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Abstract This paper studies a two-dimensional transport model to investigate the behavior of 

heavy metal migration in porous media, specifically considering their transport in soil. The model 

takes into consideration the combination of adsorption term as well as instantaneous injection at 

the boundary. Also, the model accounts for both longitudinal and transverse movements, 

providing a comprehensive understanding of heavy metal transport phenomena. In order to obtain 

the analytical solution Laplace transform has been implemented. It is found that the peak 

concentration of heavy metals is found to be greatly affected by the changes in the instantaneous 

injection value. Additionally, a correlation is observed between retardation factors and heavy metal 

concentrations, with a decrease in retardation factors resulting in an increase in heavy metal 

concentration.  

Keywords: Advection diffusion equation, Instantaneous injection, Laplace transform, Two-dimensional, 

Heavy metal.  
 

 

Introduction 
 

Heavy metal pollution is a serious environmental pollution, and it is difficult to eradicate from the soil, 
which caused many scholars to study its related behaviour such as its transport ability. Establishing a 
mathematical model will help environmentalists and relevant personnel understand its characteristics, 
so as to establish a better method to repair the soil. The Advection Diffusion Equation (ADE) is a common 
model adopted to describe the heavy metal transport in soil. Many scholars have discussed and studied 
the dispersion of pollution in soil and porous media through mathematical model, which greatly promoted 
the progress of understanding pollutant migration in soil. Although some progress has been made, the 
remediation of heavy metal pollution in soil is still a topic of research interest. For example, adsorption 
in heavy metal migration in soil has been verified to effect the pollutants transport in soil [1-3]. It is an 
important factor in pollutant transport in soil, such that it examined the processes governing heavy metal 
migration.  

  

A lot of analytical solutions have been proposed in one-dimensional ADE [4-12]. For example, Kumar et 
al. [9] solved a one-dimensional advection diffusion equation with variable coefficients under the point 
source media of uniformity. Then, Kumar et al. [10] extend the research that studied for semi-infinite 
range heterogeneous media. The effects of spatial and temporal dependence on concentration 
dispersion are studied with the help of the respective parameters. Meanwhile, Yadav and Kumar [11] 
has studied the analytical solution of one-dimensional solute transport problem in homogeneous porous 
domain, by considering the seepage velocity is exponentially decreasing, and diffusion parameter and 
retardation factor that are space dependent. The analytical solution used Laplace transport techniques 
with uniform input point source condition. Later, Yadav and Roy [12] also studied the analytical solution  
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of one-dimensional solute transport in a semi-infinite heterogeneous continuous periodic point source 
through a localized adsorption porous through a left boundary injection. Both researches used Laplace 
transform to get the solutions in only one-dimensional equation 

 

Besides one-dimensional ADE research in pollution migration in porous media, two-dimensional 
development seems to be an inevitable trend.  Fedi et al. [13] considered a parallel plate geometry and 
discusses a semi-infinite and laterally bounded domain based on Dirichlet and mixed boundary condition.  
Chen et al. [14] also used the Dirichlet and mixed boundary conditions to study the solution of ADE but 
for finite domain only. Meanwhile, Chen et al. [15] explained the influence of inlet conditions on two-
dimensional solute transport in porous media where the inlet concentration is known. In addition, Derya 
and Yetim [16] focused on the advection-diffusion equation with the Atangana-Baleanu derivative, which 
is a fractional derivative.  Furthermore, Yadav and Kumar [17] found that the concentration patterns and 
levels are influenced by the varying nature of the input concentration. 

  

For most of the ADE research, the boundary conditions can be divided into some types of injections, 
such as short-time injection, continuous injection and instantaneous injection. In previous studies,  Wang 
et al. [18] have considered the instantaneous injection of a tracer to apply to an experiment, and it is only 
a linear graphical method for hydro dispersive. Then, Aral and Liao [19] mentioned about instantaneous 
injection as a boundary for their special case. It is two-dimensional ADE, but it is not about heavy metal 
migration in soil. Later on, Smedt et al. [20] obtained the solution by a tracer of instantaneous injection 
in river domain, and this study presented an analytical solution for one-dimensional solute transport in 
rivers, considering transient storage effects. Sushil [21] introduced a simple method and an optimization 
method for estimating specific dispersity and injected mass from an ideal breakthrough curve resulting 
from an instantaneous solute injection. However, it is still a one-dimensional solution. Guerrero et al. [4] 
and Huang et al. [22] investigated a general pollutant diffusion patterns that concentrate on 
understanding the behaviour of pollutants in a particular environment. 

 

This study aims to explore the heavy metal transport in soil based on a two-dimensional ADE with 
adsorption and instantaneous injection. By using Laplace transform technique, the analytical solution for 
the instantaneous boundary condition will be obtained. This study is expected to improve the 
understanding of the heavy metal migration in soil, in which it provides the solution and the transport 
which could be further exploited computationally and experimentally as the potential proof for future new 
research and environment management. Furthermore, 2D heavy metal migration with instantaneous 
injection boundary may have a broader scope, focusing on heavy metal migration scenarios and their 
potential impacts on the environment. 

 
Governing Equation 
 

The two-dimensional ADE describing heavy metal transport in a porous medium is given by 

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷x

∂2C

∂x2 + 𝐷y
∂2C

∂y2 − 𝑢
𝜕𝐶

𝜕𝑥
− 𝑣

𝜕𝐶

𝜕𝑦
−

𝜌

𝜃

𝜕𝑆

𝜕𝑡
                                               (1) 

where the 
𝜕𝑆

𝜕𝑡
 is the adsorption term. 𝑅 is the retardation factor, 𝐶 [𝑀𝐿−3] is the concentration of heavy 

metal ions in seepage. 𝑆 [𝑀3] is the adsorption concentration; 𝜃 is the porosity of porous media; 𝑢 [𝐿𝑇 −1] 

is the uniform seepage velocity along x or longitudinal direction, 𝑣 [𝐿𝑇 −1] is the uniform seepage velocity 

along y or transverse direction ; 𝑡 [𝑇 ] is time; 𝑥,y [𝐿] is the migration distance of heavy metal particles, ρ 

[𝑀𝐿−3] is the particle density ; 𝐷𝑥 and 𝐷𝑦 [𝐿2𝑇 −1] are dispersion coefficient along longitudinal or transverse 

direction respectively. For the adsorption term, the effect of diffusion with the 𝑥 and 𝑦 axis is [23, 24]  
𝜌

𝜃

𝜕𝑆

𝜕𝑡
= 𝑘𝑥𝐶(𝑥, 𝑦, 𝑡) − 𝑘𝑦

𝜕𝐶

𝜕𝑥
                                                         (2) 

 

where 𝑘𝑥 and 𝑘𝑦 are the release coefficients through x and y. Therefore, equation (1) becomes. 

 

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2 + 𝐷𝑦
𝜕2𝐶

𝜕𝑦2 + (𝑘𝑦 − 𝑢)
𝜕𝐶

𝜕𝑥
− 𝑣

𝜕𝐶

𝜕𝑦
− 𝑘𝑥𝐶                                         (3) 

 

The diffusion equation is considered to be geometrically proportional to the seepage velocity [25], namely 

 

𝐷𝑥 = 𝑎𝑢,   and  𝐷𝑦 = 𝑏𝑣                                                                                  (4) 

 

where 𝑎 and 𝑏 are the coefficients that depends upon pore geometry and average pore size diameter 

of the porous media. 

In many cases, the heavy metal is instantaneously introduced to the porous medium (soil)  
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typically taken to be a uniform pulse type point source [26, 27] . Also, it is assumed 𝐶0 of heavy 

metal concentration initially and flux type boundary condition. Hence, the corresponding 

initial and boundary conditions are 

 

𝐶(𝑥, 𝑦, 0) = 𝑐0;   0 ≤ 𝑥 < +∞, 0 ≤ 𝑦 < +∞                                                            (5) 

 

𝐶(0,0, 𝑡) =
𝑚

𝑄
𝛿(𝑡),                                                                                                (6) 

 
𝜕𝐶

𝜕𝑥
= 0,

𝜕𝐶

𝜕𝑦
= 0;    𝑥 → ∞, 𝑦 → ∞                                                                               (7) 

 

where, 𝑚 [𝑀] is the mass of implanted heavy metal ion particles, 𝑄 is void fraction, 𝛿 is the Dirac Delta 

function. Let’s introduce a new space variable 

 

𝑧 = 𝑥 + 𝑦√
𝐷𝑦

𝐷𝑥
                                                                                                      (8) 

 

Substituting this into equation (1) and combining with equation (2), yields 

 

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑧2
− 𝑈

𝜕𝐶

𝜕𝑧
− 𝑘𝑥                                                                                       (9) 

 

where, 

 

𝐷 = 𝐷𝑥(1 +
𝐷𝑦

2

𝐷𝑥
2) ,   and  𝑈 = (𝑢 − 𝑘𝑦) + 𝑣√

𝑏𝑣

𝑎(𝑢−𝑘𝑦)
                                                   (10) 

 

Additionally, the initial and the boundary condition given by above equation (5) - (7) are now become 

 

 

𝐶(𝑧, 0) = 𝑐0;   0 ≤ 𝑧 < +∞                                                                                       (11) 

 

𝐶(0, 𝑡) =
𝑚

𝑄
𝛿(𝑡),                                                                                                       (12) 

 
𝜕𝐶

𝜕𝑧
= 0;    𝑧 → ∞,                                                                                                       (13) 

 

In order to solve equation (9), Laplace transformation techniques is applied with respect to t, which 

transform equation (9) and its initial and boundary conditions (11)-(13) into 

 

𝑅𝑠𝐶̅ − 𝑅𝑐0 = 𝐷
𝜕2𝐶̅

𝜕𝑧2
− 𝑈

𝜕𝐶̅

𝜕𝑧
− 𝑘𝑥𝐶̅                                                                               (14) 

 

with  𝐶̅(0, 𝑠) =
𝑚

𝑄
, and  

𝜕𝐶̅(∞,𝑠)

𝜕𝑧
= 0. 

 

Hence, after some vital working, the solution for 𝐶̅ can be shown to be in the form of 

 

𝐶̅ = 𝐼1 + 𝐼2 + 𝐼3                                                                                                         (15) 

 

where 

 

𝐼1 =
𝑚

𝑄
exp (

𝑈𝑧

2𝐷
)exp(−𝑧√

𝑈2

4𝐷2 +
𝑅𝑠+𝑘𝑥

𝐷
  )                                                                        (16) 

 

𝐼2 = −
𝑅𝑐0

𝑘𝑥+𝑅𝑠
exp(

𝑈𝑧

2𝐷
)exp(−𝑧√

𝑈2

4𝐷2 +
𝑅𝑠+𝑘𝑥

𝐷
  )                                                                 (17) 

and 

 

𝐼3 =
𝑅𝑐0

𝑘𝑥+𝑅𝑠
                                                                                                  (18) 

 

Then, taking inverse Laplace to each 𝐼1 , 𝐼2   and  𝐼3  
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𝐿−1(𝐼1) =
𝑚√𝑅𝑧

2𝑄√𝜋𝐷𝑡3
exp[−(

𝑈2

4𝐷𝑅
+

𝑘𝑥

𝑅
)𝑡]exp(

𝑈𝑧

2𝐷
)exp(−

𝑧2𝑅

4𝐷𝑡
)                                               (19) 

 

𝐿−1(𝐼2) = −
𝑐0

2
exp[(

𝑈𝑧

2𝐷
−

𝑘𝑥𝑡

𝑅
)]{exp(−𝑧√

𝑈2

4𝐷2)erfc(
𝑧√𝑅

2√𝐷𝑡
− √

𝑈2𝑡

4𝐷𝑅
) 

+(exp(𝑧√
𝑈2

4𝐷2))erfc(
𝑧√𝑅

2√𝐷𝑡
+ √

𝑈2𝑡

4𝐷𝑅
)}                                                                                (20) 

 

and 

 

𝐿−1(𝐼3) = 𝑐0exp(−
𝑘𝑥𝑡

𝑅
)                                                                                               (21) 

 

Finally, the desired analytical solution is obtained as 

 

𝐶(𝑧, 𝑡) =
𝑚√𝑅𝑧

2𝑄√𝜋𝐷𝑡3
exp[−(

𝑈2

4𝐷𝑅
+

𝑘𝑥

𝑅
)𝑡]exp(

𝑈𝑧

2𝐷
)exp(−

𝑧2𝑅

4𝐷𝑡
) −

𝑐0

2
exp[(

𝑈𝑧

2𝐷
−

𝑘𝑥𝑡

𝑅
)]{exp(−𝑧√

𝑈2

4𝐷2)erfc(
𝑧√𝑅

2√𝐷𝑡

− √
𝑈2𝑡

4𝐷𝑅
) + exp(𝑧√

𝑈2

4𝐷2
))erfc(

𝑧√𝑅

2√𝐷𝑡
+ √

𝑈2𝑡

4𝐷𝑅
)}  + 𝑐0exp(−

𝑘𝑥𝑡

𝑅
) 

                                                                                                                                              (22) 

 

For comparison, for a simple case when R=1, U=0 and C0 =0, the solution (22) is reduced to a solution 
for ADE  

𝐶(𝑧, 𝑡) =
𝑚𝑧

2𝑄√𝜋𝐷𝑡3
exp [−𝑘𝑥𝑡 −

𝑧2

4𝐷𝑡
]                                                                                (23) 

 

which similar to the problem by   Mojtabi et al.  [7] and Wang et al.  [28]. 

 
Results and Discussion 
 

Concentration distributions of heavy metal in the soil are evaluated from the analytical solution equation 
(21). The initial heavy metal concentration is c0 = 0.05, for the x and y domain from 0 to 5 respectively. 
In the general practical field-like case, due to the existence of longitudinal gravity, the diffusion or flow of 
heavy metal pollutants in the longitudinal direction is faster than that in the transverse direction. 
Considering the above and previous research results, the lateral velocity and diffusion coefficient are 
considered to be one-tenth of the longitudinal velocity and diffusion coefficient [25]. Therefore, the 
longitudinal and transverse seepage velocity and diffusion coefficient are respectively [29, 30], u=0.75 
m/day; v=0.075 m/day; Dx=0.95 m2/day ; Dy=0.095 m2 /day . Additionally, kx=0.01 /day, ky=0.002/day, 
m/Q=20 and R=1.5. 

 

Figure 1 shows the heavy metal concentrations corresponding to 4 different times. As can be seen from 
Figure 1, the concentration of heavy metals is low at small area close to the point of injection. Then, 
rapidly rose to the peak followed by a gradual decrease, and finally returned to the plateau. In addition, 
with the increase of time, the peak concentration decreases. Overall, the heavy metals seem to move 
from the origin to the surrounding area as the peak can be seen to occur at farther distances as time 
increases.  
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(a) 0.5 day                                                                             (b) 1 day 

 
(b) 1.5 days                                                                                     (d) 2 days 

                                                    

Figure 1. Concentration profiles of heavy metal at different time 

 
 

Figure 2 investigates the effect of different instantaneous injection values on the migration of heavy metal 
pollutants in soil by fixing the time at t=2 and R=1.5, where the subplots (a), (b), (c) and (d) show the change 
in concentration when m/Q equals 1,10,25, and 50, respectively. As expected, similar to Figure 1, they all rise 
from zero to the peak and then fall back to an equilibrium concentration. Furthermore, the larger the value of 
instantaneous injection, the larger the value of the concentration at the peak, which is adequately reasonable. 

 

. 
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(a) m/Q=1                                                                           (b) m/Q=10 

 
 
                                                             (c)  m/Q=25                                                            (d) m/Q=50 

 

 

Figure 2. Concentration profiles for different instantaneous injection value 

 

 

Moreover, Figure 3 shows the migration of heavy metal pollutants in the soil layer at time t=2 and m/Q=20. 
The subplots (a), (b), (c) and (d) show the change in concentration when R equals 0.2,0.8,1.2, and 2.5, 
respectively, in order to study the effect of different retardation factors. It is observed that they all rise from 
zero to the peak and then fall back, and finally fall back to an equilibrium point. That means the concentration 
of heavy metal is infected by retardation. 

 

 

 

 

 

 

 

 

 



  

10.11113/mjfas.v19n6.3090 986 

Liang et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 980-988 

 
 

(a) R=0.2                                                               (b) R=0.8 

 
                                                 (c) R=1.2                                                                         (d) R=2.5 

 

Figure 3 Concentration profiles for different retardation factors 

 

                                           

Conclusions 
 

In this paper, analytical solution to a two-dimensional transport model of heavy metal ions in porous 
media is studied such that adsorption is considered in the model, together with instantaneous injection 
at the boundary. The analytical solution is provenly agreed to the problem by Mojtabi et al. [7] and Wang 
et al. [28]. The result is first interpreted for different time. Then the effect of different instantaneous 
injection value and retardation factor are investigated. 

 

Through the analysis of concentration variations over time, it becomes evident that the concentration of 
heavy metal is low at a very small area to injection. After that, there is an area where the concentration 
is the highest followed by an equilibrium concentration for the rest. 

 

Additionally, we observed that the peak concentration of heavy metals is significantly influenced by 
changes in the instantaneous injection coefficient. Furthermore, the peak concentration of heavy metals 
was found to be directly proportional to the magnitude of the instantaneous injection coefficient. Higher 
values of the injection coefficient resulted in higher peak concentrations, indicating a stronger impact of 
the instantaneous injection on the solute transport and dispersion within the medium. 

 

Moreover, our investigation also revealed the correlation between the retardation factors and heavy 
metal concentrations. Specifically, when the retardation factors decrease, there is an associated 
increase in the concentration of heavy metals. This finding underscores the significance of understanding 
and accounting for retardation processes to accurately predict and manage heavy metal contamination 
in soil or other similar context such as groundwater system. 
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