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Abstract
Machine learning (ML) models have been extensively used in the stability check of gravity retaining wall. They are renowned 
as the most capable methods for predicting factor of safety (FOS) of gravity retaining wall against bearing failure. In this 
work, FOS against bearing is predicted based on extreme gradient boosting (XGBoost), random forest (RF) and deep neural 
network (DNN). To establish homogeneity and distribution of datasets, Anderson−Darling (AD) and Mann−Whitney U 
(M−W) tests are carried out, respectively. These three machine learning models are applied to 100 datasets by considering 
six influential input parameters for predicting FOS against bearing failure. The execution of the established machine learn-
ing models is assessed by several performance parameters. The obtained results from computational approach shows that 
DNN attained the best predictive performance with coefficient of determination (R2) = 0.998 and root mean square error 
(RMSE) = 0.006 in the training phase and R2 = 0.929 and RMSE = 0.053 in the testing phase. The models result are also 
analyzed by using rank analysis, regression error characteristics curve, and accuracy matrix. Sensitivity analysis is carried 
to know the relative importance of input variables.

Keywords  Reliability analysis · DNN · RF · XGBoost · Rank analysis · Uncertainty analysis · Statistical testing

Introduction

Predicting the failure of civil engineering structures and 
providing corrective measures is the main concern for the 
researchers nowadays. In geotechnical field, retaining wall is 
used to hold counteract forces of gravity to protect the struc-
ture. Stability of gravity retaining wall is checked against 

sliding, overturning and bearing failure. To measure the 
retaining wall failure against bearing, a parameter called 
Factor of Safety (FOS), defined as the ratio of net allowable 
bearing capacity of the foundation soil (qna) to the maximum 
soil pressure (qmax), is calculated. Reliability study in geo-
technical field recognized over the years early from the prob-
abilistic method. Several scholars have done reliability anal-
ysis on retaining walls. Basha and Babu (2008) conducted 
inverse reliability analysis on cantilever sheet pile wall. Goh 
et al. (2009) analyzed reliability investigation of partial 
safety factor concept for cantilever wall. Chouksey and Fale 
(2017) conducted reliability analysis of retaining structure. 
They have used first-order reliability method (FORM) and 
second-order reliability method (SORM) to calculate reli-
ability index linked with several kinds of failure. Dao-Bing 
et al. (2013) analyzed probabilistic investigation of retain-
ing wall against sliding and overturning modes of failure 
are analyzed using theory of upper-boundary. Kumar and 
Roy (2017) used reliability approach to design reliability 
analysis using imprecise probability. In this research, they 
have used copula centered technique to examine the effect 
of copulas for modelling tri-variate distributions on system 
reliability. Low et al. (2011) analyzed effective system reli-
ability study for cantilever wall and a slope. Menon and 
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Mangalathu (2011) designed the cantilever retaining wall 
against sliding failure and also performed reliability analy-
sis. They have used FORM, SORM and MCS techniques 
for reliability analysis. Wang et al., (2020a, 2020b) done 
reliability study of retaining wall under mountain torrent. 
Alghaffar and Wellington (2005) performed reliability study 
of walls using British and European standards. Xiao et al. 
(2014) done random reliability study of gravity retaining 
wall. They have used fuzzy random reliability and FOSM 
method to perform reliability analysis. Zhang et al. (2022) 
have done reliability study of gravity retaining wall to check 
external stability of wall under seismic condition.

However, use of computational method in the geotechnical 
research is very much in the trend. Chen et al. (2019) inves-
tigated the retaining wall and predicted the FOS through AI 
approach. Goh and Kulhawy (2005) used the neural network 
(NN) concept for the reliability study of wall. Mishra et al. 
(2021) used machine learning approach for the probabilistic 
analysis of retaining wall. Wu et al. (2022) used convolutional 
neural network (CNN) is used to predict wall deflection made 
by excavation. Kaveh et al. (2013) used multi-objective genetic 
algorithm for constructability optimal design of reinforced 
concrete cantilever retaining walls. In this research seismic 
analysis of cantilever retaining wall using Mononobe-Okabe 
method. Zhang et al., (2017a, 2017b) computed deflection 
of wall outlines produced by braced excavations using mul-
tivariate adaptive regression splines (MARS) technique. 
Xiang et al. (2018) computed extreme deflections of wall by 
braced excavation in clayey soil using MARS model. Yong 
et al. (2022) used FEM and ANN to predict the deflection of 
wall produced by braced excavations. Kaveh and Soleimani 
(2015) analyzed cantilever retaining wall under both static and 
seismic condition. They have used colliding bodies of opti-
mization (CBO) and democratic particle swarm optimization 
(DPSO). The static earth pressures computed by Coulomb 
and Rankine theory and dynamic earth pressure computed 
by Mononobe-Okabe theory. Kaveh and Laien (2017) used 
colliding bodies of optimization (CBO), enhanced colliding 
bodies of optimization (ECBO) and vibrating particles sys-
tem (VPS) for the optimal design of cantilever retaining wall 
under both static and seismic condition. Zhang et al., (2017a, 
2017b) done inverse investigation of wall and backfill proper-
ties in braced excavation using MARS model. Apart from the 
retaining wall, computational approach are extensively used in 
the other geotechnical arena. Pradeep et al. (2021) predicted 
strain in rock with the help of DNN and hybrid model ANFIS 
and metaheuristic algorithm like particle swarm optimization 
(PSO), firefly algorithm (FFA), genetic algorithm (GA) and 
grey wolf optimization (GWO). Kumar et al. (2021) analyzed 
pile foundation using soft computing techniques like minimax 
probability machine regression (MPMR), emotional neural 
network (ENN), group method of data handling (GMDH) and 
ANFIS as a substitute to the conventional approach. Wang 

et al., (2020a, 2020b) proposed XGBoost technique for the 
effective reliability study of slope stability. Ray et al. (2021) 
done reliability study of shallow foundation using soft comput-
ing methods. In this research they have used MPMR, ANN-
PSO and ANFIS-PSO model for reliability study. Babu and 
Srivastava (2007) computed bearing capacity and settlement 
using response surface method (RSM). Shahin et al. (2003) 
used multi-layer perception (MLPs) and B-spline Neuro-fuzzy 
networks to predict settlement of shallow foundation. Jena 
et al. (2019) used ANN for the mapping of earthquake risk 
assessment (ERA). From this research it has been observed 
that ANN is quite beneficial in probabilistic valuation of earth-
quake with high R2 and very low RMSE. Mustafa et al. (2023) 
analyzed gravity retaining wall under seismic condition. They 
have used three machine learning models namely minimax 
probability machine regression (MPMR), group method of 
data handling (GMDH) and Gaussian process regression 
(GPR) to predict factor of safety against sliding, overturning 
and bearing failure. Zhang and Goh (2013) used multivariate 
adaptive regression splines (MARS) for the geotechnical engi-
neering system. Other ML methods and also reliability study 
executed can be stated to latest literatures. Kaveh and Khalegi 
(1998) used artificial neural network (ANN) for the prediction 
of 7-day and 28-day strength of concrete specimen. Kaveh 
and Khavaninzadeh (2023) used four meta-heuristic optimiza-
tion to predict FRP strength. Kaveh et al. (2008) used genetic 
algorithm (GA) and neural networks for the optimal design of 
transmission towers. Kaveh and Iranmanesh (1998) used two 
artificial neural networks namely backpropagation neural net 
(BPN) and counterpropagation neural net (CPN) for the analy-
sis and design of large scale space structures. Ali and Burhan 
(2023) used hybrid machine learning (ML) technique for 
construction cost assessment. Hashmi et al. (2023) predicted 
compressive strength of concrete using genetic algorithm (GA) 
based hybrid artificial neural network (ANN) model. The key 
objective of current study is to execute probabilistic analy-
sis of gravity retaining wall based on bearing failure criteria 
using three machine learning algorithms XGBoost, RF and 
DNN. The reason behind choosing DNN over ANN as it has 
numerous hidden layers of processing, whereas a simple neural 
network just has an input, output, and hidden layer. The input 
data for DNN is propagated through an input layer, several 
hidden layers, and finally the output layer in a layered archi-
tecture. The input data are subjected to a set of mathematical 
operations known as weights and biases in each layer, and 
the output of one layer is used as the input in the following 
layer. To reduce the error between the predicted output and 
the actual output, a deep learning model's weights and biases 
are modified during the training phase. Recent advances in 
deep learning have been made in a number of areas, includ-
ing the prediction of forest cover, flood and typhoon activity, 
image and speech recognition, traffic and other aspects, low-
flow hydrological time series forecasting, weather forecasting, 
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and natural language processing. Numerous industry leaders 
in technology are steadily preparing to implement deep neural 
network. Considering the benefits of utilizing a deep learning 
technique as; it provides results of a high caliber, the abil-
ity to fully utilize unstructured data, the removal of unneces-
sary costs, and the need for data labelling. These models are 
also assessed by using the numerous statistical performance 
parameters.

Details of present study

The FOS against bearing failure is define as the ratio of allow-
able bearing pressure (qna) to the maximum applied pressure 
(qmax). Maximum applied pressure depends on unit weight of 
wall (γwall), dimension of the wall such as top width (a), bottom 
width (b), height of wall (H), base width of the wall (B) and 
cohesion (cb), angle of internal friction (φb) and unit weight 
(γb) of backfill. Allowable bearing pressure depends on the B, 
depth of foundation (Df), shape of footing and mainly on the 
cohesion (cf), angle of internal friction (φf) and unit weight (γf) 
of the foundation soil. Otherwise γwall, a, b, H, B and Df are 
the constant for this study. Allowable bearing pressure can be 
computed by (IS 1981) as:

where, qnu is the net ultimate bearing capacity, q is the effec-
tive pressure at the base and Rw is the water table correc-
tion factor. In this study Rw is taken as unity as it has been 
assumed that water table is at or below a depth of (Df + B). 
Nc, Nq and Nγ are the bearing capacity factor computed by 
Vesic’s bearing capacity theory as in Murthy (2003) and 
Das (1998).

sc, sq and sγ are the shape factors and taken as unity for this 
study (as the strip footing is considered for this study). dc, dq 
and dγ are the depth factors and computed as:

Inclination factors ic, iq and iγ can be computed as:

(1)
qnu = cf Ncscdcic + q

(
Nq − 1

)
sqdqiq + 0.5B �f N�s�d� i�Rw

(2)Nq = tan2(45 + �f∕2)e
(πtan�f )

(3)Nc = (Nq − 1) cot�f

(4)N� = 2
(
Nq + 1

)
tan�f

(5)dc = 1 + 0.2
(
Df∕B

)
tan

(
45 + �f∕2

)

dq = d𝛾 = 1 for 𝜑f < 100

(6)
dq = d� = 1 + 0.1

(

Df∕B
)

tan
(

45 + �f∕2
)

for �f > 100

where, α is the load inclination with vertical and taken as 
zero degree for this study it has been assumed that load on 
the footing is vertical and uniformly distributed.

The net allowable bearing pressure (qna) can be com-
puted as:

Here, FOS is taken as 2 to 3 for bearing capacity as per 
Bowles (1997) and Terzaghi et al. (1996) and for this study 
it is taken as 3.0. The maximum soil pressure (qmax) can 
be computed as:

where, 
∑

W is the total vertical forces acting on the wall and 
e is the eccentricity which can be computed as:

where, 
∑

MR is the sum of resisting moment and 
∑

MO is the 
summation of overturning moment. FOS of gravity retaining 
wall against bearing failure (FOSbearing) can be computed as:

Reliability index (β) is computed using FOSM 
approach. FOSM method is exceptionally influential prob-
abilistic approach to compute β. First order Taylor series 
approximation is used in FOSM method to express the 
performance function. In this method, μP and σP are the 
average value and the standard deviations of the output 
function P, respectively. Allowable bearing pressure (qna) 
and maximum soil pressure (qmax) are signified as resist-
ance (R) and load (S), respectively; and �R and �S are the 
average value and �R and �S are the standard deviations 
of R and S, respectively; the performance function (P) is 
expressed as per Christian (2004).

Stages to find β of the performance function as per 
Hasofer and Lind (1974) and Cornell (1969). (Cornell, 
1969; Hasofer & Lind, 1974):

(7)ic = iq = (1 − � ∕90)2

(8)i� =
(
1− �∕�f

)2

(9)qna =
qnu

FOS

(10)qmax =

∑
W

B
(1 + 6e∕B)

(11)e =
B

2
−

∑
MR −

∑
MO∑

W

(12)FOSbearing =
qna

qmax

(13)P = g (R, S) = R− S

⎧⎪⎨⎪⎩

> 0, Safe

= 0, Verge of failure

< 0, Failure

⎫⎪⎬⎪⎭
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(1)	 Express the variables R and S in non-dimensional sys-
tem:

(2)	 Change the boundary state task associated by reduced 
variables which signifies straight lines.

(3)	 The smallest perpendicular distance to the g (R, S) from 
the origin gives the β of the performance function P as 
shown in Fig. 1.

Bearing failure probability mainly depend on the aver-
age and variance of achieved FOS; hence the reliability 
index in terms of FOS is achieved as:

where, µF is the average of factor of safety and σF is the 
standard deviation of FOS. The probability of failure (Pf) 
can be computed as:

where, Φ(β) is the standard normal cumulative probability.

(14)μ1 =
R−μR

σR
, and μ2 =

S−μS

σS

(15)g (R, S) = R− S

(16)
β =

μP

�P
=

μR −μS√
σ2
R
+ σ2

S

(17)β =
μFOS − 1

σFOS

(18)Pf = 1−Φ(β)

Methodology and theoretical background 
of models

Extreme gradient boosting (XGBoost)

XGBoost is a machine learning (ML) system for tree boosting. 
It is boosted under the gradient boosting framework and estab-
lished by Chen and Guestrin (2016). The vital aim of boosting 
is to merge a chain of feeble classifiers with less precision to 
form a robust classifier with enhanced classification conduct.

Supposing that a set of data is S = {(xi, yi): i = 1….n, 
xi ∈ Rm, yi ∈ R}. Here n is the whole number of samples with 
complete details m. Let yp, i be the predicted value of the model 
and can be defined as:

where, fj signifies a self-regulating regression tree and fj (xi) 
represents the prediction rank given by the jth tree to ith 
sample. In the tree model, fj can be learned by diminishing 
the objective function (OBJf):

where, l is the training loss function, compute the difference 
between the predicted value (yp, i) and observed value

(yi). To prevent over-fitting, the term Ω punishes the com-
plication of the model:

where, λ and α are the regularization degree, w and L are 
the ranks on each leaf and numbers of leaves, respectively.

The tree ensemble model can be trained in supplement 
mode. Let yp, i

(k) be the prediction of the ith occurrence at the 
kth repetition, it requires to add fk to reduce the objective as 
follows:

Equation (23) can be obtained by simplifying the Eq. (22) 
using Taylor series expansion and removing the all constant 
terms as:

where gi = �yp,i (k−1) l ( yi, yp, i
(k−1)) and hi = �2yp,i (k−1) l (yi, 

yp,i
(k−1)) are the first and second order gradient on l. The 

OBJf
(k) can be further expressed as:

(19)yp,i =

j∑
j=1

fj(xi), fj ∈F

(20)OBJf =

n∑
i=1

l(yi, yp,i)) +

j∑
j=1

Ω(fj)

(21)Ω(fj) = αL +
1

2
λ||w||2

(22)OBJf (k) =

i∑
i=1

(yi, y
(k−1)

(p,i)
+ f(k)(xi)) + Ω(fk)

(23)OBJf (k) =

i∑
i=1

[gifk(xi) +
1

2
hifk(xi)

2] + Ω(fk)

Fig. 1   Reliability index (β) designated as the minimum distance from 
origin
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where, Ij = { i | Q (xi) = j} indicates the instance set of leaf j. 
For a fixed tree structure Q, the optimal weight wj

* of leaf j. 
The corresponding optimal value can be computed as:

where, Gj = 
∑

i∈Ij gi , Hj = 
∑

i∈Ij hi , OBJ represents the class 
of a tree structure Q. Lesser value indicates superior assem-
bly of the tree. Since it is very difficult to specify entire 
tree assemblies, a self-indulgent algorithm is used to add 
branches of the tree repeatedly. For the purpose of evaluat-
ing split candidates, the gain formula is used and can be 
expressed as:

where, IR and IL are the instance sets of the right and left 
nodes after splitting. Working steps of XGBoost are shown 
in Fig. 2

Random forest (RF)

RF is another ML algorithm established on the idea of 
ensemble learning as per Liaw and Wiener (2002). RF is 
a classifier that comprises various decision tress on numer-
ous subgroups of the specified data and taking average to 
advance the predictive validity of that data. Rather depend 
on single decision tree, RF takes the prediction from each 
individual tree and predicts the ultimate output established 
by majority votes of predictions (average voting). The major 
advantages of using RF are that, it takes lesser training time 
and predict output with great precision. Even for very large 
datasets it works proficiently. Process and characters of RF 
was defined by Leo Breiman (2001) as:

RF is a classifier comprising of a group of tree-structured 
classifiers {c (x, Θn, n = 1, 2, ……} where {Θn} are self-
regulating unformly spread random vectors and each tree 
casts an element vote for the utmost widely held class at 
input vector x.

(24)

OBJf (k) =

n�
i=1

[gifk(xi) +
1

2
hifk(xi)

2

] + �L +
1

2
λ

L�
j=1

w
2

j

=

L�
j=1

⎛⎜⎜⎝
�
i∈ Ij

gi

⎞⎟⎟⎠
sj +

1

2

⎛⎜⎜⎝
�
i∈ Ij

hi + λ

⎞⎟⎟⎠
w2

j
] + �L

(25)w∗
j
= −

Gj

Hj + λ

(26)OBJ∗
f
= −

1

2

L∑
j=1

G2
j

Hj + λ
+ λL

(27)G =
1

2
[

(
∑
i∈IL

gi)
2

∑
i∈IL

hi + λ
+

(
∑
i∈IR

gi)
2

∑
i∈IR

hi + λ
−

(
∑
i∈I

gi)
2

∑
i∈I

hi + λ
]−�

Each tree is planted based on random variable and train-
ing sample set. The random variable analogous to nth tree 
is Θn and obtain classifiers after n times running as {c1 (x), 
c2 (x), ……cn (x)}. With the help of these classifiers create 
along with classification model system and the concluding 
outcome drawn by ordinary majority vote. Let us assume 
C(x) be the blend of model classification, ci is the single 
decision tree, Y is the output variable and I(.) is the indicator 
function, then decision function can be obtained as:

Margin function in RF is used to judge when the average 
votes at X,Y for the right class surpass that for the wrong 
classs. The margin finction (MF) can be defined as:

Higher the margin value indicates greater precision of 
the classification prediction results in further reliance in 
classification.

Generalization error of the classifier can be defined as:

when there is very high number of decision tree (n), cn 
(X) = c (X, Θn) follow the resilient law of huge quantity. 
When n is very high PE* converges to:

Upper bound of the simplification error can be expressed 
as:

(28)C(x) =
argmax

Y

n∑
i=1

I(ci(x) = Y)

(29)
MF(X, Y) = avnI

(
cn(X) = Y

)
−maxJ≠YavnI

(
cn(X) = j

)

(30)PE∗ = PX,Y (MF(X, Y < 0)

(31)
PX,Y (P𝜃

(
cn(X, 𝜃) = Y

)
− maxJ≠YP𝜃(c (X, 𝜃) = j) < 0)

Fig. 2   Flowchart of XGBoost
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where τ is classifiers strength { c (x, θ)}, µ is the average 
value of the correlation. From Eqs. 32 it is concluded that 
generalization error influenced by the strength of the indi-
vidual trees and the correlation among these trees. Lesser 
value of thses indicates better prediction result of RF.

During formation of RF, by using random features selec-
tion tree is planted on the new training set and the new 
training set is drawn from the actual set of training by bag-
ging methods. The main purpose of using bagging is that, it 
improve accuracy and gives the idea of strength and correla-
tion. Let S be the total actual training set with N samples, 
the nth set of training is drawn from S with replacement by 
bagging, every Sn comprises N samples. The probability of 
each sample can not be contain is (1 – 1/N)N. When N is 
very high, (1 – 1/N)N is converges to e−1 or we can say that 
36.8% sample of the S is not contained in Sn and sample is 
called out-of-bag (OOB) data. Strength and correlation can 
be assessed using OOB techniques. The classic structure of 
RF model is shown in Fig. 3

Deep neural network (DNN)

Deep neural networks (DNNs) are the improvement over 
conventional ANN with multi-layered architecture as in 
Jiang et al. (2019). The fully linked, three-layer feedfor-
ward network is the topology of ANN used in supervised 
learning the most frequently. All of the network's input 

(32)PE
∗ ≤ �

(
1− �2

)
∕ �2 values are connected to every neuron in the hidden layer, 

and every neuron in the output layer is connected to every 
neuron in the hidden layer's outputs, which together make 
up the entire network's output when the output neurons are 
activated. DNN is a type of ANN with various hidden layer 
in among input and output layers. In DNN back-propagation 
(BP) methods are used to learn challenging configurations 
in dataset. To work out the illustration of individual layer 
from the illustrations of the prior layer, BP approaches regu-
late the learning factors of DNNs. In DNNs, an input layer, 
number of hidden layers and an output layer exists. Various 
hyper-parameters like broader vs. deeper networks, neuron 
count in hidden layers, optimizer, batch size, loss function 
and epochs affect the architecture of DNNs. Under-fitting 
and over-fitting are the two main issues of DNN. Under-
fitting issue can be removed by increasing network capac-
ity and by regularization strategies like weight constraint, 
weight decay and early termination with dropout can handle 
this type of issue.

DNN can be trained by BP algorithm. The weight 
upgrades can be done by stochastic gradient descent as per 
Benuwa et al. (2016) by using the Eq. (33):

where, C is the cost function, and α is the rate of learning. 
C is influenced by several features such as type of learning 
(supervised, unsupervised, reinforcement) and activation 

(33)wij(t + 1) = wij(t) + �
�C

�wij

Fig. 3   Basic structure of RF
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function. When executing supervised learning, softmax and 
cross entropy function are the collective varieties for the 
activation function and cost function respectively. The soft-
max function can be defined as:

where, pj is the class probability to output of the unit j and xj 
and xm denotes the entire input to units j and m, respectively 
of the similar level. Cross entropy (C in supervised learn-
ing on multiclass grouping difficulties) can be expressed as:

where, tj indicates the target probability for output unit j. 
Figure 4 shows the structure of DNN model.

Dataset preparation

Gravity retaining wall is considered to study probabilistic 
study against bearing failure (Fig. 5). The input data have 
been created randomly in excel using NORM.INV (RAND 
(), mean, standard_dev) command. Specifically, input vari-
ables, i.e., cohesion (cb), angle of internal friction (φb), 
and unit weight (γb) of backfill and cohesion (cf), angle of 
internal friction (φf) and unit weight (γf) of foundation soil 
have been created to find the output variables, FOS against 
bearing (FOS)bearing involving Eqs. (1–12). For this purpose 
mean and coefficient of variation of backfill properties were 
taken from previous research’s GuhaRay et al. (2018) and 
Zhou et al. (2014).The mean value and coefficient of varia-
tion (CoV) of foundation soil were taken from the research 
paper Zevgolis and Bourdeau (2006). Figure 5 indicates the 
geometry of gravity wall and numerous dimension taken 

(34)pj =
exp(xj)∑

m

exp(xm)

(35)Cr =
∑
j

tj log (pj)

from the research paper Kumar and Roy (2017). The statisti-
cal depiction of input parameters are given in Table 1.

100 data sets were taken and the input (cb, φb, γb, cf, γf, 
and φf) and output (Factor of safety against bearing fail-
ure) variables have been normalized among 0 and 1, before 
spending in the model. The normalization of the dataset can 
be done as follows:

where, Dmax and Dmin are the maximum and minimum values 
of the parameter (D), respectively. After the normalization, 
dataset is separated into two subsets namely training (TR) 
and testing (TS). For this, 70% of the total dataset is taken 
randomly for training phase (70 data) and rest 30% is taken 
for the testing phase (30 data). The methodology flowchart 
is presented in Fig. 6.

Models accuracy assessment

The prediction power of AI based computational mod-
els used in this work like XGBoost, RF and DNN were 
inspected using numerous performance parameters. Statis-
tical parameters are further subdivided into trend measuring 
statistical parameters (TMSP) and error measuring statistical 
parameters (EMSP).

Trend measuring statistical parameters (TMSP)

To know the predictive power of used model, seven variety of 
trend measuring statistical parameters are used. The coefficient 

(36)DNormalized =
D−Dmin

Dmax −Dmin

Fig. 4   Structure of deep neural network (DNN) model

Fig. 5   Gravity retaining wall geometry



3106	 Asian Journal of Civil Engineering (2023) 24:3099–3119

1 3

of determination (R2), performance index (PI), variance 
account factor (VAF), Willmott’s index of agreement (WI), 
Legate and McCabe’s index (LMI), Kling Gupta efficiency 
(KGE), and a-20 Index are seven employed TMSP used to 
evaluate the efficacy of the predictive models in this study. 
The mathematical terms for these parameters are expressed 
as follows:

(37)R2 =

∑n

i=1
(Fo,i −Fo)

2

−
n∑
i=1

(Fo,i −Fp,i)
2

∑n

i=1
(Fo,i −Fo)

2

(38)VAF =

(
1−

var(Fo,i −Fp,i)

var(Fo,i)

)
× 100

(39)WI = 1−

� ∑n

i=1
(Fo,i −Fp,i)

2

∑n

i=1
(�Fp,i−Fo� + �Fo,i−Fo�)2

�

(40)LMI = 1−

�∑n

i=1
�Fo,i−Fp,i�∑n

i=1
�Fo,i −Fo�

�

(41)PI = AdjR2 + 0.01VAF−RMSE

Table 1   Statistical depiction of input and output parameters

Parameters INPUT OUTPUT

Backfill Properties Foundation soil properties

Cohesion (cb)
(in kN/m2)

Unit weight (γb)
(in kN/m3)

Angle of shear-
ing resistance 
(φb)
(in degree)

Cohesion (cf)
(in kN/m2)

Unit weight (γf)
(in kN/m3)

Angle of shear-
ing resistance 
(φf)
(in degree)

FOS against 
bearing failure

Mean 11 16 29 30 16 28 6.33
Standard deviation 2.2 0.96 3.48 9 1.12 5.6 4.58
Minimum 5.64 13.49 21.14 11.6 12.20 17.11 1.16
First Quartile 9.83 15.16 26.47 23.42 15.42 24.52 2.98
Second Quartile 11.53 15.98 28.72 31.46 16.08 28.77 5.18
Third Quartile 13.13 16.39 30.97 36.61 16.76 31.70 7.98
Maximum 16.93 17.84 37.52 51.14 17.81 39.42 29.65
Sample Variance 5.85 0.96 11.49 81.00 1.10 26.01 21.01
Range 11.29 4.34 16.39 39.54 5.60 22.31 28.49
Standard Error 0.22 0.096 0.35 0.90 0.11 0.56 0.46
5% Trimmed mean 11.44 15.85 28.79 30.03 16.06 28.59 6.04
Skewness – 0.097 – 0.019 0.286 – 0.09 – 0.65 0.03 2.19
Kurtosis – 0.138 – 0.455 – 0.105 – 0.49 0.80 – 0.53 7.07
Geometric mean 11.18 15.81 28.63 28.56 15.99 28.12 5.14
Harmonic mean 10.89 15.79 28.44 26.87 15.96 27.65 4.21

Fig. 6   Methodology flowchart
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where, Fo,i and Fp,i are the actual and predicted ith value, 
respectively, F o and F p are the average of actual and pre-
dicted value, respectively, n is the number of training or test-
ing samples and K20 is the amount of data with observed/
predicted ratio between 0.80 and 1.20.

Error measuring statistical parameter (EMSP)

To inspect model accuracy, seven EMSP are used. These 
parameters are root mean squared error (RMSE), mean abso-
lute error (MAE), mean bias error (MBE), expanded uncer-
tainty (U95), scatter index (SI), median absolute deviation 
(MAD), and mean square error (MSE). Mathematical expres-
sion of EMSP are as follows:

(42)

KGE = 1−

√√√√√(R2−1)2 +

(
Fp

Fo

−1

)2

+

(
COVp

COVo

−1

)2

(43)a − 20 Index =
K20

n

(44)
RMSE =

�����
n∑
i=1

(Fo,i−Fp,i)
2

n

(45)MAE =
1

n

n∑
i=1

|(Fp,i−Fo,i)|

(46)MBE =
1

n

n∑
i=1

(Fp,i−Fo,i)

where, SD is the standard deviation of the dataset generated.

Results and discussion

Prediction capability

The prediction capability of the proposed models for the 
prediction of FOS against bearing failure is investigated 
in this section. For this study several statistical parameters 
for TR and TS datasets are computed for different model. 
Tables 2 and 3 shows statistical performance details for 
TR and TS dataset. The prediction power of proposed 
three models (XGBoost, RF and DNN) was evaluated by 
using numerous error measuring statistical parameters 
namely MAD, MSE, RMSE, MBE, MAE, U95 and SI and 
trend measuring statistical parameters namely R2, PI, VAF, 
WI, LMI, KGE and a-20 index. Result shows DNN has 
attained superior prediction capability in both TR and 
TS stage as compare to the other two models. In both 

(47)
SI =

�
1

n

n∑
i=1

(Fo,i−Fp,i)
2

Fo

=
RMSE

Fo

(48)
MAD = Median (|Fp,1−Fo,1|, |Fp,2−Fo,2|, − − − − |Fp,n−Fo,n|)

(49)MSE =
1

n

n∑
i=1

(Fp,i−Fo,i)
2

(50)U95 = 1.96 (SD2 + RMSE2)
1

2

Table 2   Details of performance 
parameters for the established 
computational model (TR 
dataset)

Parameters Name of the parameters Ideal value XGBoost
(Training)

RF
(Training)

DNN
(Training)

MAD Median absolute deviation 0 0.006 0.015 0.001
MSE Mean square error 0 0.001 0.002 3.86E-05
R2 Coefficient of determination 1 0.994 0.924 0.998
RMSE Root mean square error 0 0.011 0.037 0.006
PI Performance index 2 1.979 1.803 1.990
VAF Variance account factor 100 99.644 92.302 99.795
MBE Mean bias error 0 0.007 -0.001 0.001
WI Willmott’s index of agreement 1 0.998 0.976 0.999
MAE Mean absolute error 0 0.008 0.023 0.003
LMI Legate and McCabe’s index 1 0.918 0.772 0.968
KGE Kling Gupta efficiency 1 0.911 0.766 0.989
U95 Expanded uncertainty 0 0.268 0.277 0.267
SI Scatter index 0.1 0.066 0.231 0.039
a-20 Index a-20 index 1 0.871 0.714 0.943
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the two stages DNN has higher value of R2 (TR = 0.998, 
TS = 0.929),  PI  (TR = 1.990, TS = 1.791),  VAF 
(TR = 99.795, TS = 98.399), WI (TR = 0.999, TS = 0.979), 
LMI (TR = 0.968, TS = 0.843), KGE (TR = 0.989, 
TS = 0.860) and a-20 index (TR = 0.943, TS = 0.867) 
and lower value of MAD (TR = 0.001, TS = 0.009), MSE 
(TR = 0.3.86E-05, TS = 0.003), RMSE (TR = 0.006, 
TS = 0.053), MBE (TR = 0.001, TS = −0.014), MAE 
(TR = 0.003, TS = 0.022), U95 (TR = 0.267, TS = 0.410) 
and SI (TR = 0.039, TS = 0.232).

Rank analysis

Rank analysis is used to compare the predictive model’ per-
formance as shown in Table 4. Each three model’s TR and 
TS data are used to compute the rank. The number of models 
governs the rank from 1 to 3 (as three models are used in 
this study). Best performance model is ranked 1 and rank 
3 is assigned for poorest performance model. The model’s 
final rank is evaluated by totaling all of the rank for TR and 
testing TS data as:

Table 3   Details of performance 
parameters for the established 
computational model (TS 
dataset)

Parameters Name of the parameters Ideal value XGBoost
(Testing)

RF
(Testing)

DNN
(Testing)

MAD Median absolute deviation 0 0.032 0.037 0.009
MSE Mean square error 0 0.008 0.016 0.003
R2 Coefficient of determination 1 0.799 0.585 0.929
RMSE Root mean square error 0 0.089 0.128 0.053
PI Performance index 2 1.459 0.954 1.791
VAF Variance account factor 100 79.998 60.512 98.399
MBE Mean bias error 0 0.003 -0.028 -0.014
WI Willmott’s index of agreement 1 0.935 0.802 0.979
MAE Mean absolute error 0 0.053 0.067 0.022
LMI Legate and McCabe’s index 1 0.622 0.515 0.843
KGE Kling Gupta efficiency 1 0.706 0.065 0.860
U95 Expanded uncertainty 0 0.433 0.469 0.410
SI Scatter index 0.1 0.389 0.560 0.232
a-20 Index a-20 index 1 0.533 0.433 0.867

Table 4   Rank analysis of 
different model

Model XGBoost RF DNN

Training Testing Training Testing Training Testing

MAD 2 2 3 3 1 1
MSE 2 2 3 3 1 1
R2 2 2 3 3 1 1
RMSE 2 2 3 3 1 1
PI 2 2 3 3 1 1
VAF 2 2 3 3 1 1
MBE 2 1 3 3 1 2
WI 2 2 3 3 1 1
MAE 2 2 3 3 1 1
LMI 2 2 3 3 1 1
KGE 2 2 3 3 1 1
U95 2 2 3 3 1 1
SI 2 2 3 3 1 1
a-20 Index 2 2 3 3 1 1
Total rank 28 27 42 42 14 15
Final rank 55 84 29
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where, R is the rank, i and j are the TR and TS performance 
gauges, and m and n are the number of performance gauges 
in the TR and TS phase respectively. DNN (RTR = 14, 
RTS = 15 and Final Rank = 29) is the best performing 
model followed by XGBoost (RTR = 28, RTS = 27 and Final 
Rank = 55) and RF (RTR = 42, RTS = 42 and Final Rank = 84). 
Illustration of rank analysis is also represented in the form 
of a radar diagram in Fig. 7

Reliability index of the model

Reliability index (β) of proposed models are calculated 
with the help of FOSM approach and compared with the 
actual value of β. Probability of failure (Pf) is also cal-
culated for these models by using reliability index. As 
we know that higher value of β shows better accuracy of 
the model. Models are ranked with the help of β and Pf 
and can be shown in Table 5. Higher β and lesser Pf (Top 
performing model) is ranked 1 and lower β and higher Pf 
(Low performing model) is ranked 3. Table 5 shows DNN 
is the top performing model among three and RF is the 
lowermost performing model.

(51)Final Rank = [

m∑
i=1

Ri +

n∑
j=1

Rj]

Performance curve

Performance or regression curve is the graphical represen-
tation among the observed and predicted factor of safety 
against bearing failure. It offers R-value computed and are 
shown in Tables 2 and 3. Figures 8 and 9 show the graphi-
cal representation among the actual FOS (Normalized) and 
predicted FOS (Normalized) against bearing failure using 
TR and TS dataset. In Figs. 8 and 9, dotted line indicates ± 
15% deviance of the predicted data from the actual line. In 
the both training and testing phase, very less deviation was 
observed in the DNN model followed by XGBoost and RF.

Regression error characteristics (REC) curve

To visualize decent outcomes, graphical analyses 
are offered. The REC curve helps in finding the inac-
curacy in absolute deviation form (Fig. 10). The REC 
curve is receiver operating characteristics (ROC) plot 

Fig. 7   Rank analysis present-
ing in form of radar diagram: a 
TR stage; b TS stage; and c for 
final rank

Table 5   Comparison among different model based on reliability 
index and probability

Models Actual β Actual Pf Model’s β Model’s Pf Rank

XGBoost 1.763 0.039 1.351 0.088 2
RF 1.240 0.107 3
DNN 1.711 0.043 1
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in two-dimensional form in which absolute deviation is 
represented on abscissa and accuracy represented on the 
ordinates. The subsequent curve evaluates the cumula-
tive distribution function (cdf) of the error among the 
observed and predicted values. The area over the curve 
(AOC) offers effective level of the enactment of a regres-
sion model. The AOC values of proposed models are 
given in Table 6. Gini coefficient (G) of each model is 
computed with the help of area under the curve (AUC). 

High value of G specifies better performance of the 
model. Table 7 illustrates DNN model has higher value 
of G for both TR and TS phase followed by XGBoost 
and RF. On account of G, models are ordered accord-
ingly. Models which has higher value of Gini coefficient 
is ranked 1 and lower value is ranked 3.

(52)Gini Coefficient (G) = 2AUC− 1

Fig. 8   Performance curve of training (TR) data for a XGBoost; b RF; and c DNN models
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Accuracy and error matrix

Accuracy matrix is a plot in the pattern of heat map, is 
inspected to assess the effectiveness of the models. The 
matrix contained numerous performance factors to regu-
late the predictive presentation of the model for TR and 
TS datasets. Figures 11 and 12 show the accuracy matrix 
of three models in forms of predicting factor of safety. So, 
the degree of error (E %) can be calculated for error meas-
uring statistical parameters (EMSP) and trend measuring 
statistical parameters (TMSP), respectively.

where, Ee and Et represents the error for EMSP and error for 
TMSP respectively; It and Ie are the ideal values for TMSP 
and EMSP, respectively; Se and St are the predicted values 
for EMSP and TMSP respectively. Using Eq. 53–54 error is 
calculated which are shown in Tables 8 and 9.

(53)Ee =
|| (Ie− ||Se|) | × 100

(54)Et =
(It−|St|)

St
× 100

Fig. 9   Performance curve of testing (TS) data for a XGBoost; b RF; and c DNN models
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Figure 11a and b indicate the error matrix plot for the EMSP 
and TMSP of the training TR) and testing (TS) dataset. In both 
the figure it can be seen that lesser error observed while predict-
ing FOS against bearing failure in DNN model as compare to 
the other two models. The lesser range of error is revealed by 
the shade of green and the highest range of error shown by the 
shade of red. Figure 12 displays the accuracy plot for the TR and 
TS dataset of the proposed model. Once again highest range of 
accuracy witnessed for the DNN model among all the three pro-
posed model. Uppermost scale of accuracy is presented by shade 
of green and lowest scale of accuracy presented by shade of red.

Uncertainty analysis and statistical testing

Uncertainty analysis

Quantitative analysis of the models in predicting FOS against 
bearing failure is presented in this sub-section. The analysis 
was done for the testing datasets. In uncertainty analysis the 
absolute error (Ea, i) can be computed as:

Fig. 10   REC plot for the a TR 
dataset; and b TS dataset

Table 6   AOC values for the models

Phase/Model XGBoost RF DNN

Training (TR) 0.0078 0.0211 0.003
Testing (TS) 0.0462 0.0571 0.0173

Table 7   Gini coefficient values for proposed model

Model Phase AUC​ Gini Coefficient (G) Rank

Ideal value Calculated value

XGBoost TR 0.9922 1 0.9842 2
TS 0.9538 0.9076 2

RF TR 0.9789 1 0.9578 3
TS 0.9429 0.8858 3

DNN TR 0.9970 1 0.9940 1
TS 0.9827 0.9654 1
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where, FO, i and FP, i be the observed and predicted factor 
of safety, respectively. The mean of absolute error (MOAE) 
and standard deviation (σ) of prediction can be computed as:

(55)Ea, i =
||FO, i−FP, i

||

(56)
MOAE =

n∑
i=1

Ea,i

n

where, n is number of testing dataset. Width of confidence 
bound (WCB) was computed by using margin of error 
(MOE) at 95% confidence interval. The standard error (ES), 
lower bound (LB) and upper bound (UB) were computed as:

Table 10 shows uncertainty analysis details of different 
parameters. The parameters shown in Table 10 are very 
much useful to measure the capability of the models. Lesser 
WCB indicated higher certainty of the model and the model 
will give less error and higher accuracy while predicting the 
output. All the three models used in this study were ranked 
according the WCB value. Table 10 shows DNN has lesser 
value of WCB among all the three model and secured rank 
1 followed by XGBoost and RF. Figure 13 a–c shows the 
uncertainty analysis graph in the form of bar chart showing 
MOAE, WCB, and MOE value for a superior appraisal.

Statistical testing

t‑Test  t-test is the statistical test to compare the models. One-
tailed test was performed to assess the substantial dissimilar-
ity of the preferred DNN’s execution to the others two mod-
els namely XGBoost and RF in predicting the FOS of gravity 
wall against bearing failure. This test was performed on the 
MBE values with the hypothesized mean difference MD = 0. 
At MD = 0 and 95% confidence interval, the hypotheses of 
one-tailed t-test are HP0: MBEDNN –MBERF/XGBoost models = 0 
and HPA: MBEDNN – MBERF/XGBoost models < 0, where HPA 
and HP0 denotes alternate hypothesis and null hypothesis, 
respectively. The outcomes are shown in Table  11. It can 
be observed that the refusal (failed to accept) of HP0 (i.e. 
t-stat < t-critical) specifies the suggested DNN model out-
performed all two models in decreasing the MAE value in 
both training and testing phase.

(57)
σ =

�����
n∑
i=1

(Ea,i−MOAE)2

n−1

(58)S tan dard Error =
S tan dard Deviation√

n−1

(59)
Upper Bound = Mean of Absolute Error + Margin of Error

(60)Lower Bound = Mean of Error−Margin of Error

(61)
Width of confidence Bound = Upper Bound−Lower Bound

Fig. 11   Error matrix for the TR and TS dataset of proposed model a 
TMSP; and b EMSP

Fig. 12   Accuracy matrix for the TR and TS dataset of the proposed 
model
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Non‑parametric testing  In this sub-section ‘Anderson–
Darling’ (A-D) test and ‘Mann–Whitney U’ (M-W) tests 
are done to inspect the normality and probability distribu-
tion of the observed and predicted factor of safety using 
three established machine learning (ML) models. In A-D 
test, if null hypothesis (HP0) is accepted at a certain level 
of significance then the given data follows normal distri-
bution as in Razali and Wah (2011). Table 12 shows the 
AD value as well as Adj. AD value for the entire actual 
and predicted datasets. It is observed that for actual and all 
the three models P-values are under the 5% significance 
level and failed to accept HP0. It is also observed that 
model DNN is best performing model to predict factor of 
safety against bearing failure.

M-W test is used to differentiate the values among two sets 
(observed and predicted) which means whether they originate 

from the alike distribution as in Mann and Whitney (1947). 
In M-W test, rank is allotted to each sample in the initial 
stage and then assigned ranks are summed up. Afterward the 
‘Mann–Whitney U’ value is computed as the minimum value 
among U1 and U2 and computed as:

where, m1 and m2 are total of samples of the correspond-
ing group; Rt1 and Rt2 are the total ranks for group 1 and 2 
respectively. z-stat can be computed as:

U1 = m1m2 +
m1(m1 + 1)

2
−Rt1

(62)U2 = m1m2 +
m2(m2 + 1)

2
−Rt2

Table 8   Calculated error for TMSP for TR and TS dataset

TMSP Ideal values XGBoost Error 
(Et)
in %

RF Error 
(Et)
in %

DNN Error (Et)
in %

TR TS TR TS TR TS TR TS TR TS TR TS

R2 1 0.994 0.799 0.6 20.1 0.924 0.585 7.6 41.5 0.998 0.929 0.2 7.1
PI 2 1.979 1.459 1.1 27.1 1.803 0.954 9.9 52.3 1.990 1.791 0.5 10.5
VAF 100 99.644 79.998 0.4 20.0 92.302 60.512 7.7 39.5 99.795 98.399 0.2 1.6
WI 1 0.998 0.935 0.2 6.5 0.976 0.802 2.4 19.8 0.999 0.979 0.1 2.1
LMI 1 0.918 0.622 8.2 37.8 0.772 0.515 22.8 48.5 0.968 0.843 3.2 15.7
KGE 1 0.911 0.706 8.9 29.4 0.766 0.065 23.4 93.5 0.989 0.860 1.1 14
a-20 Index 1 0.871 0.533 12.9 46.7 0.714 0.433 28.6 56.7 0.943 0.867 5.7 13.3

Table 9   Calculated error for EMSP for TR and TS dataset

EMSP Ideal values XGBoost Error (Ee)
in %

RF Error (Ee)
in %

DNN Error (Ee)
in %

TR TS TR TS TR TS TR TS TR TS TR TS

MAD 0 0.006 0.032 0.6 3.2 0.015 0.037 1.5 3.7 0.001 0.009 0.1 0.9
MSE 0 0.001 0.008 0.1 0.8 0.002 0.016 0.2 1.6 3.86E-05 0.003 0.01 0.3
RMSE 0 0.011 0.089 1.1 8.9 0.037 0.128 3.7 12.8 0.006 0.053 0.6 5.3
MBE 0 0.007 0.003 0.7 0.3 −0.001 −0.028 0.1 2.8 0.001 −0.014 0.1 1.4
MAE 0 0.008 0.053 0.8 5.3 0.023 0.067 2.3 6.7 0.003 0.022 0.3 2.2
U95 0 0.268 0.433 26.8 43.3 0.277 0.469 27.7 46.9 0.267 0.410 26.7 41.0
SI 0.1 0.066 0.389 6.6 38.9 0.231 0.560 23.1 56.0 0.039 0.232 3.9 23.2

Table 10   Outcomes of 
uncertainty investigation

Models MOAE σ ES MOE LB UB WCB Rank

XGBoost 0.053 0.090 0.016 0.032 0.02 0.085 0.065 2
RF 0.067 0.131 0.024 0.047 0.03 0.114 0.093 3
DNN 0.022 0.054 0.009 0.019 0.003 0.041 0.039 1
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(63)z−stat =
U−Mean

S tan dard deviation

(64)
Mean =

m1m2

2
, Standard deviation =

√
m1m2(m1 + m2 + 1)

12

Fig. 13   Bar plots for uncertainty analysis presenting: (a) MOAE; (b) MOE; and (c) WCB

Table 11   Outcomes of t-test Phase Models Total sample Degree of free-
dom (DOF)

MD t-stat t-critical HPo

Training XGBoost 70 69 0 1.048 1.667 Reject
RF 70 69 0 0.098 1.667 Reject

Testing XGBoost 30 29 0 0.166 1.699 Reject
RF 30 29 0 1.207 1.699 Reject

Table 12   Features of A-D test for entire dataset

Output variables Observe/models Total dataset Mean Standard deviation AD value Adj. AD value P-value

Factor of Safety against Bearing Failure Observe 100 0.1815 0.1609 4.263 4.296 1.146E-10
(< < 0.05)

XGBoost 100 0.1872 0.1427 4.010 4.041 4.687E-10
(< < 0.05)

RF 100 0.1729 0.1043 5.075 5.114 1.242E-12
(< < 0.05)

DNN 100 0.1780 0.1473 3.859 3.889 1.097E-09
(< < 0.05)
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The results of M-W test for all three models are shown 
in Table 13. It is concluded that all the models have homo-
geneities due to lesser deviation is perceived when z-stat 
and asymptotic significance (i.e. 2-t: P values) are taken as 
a source. At 5% significance level (α = 0.05), z –stat is less 
than 1.96 specify that there is no substantial dissimilarity 
between the observed and predicted values. However, the 
obtained value nearer to ideal value (i.e. z0.025 = 1.96) shows 
a more reliable model. Hence, DNN (z-stat = −0.0171) is 
a better performing model in predicting the FOS against 
bearing failure.

Sensitivity analysis

To know the influence of each input parameters on the out-
put, sensitivity study is performed. For this extensively used 
method i.e. cosine amplitude method (CAM) was imple-
mented for the study as per Asteris and Mokos (2020) and 
Kardani et al. (2021). The strength of relation ( SOn,m

 ) of input 
parameters (cb, φb, γb, cf, φf and γf) in predicting the FOS 
against bearing failure for the actual data and used model 
can be computed as:

where, Im, i signifies the ith value of mth independent vari-
able; j and m are the total observations and total input 
parameters, respectively; On, i signifies the ith value of nth 
dependent variable; SOn,m

 is the strength of relation of mth 
independent variable to nth dependent variable; and n is 
the total dependent variables. In this study, m = 6, n = 1 and 
j = 100. The strength of relation of different input parameters 
are shown in Fig. 14. The figure shows that the φf is the 
utmost influential parameter for computing factor of safety 
against bearing failure followed by cb, cf, γf and γb for all the 
cases. It can also be observed that DNN nearly modelled the 
actual output in predicting the factor of safety.

(65)Son,m =

j∑
i=1

Im,iOn,i

�
j∑

i=1

(Im,i)
2

j∑
i=1

(On,i)
2

Table 13   Features of M-W test for entire dataset

Output variables Model group Mann- Whit-
ney U

Wilcoxon
W

z-stat Asymptotic 
Significance
(2-Tailed:P 
value)

Factor of Safety against Bearing Failure Observe-XGBoost 4674 205 −0.7965 0.4458
Observe-RF 4640 865 −0.8796 0.3945
Observe-DNN 4993 545 −0.0171 0.9859

Fig. 14   Bar plots of sensitivity study for the developed model
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Conclusions

It is key to specify that a reliable and accurate valuation 
of gravity retaining wall failure against bearing can reduce 
resources used up in the creation and nurture of civil engi-
neering structures. In this study, three machine learning 
(ML) models were used for predicting FOS against bearing 
failure. These ML models namely XGBoost, RF, and DNN. 
The main idea of this study is to recommend a quick and 
perfect ML model for the prediction of FOS against bearing 
failure. Different ML models were established and examined 
for their speed and based on their results, the following infer-
ences are pointed out:

1. DNN model is the most capable and robust in predict-
ing FOS against bearing failure among three models. This 
is because of higher value of R2, VAF, WI, LMI, KGE, and 
a-20 index and lower value of MAD, MSE, RMSE, MBE, 
MAE, U95 and SI among all the three used ML models in the 
training and testing stage.

2. The presentation of the models have also been judged 
by rank analysis, performance curve, and by computing 
reliability index of the models. Obtained results shown that 
DNN outperforms the others.

3. The uncertainty analysis and statistical testing (t-test, 
A-D test and M-W test) were also done to evaluate the reli-
ability of the proposed DNN model in predicting the factor 
of safety against bearing failure.

4. ML model is effectively applied for this study to predict 
FOS against bearing failure. It seems to be an accurate and 
computationally proficient due to its simple execution tech-
nique, greater prediction validity, very low computational 
cost, and being representational.

5. Despite the numerous advantages of ML model, it can 
be improved in the future as follows: (i) using huge datasets 
to more precisely predict the desired output(s); (ii) through 
evaluation of the testing dataset’s outcomes using cross-
validation of many traditional machine learning models; 
(iii) using data endorsed by experts to address consider-
ably wider diversities; (iv) extending the use of proposed 
models in many more fields; and (v) more input parameters 
amplified the computational time unusually due to additional 
number of rules.
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