as input parameters. Observational variables, such as 
MRR, TWR, and SR, were chosen as the output of the mod-
eling system, where the Mamdani fuzzy inference method 
was employed for defuzzification. The average prediction 
accuracy of EDM and UA-EDM was similar and was found 
to be 96.49% and 95.068% for MRR, 96.06% and 96.84% 
for TWR, and 95.49% and 95.85% for SR, respectively. 
The high accuracy can be attributed to the lower number 
of validation runs employed in the study. A fuzzy logic-
based MIMO system has been presented by Belloufi et al. as 
a means of determining machining parameters concerning 
voltage, current, and spark time as input factors [76]. Low 
values of mean percentage error obtained for MRR, EWR, 
WR, SR, OC, CIR, and CYL were 1.51%, 3.386%, 2.924%, 

5.285%, 4.004%, 4.381%, and 2.937% respectively. Rodic 
et al. [77] compared the performance of a Mamdani FIS and 
an ANN model to predict SR in EDM of manganese alloyed 
tool steel. The ANN model was slightly better in prediction 
accuracy (95.9%) than the fuzzy system (95.14%). Research-
ers have also used FIS as an optimization technique to find 
ideal process values for the best machining output. Majum-
der [78] utilized a fuzzy model to generate a fitness function 
that was used as an input to a PSO algorithm to optimize 
MRR and TWR. Input parameters such as current, spark 
time, and pause time were used to model the EDM process 
by regression technique. Finally, the outputs obtained were 
combined using FIS to an equivalent performance index. 
At optimum conditions, the percentage error was found to 
be 27.5% and 4.75% for MRR and TWR. The high percent-
age error can be attributed to the lower number of experi-
ments to train the regression model. Payal et al. [79] used 
the Taguchi-Fuzzy-based approach to generate the optimum 
solution for MRR and SR. A Mamdani FIS was used to unify 
the output values to a single performance index which was 
then utilized to categorize the 36 experimental observations 
to find the best optimum input values. The authors claimed 
an improvement of 103.25% and 32.144% in MRR and SR 
at the optimum condition from confirmation experiments. 
Rodic et al. [80] developed a Sugeno FIS to predict opti-
mal process values in the EDM of AISI tool steel. Relative 
percentage errors of 16.98% and 12.55% were obtained for 
DE and MRR, respectively. A hybrid optimization technique 
based on multiobjective optimization based on ratio analysis 
(MOORA)-Fuzzy-GA has been developed by Kumar et al. to 
find optimal input values for EDM of a titanium alloy [81]. 
The authors converted the multiple responses to MRR and 
EWR into a single performance index using Mamdani-FIS, 
after which non-linear regression analysis was utilized to 
find the fitness function for GA optimization. Further hybrid 
optimization techniques like Fuzzy-TOPSIS [82, 83] and 
Fuzzy-GRA [84] with RSM modeling have been explored.

Fig. 4  Flow chart for developing a fuzzy logic-based model from experimental data
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Table 4 presents an overview of the existing publications 
incorporating the FIS-based empirical modeling approach. 
The FIS model’s development relied on a relatively limited 
number of input and output variables, in contrast to regression 
and RSM approaches. Again current, voltage, pulse duration, 
and pause time are the four primary input variables considered, 
while their effects on MRR, EWR, and SR were measured 
in most studies. Based on the results of the reviewed works, 
an average prediction error of 6% has been obtained. The 
advantage of FIS is that it is a resilient system that requires 
no exact inputs. Hence, such systems can tolerate a variety 
of inputs, including inaccurate, distorted, or unclear informa-
tion. Moreover, fuzzy systems resemble human-like decision-
making, rendering them appropriate for uncertain or imprecise 
reasoning, particularly for systems with mathematical models 
which are difficult to derive. However, such systems’ accuracy 
relies on forming a rule base and selecting proper membership 
functions, which is entirely dependent on user knowledge and 
expertise.

2.4  Artificial neural network (ANN)

In the last decade, ANNs have developed as a highly versatile 
modeling technique, usable in a wide range of manufacturing 
processes [85]. Its incorporation as an empirical technique 
to model the EDM process has found significant success 
among researchers. ANNs are inspired by the structure and 
function of the human brain, composed of multiple layers of 
interconnected nodes, or neurons, that can learn to recognize 
the connection between input and output. Hence, such 
networks can predict future results based on input information 
by applying previously learned patterns to the incoming data. 
In a neural network, the connections between nodes in adjacent 
layers are assigned different weights. Moreover, each neuron 
has an activation function that determines whether it will fire 
in response to an input signal. The output layer includes all 
the desired response information. Between these two layers, 
there may be a significant number of hidden layers, each with 
weights and activation values. The number of hidden neurons 
affects a network’s ability to categorize data. If the number 
of hidden neurons is too few, it might lead to underfitting, 
whereas too many neurons might cause overgeneralization 
of the input data and cause overfitting. Hence, selecting the 
correct value of hidden neurons for a particular application is 
important. Generally, the number of hidden layers and neurons 
is determined through trial and error. The response of a neuron 
at any layer is defined by the equation below

where Yj = output of jth neuron at current layer, f = 
activation function, n = total number of neurons in the 

(4)Yj = f (

n
∑

i=0

wjixi + bj)
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previous layer, wij = weight values of the synapses between 
ith and jth neuron, xi = activation of ith neuron in the previous 
layer and bj = bias value at jth neuron [86].

Before the network can be used, it must be trained with 
labeled data in two phases: a forward phase and a backward 
phase, as shown in Fig. 5 [86]. The forward phase involves 
presenting and propagating input vectors to each neuron to 
calculate its output. Mean square error (MSE) is computed 
for each pattern in the training set while the synaptic 
weights, which were initially assigned randomly, remain 
fixed. During the backward phase, the errors are reduced 
iteratively in the reverse order, from the output nodes to 
the input nodes. This is done by modifying the weights 
and biases to minimize the cost function using a gradient 
descent algorithm, enhancing the network’s performance 
on training data. Popularized by Rumelhart et  al. [87], 
one of the mainstream techniques to calculate the gradient 
of the cost function of a network is the backpropagation 
algorithm, which propagates the error from output nodes 
to input nodes while simultaneously adjusting the weights 
and biases from the previous training iteration [88]. This is 
the basis of supervised machine learning widely employed 
to model process parameters in EDM. Most manufacturing 
applications benefit from supervised machine learning 
because they generate labeled data [89].

Neural networks (NN) are defined by the type of archi-
tecture employed, the activation function, and the learning 
algorithm [86]. Multilayer perceptrons (MLP) or multilayer 
feedforward systems with backpropagation is the network 
of choice in most EDM modeling literature combined with 
learning algorithms such as gradient descent (GD), GD with 
momentum (GDA), Levenberg–Marquardt (LM), conjugate 
gradient (CG), and scaled conjugate gradient (SCG) algo-
rithms [18]. Such learning algorithms are used to update the 
synaptic weights of the network during training. Radial basis 
function neural networks (RBFNN) and recurrent neural net-
works (RNN) have also become popular in the past decade. 
Joshi et al. [18] used process responses from numerical FEM 
simulation to train a BPNN and RBFNN. The authors con-
cluded that RBFNN was less accurate than BPNN in their 
studies due to the limited availability of training data and 
the inherent difficulty of extrapolating results. Somashekhar 
et al. [90] utilized Backpropagation Neural Network (BPNN) 
in a 4–6-6–1 configuration combined with the GA optimiza-
tion technique to predict and improve MRR in a micro-EDM 
system. Low mean percentage prediction errors of 0.8312% 
and 3.94% were obtained for MRR during training and test-
ing, respectively. Teimouri et al. [91] compared two differ-
ent ANN models, BPNN and RBFNN, to predict MRR and 
SR in a dry EDM process. It was found that the 6–8-5–2 
BPNN model outperforms the 6–25-2 RBFNN, with root 
mean square error (RMSE) for MRR and SR of 0.2411 and 
0.2132 with BPNN and 0.2998 and 0.2773 with RBFNN, 

respectively. The authors explained that RBF networks are 
good for low-data problems, whereas BPNN modeling is 
suitable for larger data sets. An experimental model of the 
Micro-EDM process using BPNN with a teaching learning-
based optimization (TLBO) algorithm has been developed 
by Maity et al. [92]. The NN model can be used to predict 
MRR, overcut, and thickness of the recast layer based on 
input parameters accurately up to 96.1%, 99.7%, and 93.5%, 

Fig. 5  Training flow chart based on minimum MSE or maximum 
epochs to create an ANN-based model from experimental data
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respectively. The authors found a 4–12-3 network structure 
to give the least prediction error with tan-sigmoid activation 
and linear function in the hidden and output layer, respec-
tively. Singh et al. [93] compared three models: BPNN, 
ANFIS, and ANFIS-GA, to predict MRR and SR in a gas-
aided EDM of D3 steel. Mean prediction errors from con-
firmation experiments with ANN, ANFIS, and ANFIS-GA 
were found to be 1.87%, 1.33%, and 1.27% for MRR and 
2.36%, 1.34%, and 0.14% for SR, respectively. The authors 
concluded that ANFIS-GA had improved performance 
compared to ANN and ANFIS. Singh et al. [94] conducted 
a comparative study between RSM and machine learning-
based models: ANN and ANFIS, in an EDM of D3 steel 
under helium. From ANOVA analysis, it was concluded that 
a quadratic is sufficient to fit the model data. Moreover, both 
ANN and ANFIS models outperformed RSM with respect to 
prediction accuracy. Dey et al. [95] studied five NN models 
feed-forward NN (FNN), RNN, convolutional neural net-
work (CNN), general regression neural network (GRNN), 
and long short-term memory-based RNN (LSTM-RNN) for 
an electro-discharge turning process (EDT) to model MRR 
and overcut (OC). The authors concluded that LSTM-RNN 
outperformed all the other NN models in predicting MRR 
and OC with the best statistical error values for both training 
and testing data. Comparative research between GRNN and 
GPR has been carried out by Singh et al. in a micro-EDM 
process. It was surmised that the performance of GPR mod-
eling was better regarding prediction accuracy [96]. Among 
the different training strategies utilized in the NNs, GD and 
LM algorithms have frequently been studied [97–103] and 
[104–112], respectively. Compared to the traditional GD 
method, the LM method has a faster convergence speed and 
higher prediction accuracy. SCG is another training algo-
rithm that requires fewer epochs than the LM method but 
at the cost of lower prediction accuracy [18, 113, 114]. To 
locate global minima in a multidimensional search space, 
evolutionary algorithms such as GA and PSO have been 
applied in NNs to optimize the weights and biases for mini-
mum error in the predicted output [115–117]. Other learn-
ing algorithms that have been studied in ANN-based EDM 
modeling include the adaptive moment estimation (AdaM), 
Broyden-Fletcher-Goldfarb-Shanno optimization algorithm 
(BFGS), and pseudo-inverse algorithm [95, 118, 119].

An overview of published works that use the ANN-based 
empirical modeling technique is presented in Table 5. Com-
pared to the previous techniques, a significant number of 
input and output parameters have been explored by research-
ers to develop an ANN-based EDM model. In most inves-
tigations, the effects of the input factors, current, voltage, 
spark time, and pause time on MRR, EWR, and SR were 
assessed. The BPNN architecture, combined with the GD 
training technique, has been investigated more regularly than 
any other NN designs used in EDM modeling. However, Ta
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the slow convergence speed and small learning rates of GD 
have been overcome using LM and SCG algorithms. Moreo-
ver, the activation functions for the hidden and output layers 
included tan-sigmoid, log-sigmoid, rectified linear activa-
tion unit (ReLU), Gaussian, exponential, and linear func-
tions. ReLU offers the advantage of sparsity and a lower 
probability of gradient vanishing in contrast to sigmoid 
functions. Based on the outcomes of referenced articles, 
ANN-based models have an average percentage prediction 
error of 2.74%, the lowest among all methods considered 
in this review. Hence, this demonstrates the ability of ANN 
to model a complex, non-linear system like EDM, allow-
ing the prediction of output responses based on input val-
ues outside of the training data set. Despite this, ANNs can 
sometimes produce erroneous outputs without cause. The 
black-box nature of such networks makes it difficult to have 
complete control over the responses. Although no general 
guidelines for establishing the structure of ANN exist and 
trial and error investigations are the only means, evolution-
ary algorithms such as GA and PSO have recently been used 
to efficiently determine an appropriate network configuration 
and evaluate the synaptic weights and biases.

2.5  Adaptive‑network‑based fuzzy inference 
system (ANFIS)

Recent trends include combining different strategies to max-
imize their benefits and minimize their drawbacks. This inte-
grated approach is called "hybrid modeling methodology." 
Reasons for hybridization include the need to improve exist-
ing techniques, complete a wide variety of practical tasks, 
and achieve a high level of functionality in one package. 
One such computational intelligence technique developed by 
Jang, known as the adaptive network-based fuzzy inference 
system (ANFIS), combines the strengths of both ANNs and 
fuzzy logic systems [120]. ANN is essentially a black box, 
so it is not simple to derive understandable rules from the 
structure of the network. On the other hand, a fuzzy system 
requires fine-tuning the rules and membership values in the 
face of insufficient, incorrect, or conflicting information. 
Since there is no systematic method for this, adjustment is 
made through trial and error, which effectively takes time 
and often results in mistakes. In situations where traditional 
ANNs often struggle to find an accurate solution, while 
fuzzy logic systems can sometimes produce results that are 
too imprecise, ANFIS uses both supervised learning to train 
the network weights and unsupervised learning to tune the 
membership function parameters [121]. According to Jang 
[120], ANFIS is an adaptive neural network that mimics 
the operation of a Takagi–Sugeno FIS with five layers: the 
premise layer, multiplication or AND operation layer, weight 
normalization layer, the consequent rule-base layer, and the 
output summation layer as shown in Fig. 6. An in-depth 

explanation of the functioning of each layer can be found 
in the said literature. Each network layer is composed of 
nodes with directed connections linking them to the nodes 
of the following layer, and so on. The nodes in each layer 
contain a function with either changeable or defined param-
eters. Parameter selection is achieved by a hybrid learning 
approach that utilizes the least squares estimate (LSE) tech-
nique in the forward pass to adjust consequent parameters 
and the gradient approach in the backward pass to tune 
premise parameters [122].

Various researchers have explored ANFIS as an experi-
mental modeling approach for the EDM process. Pradhan 
et al. [123] conducted a comparative study on the modeling 
methodologies for predicting MRR, EWR, and OC in an 
EDM of D2 steel, employing an ANN and two neuro-fuzzy 
systems (of the Sugeno and Mamdani types). In their con-
clusion, all models performed similarly in prediction accu-
racy and learning speed; however, the error in forecasting 
EWR was more significant (greater than 14%) in all models. 
Prabhu et al. [124] compared regression and Sugeno-type 
ANFIS techniques to model SR in an improved EDM pro-
cess with carbon nanotube (CNT) mixed dielectric fluid. 
According to testing data, the ANFIS model accurately pre-
dicted SR by 99.70% compared to regression. However, the 
high value of accuracy could be due to the fewer number 
of data points used to train the model. A similar study was 
conducted by Al-Ghamdi et al. with 81 experimental data, 
where a 21-rule ANFIS structure outperformed the tradi-
tional polynomial models with a prediction error of 1.55% 
[125]. Singh et al. [126] combined grey relational analysis 
(GRA) with Mamdami-FIS and Sugeno-ANFIS to optimize 
multiple responses like MH and SR in a powder-mixed 
EDM process. The developed models allowed grey reason-
ing grades (GRG) to be predicted, which in turn were used 
to find the best combination of input parameters. It was con-
cluded that the ANFIS model was better able to predict the 
GRG value than its fuzzy counterpart, accurate to 99.79%. 
Goyal et al. [127] utilized a Mamdani-FIS and ANFIS to 
model SR and CR in a nano-graphene particle-mixed EDM 
process. The authors surmised that ANFIS was a superior 
modeling technique with a mean prediction error of 3.48% 
and 1.85% for SR and CR, respectively, compared to the 
fuzzy method with a mean prediction error of 5.37% and 
5.43% for SR and CR, respectively. Multiple input single 
output (MISO) systems involving MRR and SR have been 
frequently modeled with ANFIS [124, 125, 128–130]. How-
ever, the traditional ANFIS structure allows only one output 
to be modeled at a time. Hence, studies involving multiple 
input and multiple output (MIMO) systems like EDM have 
to be modeled individually for each response [131–133]. 
In a stochastic process like EDM, the outputs are interde-
pendent, so an isolated model does not accurately define the 
whole system. Therefore, a coactive neuro-fuzzy inference 
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system (CANFIS) was employed by Wan et al. to predict 
micro-EDM responses MRR, OC, taper, and DPN based on 
input parameters tool feed rate, gap voltage, capacitance, and 
workpiece type that overcome the single output limitation of 
ANFIS architectures and allow modeling of MIMO systems 
with high accuracy [134]. Based on 27 data sets out of 81 
experiments, the developed model had an average prediction 
error of 4.5%, 15.4%, 15.2%, and 6.8% for MRR, OC, TA, 
and DPN, respectively.

Table 6 provides a review of existing publications on the 
empirical modeling of EDM using the ANFIS approach. A 
modest number of input parameters were involved in the 
modeling process, and their effects on output responses, par-
ticularly MRR, SR, and OC, were explored. Additionally, the 
arithmetic average of the prediction error based on the results 
of the referenced articles was around 6%. The benefit of the 
ANFIS technique over ANN is that a heuristic approach is 
not required to find the optimal network structure for the 
model. Moreover, the training of an ANFIS model takes 

fewer epochs than ANN to converge to a minimum mean 
squared error (MSE) value, resulting in significantly less 
calculation time for ANFIS. Also, with ANFIS, setting up 
primary membership functions intuitively and initiating the 
learning process to build an array of fuzzy rules to predict a 
particular data set may be done even without human experi-
ence. However, ANFIS has significant constraints, such as 
the “curse of dimensionality” and the complexity of training, 
which restrict its applications to situations involving large 
datasets. Furthermore, ANFIS’s hybrid learning algorithm 
uses the gradient descent technique in the backward pass, 
which is slow and tends to stop at a local minimum instead 
of absolute minima.

2.6  Overall summary of various modeling 
techniques

Even though statistical methods for developing empirical 
models such as regression and RSM offer benefits such as 

Fig. 6  ANFIS architecture for multiple input single output (MISO) systems for modeling an EDM process

Table 6  Summary of the literature review of modeling techniques with ANFIS based on articles published between 2002 and 2022 [123–134]

Input parameters used in EDM Output measures from EDM Prediction error

Capacitance, current, duty factor, electrode 
material, feed rate, inter-electrode gap, 
powder material in dielectric fluid, pulse 
off-time, pulse on-time, threshold, voltage, 
workpiece material

CR, EWR, HD, MH, MRR, OC, SR, taper, 
DPN, TWR 

Average prediction error of 6.44% ranging from 
0.21 to 16.22%
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decreased trial numbers, optimal design selection, experi-
mental uncertainty evaluation, determining broad patterns 
between variables, and qualitative analysis of the effect of 
different parameters, such approaches have their assumptions 
and limitations. In such techniques, selecting the transforms 
for fitting curves with nonlinear datasets is inherently intui-
tive and turns out to be challenging when several inputs are 
involved. Moreover, misleading outcomes may be deduced 
with data consisting of significant variations. These concerns 
led to utilizing fuzzy and neural network methods, which 
addresses some of these challenges. Fuzzy-based systems 
provide human-like decisions regarding system processes. 
However, the success of fuzzy-based methods hinges on the 
ruleset used, which might differ from one programmer to 
the next. Contrarily, ANNs are well-proven methodologies 
when enough training information is available, allowing for 
the rapid development of a model and the correct predic-
tion of process dynamics through its output. There is also a 
reduced need for experimentation when updating an exist-
ing system because the existing ANN models may be used. 
Despite their widespread success in multiple applications, 
ANNs using gradient-based learning algorithms are suscep-
tible to becoming stuck in local minima, lengthy training 
periods, and slow convergence rates. For this reason, dif-
ferent training methods like LM and SCG have been con-
sidered to overcome such issues. Evolutionary algorithms 
have also improved the efficiency of selecting appropriate 
network structures in ANN. ANFIS modeling techniques 
incorporate the advantages of both ANN and fuzzy sys-
tems. Nevertheless, a substantial amount of experimental 
data is required for the automated creation of rules. There 
is also a limitation to modeling only one output at a time, 
which becomes problematic if the outputs are interdepend-
ent. As a result, CANFIS is used to resolve this problem as 

it allows the creation of non-linear rules based on several 
output responses. In CANFIS, the premises are identical 
to ANFIS, but the consequences vary depending on how 
many outputs are needed. To represent associations between 
outputs, fuzzy rules are developed using common member-
ship values. Based on the results of the reviewed articles, as 
given in Tables 2–6, a comparison of the mean percentage 
prediction error for the five modeling methods is given in 
Fig. 7. ANN-based models can provide better forecasting 
accuracy than other modeling techniques, followed by fuzzy, 
ANFIS, RSM, and regression. The higher precision of ANN 
systems can be attributed to the ability to incorporate differ-
ent modifications such as network configurations, training 
strategies, transfer functions, learning rate, and epochs to 
improve the process output. Since general ANFIS structures 
are limited to MISO systems, it does not consider the inter-
dependency between the different responses. Such limitation 
creates discrepancies between the predicted and expected 
outputs leading to higher errors than ANNs. Similarly, the 
performance of FIS depends on the expertise of the user in 
the creation of the ruleset and the selection of membership 
functions. The reliability of RSM and regression is lower 
than those of the other techniques due to the lack of adapt-
ability of such models.

2.7  Various optimization techniques used 
alongside the empirical modeling

Most of the above modeling techniques discussed in the pre-
vious sections involve the utilization of various optimization 
methods to find the optimal set of input parameters. Hence, 
modeling the system and determining which input factors 
have the most influence on output responses is a prerequisite 
to optimizing process variables. Due to the unpredictable 

Fig. 7  Average percentage pre-
diction error of the regression, 
RSM, fuzzy, ANN, and ANFIS 
based on the results of reviewed 
articles between 2002 and 2022, 
with ANN showing the least 
mean prediction error of less 
than 3%
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nature of the EDM process, it is crucial to improve the sys-
tem parameters in such a machining technique. Some of 
these research techniques have been discussed in the fol-
lowing sections.

Developed in the 1960s and 70 s by Holland et al., GA 
belongs to the class of evolutionary algorithms that uses 
the principle of natural selection in a self-replicating pop-
ulation to generate a highly effective and robust search 
approach [135]. This algorithm optimizes a given func-
tion by iteratively trying to improve it, employing opera-
tions influenced by evolutionary biology, such as selec-
tion, crossover, and mutation [136]. For problems with 
no clear algorithmic answer, GAs can generate candidates 
for Pareto optimal solution set, which can then be tested 
and refined until the desired result is achieved [137]. A 
population of potential objective function solutions is 
kept initially. Next, the solutions are ranked by their fit-
ness values, and the fittest solutions are crossed to create 
a new generation that may be closer to the optimal solu-
tion. In each generation of solutions, the less resilient ones 
progressively die without reproducing, while the more 
conspicuous one’s mate, combining their greatest quali-
ties to develop children that are likely to be better than 
their parents. To improve population diversity and find 
a better solution, mutations are introduced into solution 
strings. This cycle is performed until a specific number of 
generations or Pareto-optimal solutions are found [138]. 
As a result, GA is a powerful optimization approach that 
differs from the problem-solving strategies employed by 
more conventional algorithms, which are often more linear 
and likely to become trapped at local minima. Moreover, 
it depends entirely on the fitness value of the objective 
function (obtained from the modeling of the process) and 
requires no further information to operate. Some popular 
forms of GA include the multiobjective genetic algorithm 
(MOGA), the vector-evaluated genetic algorithm (VEGA), 
and the non-dominated sorted genetic algorithm (NSGA) 
[139]. Abidi et  al. [140] employed RSM to determine 
objective functions, which was utilized in a MOGA-II 
optimization technique to find the Pareto optimal solution 
of response variables in a micro-EDM process of Nickel-
Titanium based alloy using tungsten and brass tool elec-
trodes. From the generated solution set that took 2000 gen-
erations, the authors identified three optimal points that 
correspond to Tungsten as better tool material and also 
satisfied the requirements of low EWR and SR while obey-
ing the prescribed constraints. Gostimirovic et al. [141] 
developed model equations using GA and NSGA-II for 
multiple objective optimization problems with 600 genera-
tions to find the range of acceptable values of MRR and 
SR that provide high energy efficiency. Model equations 
generated from the GA could predict MRR and SR with a 
mean error percentage of 29.9% and 14.7%, respectively. 

Kumar et al. [142] have used regression modeling and 
modified the NSGA-II strategy to determine the best 
combinations of process variables in a micro-EDM of a 
titanium alloy for improving the DR while reducing TWR. 
Validation experiments at the Pareto optimal set yielded 
DR and TWR with an absolute mean percentage prediction 
error of 4.54% and 5.77%, respectively. Singh et al. [143] 
conducted a comparative study of three different optimiza-
tion techniques: DFA, GA and TLBO in EDM of a copper 
shape memory alloy. For both single and multiple objec-
tive optimizations of EWR and DA, optimum conditions 
determined through GA and TLBO were similar, while 
DFA conditions were quite different. Statistical-based 
modeling techniques like regression and RSM have been 
used to generate the optimization function for GA in refer-
ences [32, 40, 41] and [56, 66, 68], respectively. Moreover, 
multiobjective GA approaches have been combined with 
artificial intelligence-based methods like ANN, FIS, and 
support vector machine (SVM) in references [81, 90, 94, 
102, 106, 111] and [144] respectively.

Optimizing complicated EDM processes with a large 
number of response variables has been found to benefit 
significantly from the DFA. First developed in 1965 by 
Harrington and then modified by Derringer and Suich, the 
desirability function is a technique for selecting input param-
eter settings that maximize the tradeoffs among different 
process metrics [145, 146]. The approach involves creating 
a mathematical function between 0 and 1 representing the 
optimization process's desired outcome from each output 
modeling equation. This desirability response function is 
minimized or maximized to find the best possible solution. 
Finally, input factors are selected to maximize the geometric 
average of individual desirability functions, representing the 
total desirability [147]. Mehfuz et al. [148] combined regres-
sion modeling and DFA to optimize a micro-EDM milling 
process with prediction errors of 0%, 5.56%, 11.11%, and 
16.98% for SR, roughness height, MRR, and TWR, respec-
tively. The high percentage errors for MRR and TWR were 
attributed to the low measurement resolution of the balance 
used in the study. Sengottuvel et al. [149] aimed to optimize 
the tool electrode shape that generated the highest MRR 
with minimal EWR and SR using fuzzy logic modeling 
and DFA. Prediction errors of less than 5% were obtained 
with rectangular copper electrodes producing the best set 
of results. Experimental modeling using RSM and CCD 
DOE and multiresponse optimization with DFA was carried 
out by Dikshit et al. [150]. Prediction errors of 2.19% and 
2.58% at optimal conditions were reported for MRR and SR, 
respectively. Sahu et al. [151] adopted a blended optimiza-
tion approach known as desirability function-based GRA 
(DGRA) in conjunction with the firefly algorithm (FA) to 
concurrently enhance all performance indicators along with 
the least square support vector machine (LSSVM) to model 
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the EDM process. The authors concluded that AlSi10Mg 
is the best tool electrode to EDM a titanium workpiece. A 
combination of RSM-based modeling and DFA optimization 
can be found in works [53, 54, 57, 66] and [152].

PSO, a member of the evolutionary algorithms family, is a 
search heuristic that mimics the cooperative problem-solving 
strategies of animals like hives of bees or swarms of birds 
to locate Pareto-optimal answers to a variety of optimization 
challenges. Developed by Kennedy and Eberhart, PSO uses 
the concept of a “swarm” of particles representing the poten-
tial solutions that move around in a search space according 
to a fitness function, looking for the best solution to a given 
problem [153]. Each particle keeps its own “personal best” 
solution and is also aware of the best global solution obtained 
by any particle in the swarm to date. These two solutions 
direct the travel of the particle through the search space. 
The search is iterative; when either the maximum number 
of cycles is achieved or the least error criterion is met, the 
procedure is considered complete. PSO is advantageous since 
it uses real data as particles, is simple to implement, and has 
few adjusting factors [154]. PSO is very successful at address-
ing optimization issues that are challenging or impossible to 
solve using conventional approaches like gradient descent and 
quasi-Newton methods. For instance, PSO has been used to 
optimize the design of neural networks, antennas, and other 
complicated systems [155, 156]. Various forms of PSO exist, 
each with its own set of advantages and disadvantages [157]. 
In general, however, PSO is a robust optimization approach 
that can resolve a broad range of optimization issues. Aich 
et al. [158] utilized PSO to obtain the ideal working param-
eters of a support vector machine used for modeling a die-
sinking EDM process. Consequently, PSO was used the find 
optimal process values for maximum MRR and minimum 
SR with mean absolute percent error (MAPE) of 8.09% and 
7.08%, respectively, of the developed model. Majumder et al. 
[159] compared three different PSO techniques PSO-original, 
PSO-inertia weight, and PSO-constriction factor, for multiob-
jective optimization of an EDM process, the latter of which 
was found to be the most efficient with prediction errors of 
2.81% and 7.95% for MRR and EWR respectively. A math-
ematical model was developed using RSM, from which an 
objective function for PSO was generated using DFA. Nano 
powder-mixed EDM (PMEDM) processes were optimized 
with PSO by Mohanty et al. [160] and Prakash et al. [161] 
with great success. In both studies, RSM was utilized to obtain 
the model functions for optimization. RSM and regression 
modeling-based PSO works can be found in the literature [49] 
and [27, 43], respectively. Moreover, machine-learning-based 
approaches with PSO can be obtained in references [78, 100, 
101, 117]. Some non-traditional optimization techniques like 
the Jaya algorithm, Rao-1, biogeography-based optimization 
(BBO), and ant colony optimization (ACO) have also been 
reported in articles [39, 59], and [70], respectively.

Although single-response optimization from experimen-
tal data has been used in EDM processes [162, 163], statisti-
cal methods can provide a more efficient, accurate, and robust 
approach to optimization. Ranked-based optimization tech-
niques like the Taguchi method and GRA rely on statistical 
approaches to optimize a system by identifying the key factors 
that affect the performance of the system and controlling these 
factors to improve the overall performance. Such methods do 
not require a prior modeling process to generate the fitness 
functions used in optimization algorithms like GA, DFA, and 
PSO. Taguchi optimization is based on robust DOE by utilizing 
orthogonal arrays (OA) to select a subset of factors most likely 
to impact the output significantly. Using OA reduces the num-
ber of experiments, making the process more efficient and cost-
effective than traditional DOE techniques. Pilot experiments 
utilizing a single-factor experimental method can be performed 
before setting up the OA to determine the range of the signifi-
cant factors in an EDM process [164, 165]. The drawback of 
only using a traditional DOE technique of varying one factor at 
a time for optimization is that it does not account for potential 
interactions between the factors [166]. The Taguchi method opti-
mizes a system by analyzing the performance variation due to 
noise or environmental variation through signal-to-noise (S/N) 
ratio. The S/N ratio can be calculated using different formulas 
depending on the type of response being measured [167]. This 
technique has been utilized to optimize the different responses 
in EDM processes [168, 169]. However, the Taguchi method is 
a univariate optimization technique, which attempts to identify 
an ideal combination of input factors that maximizes or mini-
mizes a single response. Hence, GRA is used instead to perform 
multiresponse optimization.

Based on grey system theory, GRA is a mathematical 
method used in the field mathematics and computer science 
to compare multiple datasets and find patterns of similarity 
between them [170]. Dr. Deng first introduced it in 1982, 
and since then, it has found application in many other areas, 
including optimization, modeling, and experimental design 
[171]. It is particularly effective for correlating input vari-
ables with response parameters to optimize a system or pro-
cess. There are generally three stages in GRA: data preproc-
essing or normalization, determination of the grey relation 
matrix and interpretation of results [172]. The result is the 
generation of grey relational grade (GRG) values pertaining 
to the multiresponse feature, ranked from highest to lowest, 
with the maximum GRG value indicating the optimal experi-
mental condition for that process. Thus, the optimization of 
multiple outputs may be transformed into the optimization of 
a particular relational grade. EDM is a complex machining 
technique with numerous performance attributes in which 
responses like MRR need to be as high as possible, while 
SR, TWR, and OC need to be low. Conventional optimiza-
tion techniques such as the Taguchi method help find an 
optimal solution for single responses only [173]. However, 
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an enhancement in one response variable might have a det-
rimental effect on other performance metrics. Hence, a com-
bination of Taguchi DOE and GRA method can effectively 
address this challenge of optimizing interdependent multi-
performance features in EDM by transforming the multiple 
outputs into a single parameter for optimization [174–183].

Since different process factors have varied effects on the per-
formance characteristics, it is challenging to determine a single 
ideal combination of process parameters for the EDM process. 
Therefore, a multiobjective optimization approach is required to 
solve this issue. Classical ranked-based optimization techniques 
like GRA and TOPSIS reduce a multiobjective issue to a single 
target by assigning relative weights to each variable. However, 
such methods give unreliable results if the function becomes 
discontinuous or too many optimization goals are added [181]. 
Hence, search-based algorithms like GA, DFA, and PSO, which 
provide a Pareto optimal set of results, have been found to be 
more efficient in the optimization of the EDM process.

3  Geographical and time‑based trends 
of the research

Experimental modeling of EDM is a popular trend in the 
machining industry. This modeling approach enables 
manufacturers to predict how their system will behave dur-
ing machining operations and to optimize their processes 

accordingly. Such modeling can investigate a wide range of 
factors that affect machining performance, including MRR, 
tool wear, and SR. In recent years, considerable progress has 
been made in developing EDM modeling techniques, and it 
is now possible to create highly accurate models that can 
be used to predict machining behavior with great precision. 
Figure 8 depicts a geographical heat map of the research 
contributions of each country toward the empirical modeling 
of EDM. This chart was generated based on the provenance 
of the first and second writers of each publication. As the 
chart shows, literary works published in this field mainly 
originated in Asia, with a modest number of publications 
from parts of Europe and North America. Moreover, India 
contributed the most to this scope of EDM research, with 
69 publications between 2002 and 2022 based on the origin 
of the first author, followed by Türkiye, Iran, Malaysia, and 
China. Meanwhile, Algeria and Egypt are the only countries 
from Africa that conducted research on experimental mod-
eling during this time period.

A temporal trend can also be observed from the bar chart 
in Fig. 9 based on the number of reviewed articles on experi-
mental modeling between 2002 and 2022. Despite the fact 
that few research papers were published on this topic in the 
early 2000s, interest has steadily grown over the past few 
years, as shown by the upward trend, with the graph reaching 
its peak in 2022. The majority of the literature considered 
in this review was made available between 2013 and 2022. 

Fig. 8  Experimental EDM modeling research publications by country 
based on the corresponding country affiliations of the first and second 
authors of the reviewed articles between 2002 and 2022; the inten-

sity of the colors represents the number of authors from each country; 
India has the highest contribution to experimental EDM research
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Hence, it is evident that more research has been conducted in 
recent years on the empirical modeling of the EDM system.

The percentage of the five experimental modeling methods 
(based on the number of reviewed articles between 2002 and 
2022): regression, RSM, FIS, ANN, and ANFIS, discussed 
in this paper is shown in Fig. 10. More than 50% of the paper 
in this review is based on statistical-based methods like 
regression and RSM. This can be attributed to the widespread 
use of statistical software packages that allows the convenient 
and quick generation of such models from experimental 
data. Among artificial intelligence techniques, ANN is by 
far the most prevalent experimental modeling approach 
utilized by researchers in the past few years. Its widespread 
utilization among researchers is rising with the incorporation 
of meta-heuristic learning algorithms to improve the network 
structure, which overcomes the trial-and-error procedure 

of determining the hyperparameters of traditional ANN 
algorithms. Moreover, the ability to provide human-like 
decisions about the responses in a dynamic process like EDM 
and adaptability to changing inputs makes such machine 
learning-based models more prominent. In general, there is 
a rise in the popularity of all the modeling techniques being 
considered in this review.

4  Conclusion

An in-depth literature evaluation on the experimental modeling 
strategies for the EDM system covering the years 2002–2022 is 
compiled and summarized in this article. Various process and 
response factors, state-of-the-art algorithms, and optimization 

Fig. 9  Number of published 
articles between 2002 and 2022 
on experimental EDM research 
based on keyword searches 
from SCOPUS, Google Scholar, 
Science Direct, Springer, 
MDPI, and Taylor and Francis 
databases; the chart shows an 
overall increased interest in 
experimental EDM modeling

Fig. 10  Distribution of mod-
eling techniques used by the 
researchers between 2002 and 
2022 based on the reviewed 
articles in this paper, with RSM 
and ANN being the widely used 
technique during this period
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techniques employed by the researchers for EDM model 
development are also presented. Each modeling approach 
has been critically evaluated to determine the benefits and 
drawbacks. In addition, country-specific trends have been 
identified regarding the intensity of research, frequency of 
articles published, and classification of the different empirical 
techniques employed over the period considered. According to 
the literature, the following conclusions can be made:

• Statistical techniques like regression and RSM suffer 
from inaccuracies due to non-linearities and high varia-
tions in training data.

• The usefulness of FL-based modeling methodologies is 
restricted by the need for human skill and process knowledge 
in establishing the rule base and membership functions.

• A neural network-based model can accurately forecast 
process dynamics, even for inputs outside the training data 
set.

• The performance of ANN depends on network topology, 
training method, size of training and testing datasets, 
training period, hidden and output layer transfer function, 
synaptic weights, and biases, which adds to the complex-
ity of setting up such methods.

• ANFIS combines the strengths of FIS and ANN in automatic 
rule-base generation and accurate prediction of process out-
puts.

• A modification to the ANFIS technique is required to 
allow the modeling of multiple responses simultaneously.

• Based on author affiliations of reviewed articles, India has 
the highest number of publications related experiment 
modeling of EDM.

• RSM is the most widely used modeling approach used 
by researchers and is closely followed by ANN.

• An increase in the use of ANN and ANFIS techniques 
has been observed in recent years.

• ANNs demonstrate higher prediction accuracy in EDM 
modeling compared to the other techniques.

• A general upward trend is evident from reviewed literature, 
revealing the growing research interest in developing 
accurate models from experimental data.
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