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Abstract: Manufacturing processes have become highly accurate and precise in recent years, par‑
ticularly in the chemical, aerospace, and electronics industries. This has attracted researchers to
investigate improved procedures for monitoring and detection of small process variations to remain
in line with such advances. Among these techniques, statistical process controls (SPC), in particular
the control chart pattern (CCP), have become a popular choice formonitoring process variance, being
utilized in numerous industrial and manufacturing applications. This study provides an improved
control chart pattern recognition (CCPR) method focusing on X‑bar chart patterns of small process
variations using an ensemble classifier comprised of five complementing algorithms: decision tree,
artificial neural network, linear support vector machine, Gaussian support vector machine, and k‑
nearest neighbours. Before advancing to the classification step, Nelson’s Rus Rules were utilized as
a monitoring rule to distinguish between stable and unstable processes. The study’s findings indi‑
cate that the proposed method improves classification performance for patterns with mean changes
of less than 1.5 sigma, and confirm that the performance of the ensemble classifier is superior to that
of the individual classifier. The ensemble classifier can distinguish unstable pattern types with a
classification accuracy of 99.55% and an ARL1 of 11.94.

Keywords: control chart patterns; ensemble classifier; small variation

1. Introduction
These days, the competition amongmanufacturing companies is increasingly oriented

towards quality, with the end goal being to produce a product that is of the best possible
quality. Manufacturing processes have become highly accurate and precise, particularly
in the chemical, aerospace, and electronics industries. This has attracted researchers to in‑
vestigate improved procedures for monitoring and detection of small process variation in
order to be in line with such advances [1,2]. Manufacturing companies are using advanced
technologies for quality control, such as artificial intelligence and control chart pattern
recognition (CCPR). CCPR is regarded as one of the most important statistical process con‑
trol (SPC) techniques. The implementation of CCPR with suitable algorithms has gained
importance due to its capability to recognize unstable processes. In addition, it can pro‑
vide operators with early warning, allowing for preventive action to avoid production of
defective products. CCPR gains its popularity because it provides useful hints for locating
the source of process variation. This is valuable for industrial practitioners such as quality
inspectors and production supervisors in determining the root causes of various problems.
A particular CCP can be associated with the potential origin of process variation [3–5].
Such variability may be attributed to human faults, defective manufacturing equipment,
broken tools, or defective materials, among others. When a process is out of control, pro‑
cess behavior can take on a number of unnatural patterns on an X‑bar chart, including the
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trend (UT), descending trend (DT), stratification (STA), downward shift (DS), cyclic (CYC),
systemic (SYS), upward shift (US), and mixed patterns (MIX) [6–11].

Researchers have proposed various designs for CCPR schemes. Several scholars have
introduced improved input data representation by extracting features from raw data, such
as wavelet features, statistical features, and shape features [12,13]. Selection of suitable es‑
sential input features can increase the efficiency of CCPR schemes [14,15]. Kim [16] investi‑
gated ways to reduce the number of feature dimensions using principal component analy‑
sis (PCA). PCA is a fundamental tool in statistical transformation, and is used to convert a
set of data according to related variables. Yu [17] suggested the feature map visualization
mechanism to reveal the model and gain pattern recognition ability.

Another feature extraction technique is to use statistical features to provide statistical
information extracted from raw data. Statistical features measure different properties in
the control chart [1,18]. The shape of the data distribution in the control chart pattern
is of prime importance due to its high reliability in categorizing and recognizing control
chart patterns. The graphical representation of CCPs provides valuable information on
process variance. Combinations of various shapes of time series data can represent distinct
process conditions [15,19–22]. Moreover, several researchers have proposed a newmethod
utilizing mixed statistical and shape features for input data representation [9,23–41].

The most difficult aspect of pattern recognition in CCPR is to recognizing abnormal
patterns that arewithin the control limits. Zorriassatine [42] proposed a recognitionmethod
for mean shifts for the moderate mean shift patterns (1.5 to 2.5 standard deviations). They
reported poor results for smallmean shifts (0.5 to 1.0 sigma standard deviations). Similarly,
Yu [43] reported poor results when coping with small mean shifts (1.0 standard deviation).
However, they claimed good recognition results for the moderate and large mean shifts
(1.5 to 3.0 standard deviations).

In response to the demand for greater precision, researchers have proposed enhance‑
ments to the CCPR algorithms. Among them are powerful machine learning systems ca‑
pable of pattern recognition, such as Artificial Neural Network (ANN) and Support Vector
Machine (SVM).

Multilayer perceptron (MLP) is the most widely used ANN‑based CCPR methods
[13,38,44–47]. Addeh [31] reported that an adaptive method based on the Bees algorithm and
an optimized radial basis function neural network (RBFNN) provide good performance in
CCPR tasks. Other scholars haveproposed SVMand its derivatives to handle thedifficulties of
CCPR. Other relatively newer techniques for pattern recognition include functional principal
component analysis (FPCA), generalized linearmodels (GLM), and neural network regression
models.

A few scholars have incorporated learning strategies and evolutionary algorithms in
their work [21]. For example, Lu [2] proposed a strategy using multiple window sizes
for the data as well as four distinct classifiers (decision tree, ANN, Gaussian SVM, and
K‑ Nearest Neighbours (KNN‑5)). Their findings indicated that Gaussian Support Vector
Machine (SVM) is capable of achieving greater recognition accuracy with normal shifting
data (1.5–2.5 sigma).

Hassan [48] reported that an ensemble classifier significantly improved the discrimi‑
nation capabilities of the scheme and compensated for the limitations of individual classi‑
fiers through ensemble classifiers or multiple recognitions, as described. The recognition
performance increased from 73.8% with an all‑class‑one network (ACON) and 83.3% with
a single‑class‑one network (OCON) to 87.1% with both together (ACON+OCON). These
results concur with earlier research [49–51].

It is necessary to enhance the detection of process variation in the manufacturing pro‑
cess in order to identify errors in industrial processes at an early stage. However, the
procedure for recognizing abnormal patterns falls short of the requirements for detecting
variations in CCPwhen there are small changes in pattern variables, particularly when the
variance in themean is less than 1.5 standard deviations. This study proposes an improved
technique by implementing an ensemble classifier to improve the recognition accuracy of
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CCPR. The rest of the paper is structured as follows: Section 2 discusses the materials
and methods, Section 3 presents the results, Section 4 presents a discussion, and Section 5
concludes the paper.

2. Materials and Methods
2.1. Data Generation

This study focuses on the classification of six commonly investigated CCP patterns,
namely, Normal, Cycle, Increasing Trend, Decreasing Trend, Upward Shift, and Down‑
ward Shift [21,52–54]. The data source was synthetically generated, as it is extremely dif‑
ficult and not economical to acquire adequate real manufacturing data. Furthermore, real
datamay not be able to cover all of the conceivable abnormal patterns needed for this study.
Synthetic and simulated data are common approaches adopted by previous researchers, as
can be found in [1,12,55–57]; however, this approach may limit the generalization of the
findings with respect to specific application domains. To produce all sample patterns, we
have employed Monte Carlo simulation, as have the majority of prior researchers. Using
Equations (1) to (6), a total of 6000 X‑bar chart patterns were constructed (1000 patterns for
each category):
Normal (NOR) yi = µ + riσ (1)
Cyclic (CYC) yi = µ + riσ + a sin(2πi/T) (2)
Increase trend (IT) yi = µ + riσ + gi (3)
Decrease trend (DT) yi = µ + riσ − gi (4)
Upward shift (US) yi = µ + riσ + ks (5)
Downward shift (DS) yi = µ + riσ − ks (6)

Table 1 explains the parameters and values of the equations used in the earlier liter‑
ature [1,12,55–57] and modifies them by introducing a slight alteration with upward and
downward shift patterns.

Table 1. The parameters and values used to generate the six CCPs [1,12,55–57].

Parameters Definition Value

µ Mean. 0

σ Standard deviation. 1

σ’ Random noise all for each abnormal
pattern. σ’ = 1/3σ

a Amplitude. 0.5 σ ≤ a ≤ 2.5σ

T Period of a cycle. 8, 10

s Shift magnitude. Normal shift 1.5σ ≤ s ≤ 2.8σ
Small shift s < 1.5σ

k Shift position. position = (5,15,20)
k = 1 if i ≥ position, else k = 0

g Gradient for a trend pattern. 0.015σ ≤ g ≤ 0.025σ

r At the ith time point, a random. value
of a standard normal variate −3 ≤ r ≤ +3

i Time series value at ith time point 1–30

Standardized: N (0,1)
Random noise of 1/3σwas added to all unstable patterns.

2.2. Feature Extraction and Selection
Zhang [29] stated that feature extraction from raw data can reduce the dimensional

input for machine learning, improving recognition efficiency when the network size is re‑
duced. Alwan [58] added that two common features are compatible with the statistical
and shape aspects of CCP. In this study, a total of 13 mixed features, including both sta‑
tistical and shape features, were extracted. The formula used for extracting features can
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be seen in Table 2. This study employs an algorithm‑dependent strategy for feature selec‑
tion. Specifically, by utilizing Relief, Correlation, and Fisher (RCF) as a feature selection
method, the top six features (Mean, Std, Min, MSE, Slope, and APSL) that presented the
input data were chosen.

Table 2. Selected formulas for statistical and shape feature extraction [12,21,28,34].

No. Type of Features The Formula

1 Mean (MEAN) mean = ∑n
i=1 xi
n

2 Standard deviation (Std) std =

√
∑n

i=1(xi−mean)2

n

3 Skewness (SKEW) skew = ∑n
i=1(xi−mean)3

n(std)3

4 Kurtosis (KUR) kurt = ∑n
i=1(xi−mean)4

n(std)4

5 Slope (SLOPE) b1 = (Yi−bo)
xi

6 Mean‑square value (MSV) x2∼ =
x2

0+x2
1+x2

2+...+x2
N

N+1 = 1
N+1

N
∑

i=0
x2

i

7 Maximum CUSUM (CUS)
C+

i = max
[
0, xi − (µ0 + K) + C+

i+1

]
C±

i = max
[
0, (µ0 − K)− xi + C−

i−1

]
8 Range (RANGE) Rxx[k] ∼=

1
N+1−k [x0xk + x1x1+k + . . . xN−kxN ]

9 Maximum point max(xi)

10 Minimum point min(xi)

11 APSL APSL = ∑m
i=1|xi − xi|

f or i = 1, 2, . . . , m xi = β1ti + β0

12 APML APML = C+
m + C−

m

13 Least square slop β1 =
∑m

i=1(ti−t)(xi−x)

∑m
i=1(ti−t)

2 where, t = ∑mi=1
i=1 ti

m

2.3. Pattern Recognizer Design
This study proposes an improved CCPR procedure for detecting small process mean

variations. To improve recognition accuracy, the study offers a classifier algorithm capable
of recognizing patternswith small variations (less than 1.5 σ). Tomeet the objectives of this
study, a variety of validated classifiers were evaluated. Two models have been included
in the research: the fully developed patterns model and the developing patterns model.
In addition, a fully developed patterns model comprises two phases. The first phase rec‑
ognizes a control chart pattern using a common individual classifier, an Artificial Neural
Network with Multilayer Perceptron (ANN‑MLP). The second phase uses the ensemble
principle for the five classifiers (Decision Tree, ANN, Linear Support Machine, Gaussian
Support Machine, and K‑ Nearest Neighbors (KNN‑5)). In addition, we employ the en‑
semble principle to improve recognition accuracy through majority voting for these five
classifiers.

The second model offered is a dynamic model for recognition of developing patterns.
It uses a moving window size with an ensemble technique. Prior to the classification stage,
this model uses the run rules as a monitoring mechanism to distinguish stable processes
from unstable processes. This approach results in fewer classification attempts, because
the classifier only needs to identify the types of abnormal patterns.

For both models, a normal shift dataset and a small shift dataset were constructed.
The mean variation for the normal shift dataset was between 1.5 to 2.8 Sigma. The small
shift dataset was constructed with a variation of less than 1.5 Sigma in order to represent
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small mean shifts. The features were picked, as six features rather than raw datawere used
as input for all experiments.

In this study, the performance evaluation methods include the Average Run Length
(ARL), confusion matrix, and recognition accuracy. Figure 1 depicts the flowchart of the
models employing normal shift and small shift datasets.
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Figure 1. Flowchart of the models using normal shift and small shift datasets.

2.3.1. Classification with Individual Classifiers
Each classifier was trained independently using the same data, with each classifier’s

threshold set to 0.75. This indicates that the output for each classifier must exceed the
threshold of 0.75 to be accepted into the predicted class, otherwise no predicted classifica‑
tion class was assigned.

2.3.2. Classification Using Majority Voting with Ensemble Classifier
Commonly used in data cataloguing, majority voting (MV) involves a pooling model

with at least two algorithms. For each test sample, each process performs its own compu‑
tation. The final output is determined by the algorithm that receives the most votes [59].
The structure of MV is shown in Figure 2. Assume that L is the labels for each class, with
Ci, ∀ ϵ Λ (1, 2, . . . L) signifying the ith target group expected by the classifier. Given an in‑
put(x), each classifier provides a prediction about the target group, yielding an aggregate
of P predictions, i.e., P1, P2 . . . PN. The purpose of majority voting is to obtain a pooled
prediction for input (x). Here, P(x) = j, j ϵ Λ from P predictions.
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2.4. Fully Developed Patterns Model
When one or more assignable causes occur in the manufacturing process, the process

deteriorates from stable to unstable. After generating the data for each pattern, the simula‑
tionmust integrate the stable process (normal pattern)with the unstable process (abnormal
patterns). Every pattern contains 30 points. In fully developed patterns, the observation
window size is labelled as normal during the training phase for all 30 start points. Then,
another 30 points can be labelled as abnormal patterns.

2.4.1. Fully Developed Patterns with MLP Classifier
In [20,54], the authors confirmed that the Multilayer Perceptron (MLPs) architecture

can be used as a recognizer, it has been used to addressmore complex issues such as predic‑
tion and modelling in CCPs. It consists of three layers, the first of which is the input layer,
which corresponds to the six input features in this study. The second layer is known as the
hidden layer, and consists of one hidden layer with an empirically determined number of
nodes (12). Accordingly, six is the output layer for the third layer, which corresponds to
the number of studied patterns, resulting in a (6 × 12 × 6) system. After testing the gra‑
dient descent with momentum and adaptive learning rate (traingdx), BFGS quasi‑Newton
(trainbfg), and Levenberg–Marquardt (trainlm) algorithms, (trainbfg) was adopted as the
learning algorithm. There are two stages of machine learning, training and testing.
• Training Phase:

The data must be labeled for each class of patterns, as indicated in Table 3. The tar‑
geted values of the recognizers’ output nodes in the proper class are labeled as 0.9, whereas
the wrong class is labeled as 0.1. This dataset consists of training (70%), validation (10%),
and preliminary testing (20%) sets before presenting the sample data to the ANN for the
learning process; 4200 training patterns are used to update the network’s weights and bi‑
ases, 600 patterns are utilized for validation, and 1200 patterns are evaluated as hidden
during training.

Table 3. Targeted recognizer outputs [12].

Pattern Class Description 1 2 3 4 5 6

1 Nor 0.9 0.1 0.1 0.1 0.1 0.1

2 Cycle 0.1 0.9 0.1 0.1 0.1 0.1

3 IT 0.1 0.1 0.9 0.1 0.1 0.1

4 DT 0.1 0.1 0.1 0.9 0.1 0.1

5 US 0.1 0.1 0.1 0.1 0.9 0.1

6 DS 0.1 0.1 0.1 0.1 0.1 0.9



Machines 2023, 11, 115 7 of 32

The parameters and training specifications of the network were set as shown in Table 4.

Table 4. Parameter settings and training specifications.

Parameters Value

the number of epochs between showing the progress; the maximum
number of epochs 500

The learning rate 0.5

Momentum constant 0.5

Performance measurement MSE

Performance goal 10‑3

All the methods were programmed using MATLAB R2017a’s ANN toolbox. Figure 3
shows the flowchart of the training phase.
• Testing Phase:Machines 2023, 11, 115 8 of 34 
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shift datasets.
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During this phase, the testing data were separated from the training data and utilized
for testing without changing the model weights or evaluating its performance based on
the correctness of the confusion matrix. Figure 4 shows the flowchart of the testing phase.

Machines 2023, 11, 115 9 of 34 
 

 

 

Figure 4. Testing flowchart for the fully developed patterns model using normal shift and small 

shift datasets. 

2.4.2. Fully Developed Patterns with Ensemble Classifiers Model 

In the second phase, five distinct classifiers were utilized (decision tree, ANN, linear 

support vector machine, Gaussian support vector machine, and KNN-5). As a new ap-

proach to CCPR, this study employed the ensemble principle to improve the accuracy of 

majority voting for these five classifiers. It is necessary to emphasize this initial use of the 

ensemble classifier using CCPs. At this stage, five distinct classifiers were applied, after 

which an ensemble was created. With MLP, the outcome is superior to the first phase. 

2.5. Dynamic Model with Developing Patterns (Moving Window Size) 

In this model, five different classifiers (decision tree, ANN, linear support vector ma-

chine, Gaussian support vector machine, and KNN-5) were used in the first model with a 

moving window size. This model’s training data were labeled based on the percentage of 

normal and abnormal patterns in order to improve the ARL1 and detect abnormal pat-

terns before they become completely grown. In other words, the analysis identified all 24 

window size points in the first model as the precise abnormal pattern. Accordingly, the 

study divided the window size in labeling during these 60 points on this model (30 points 

normal and 30 points abnormal). Before the classifier stage, this model additionally uses 

the run rules as a monitoring procedure to distinguish normal patterns from abnormal 

ones. This step considerably lowers the time required, and increases performance by al-

lowing the classifier to operate only when necessary [60]. In other words, if the model is 

able to differentiate the normal pattern from another abnormal pattern using run rules, it 

is not necessary to transmit the normal pattern to the classifier for recognition when it has 

a false alarm that can accumulate through a stable process. The classifier only operates 

when abnormal patterns are present; however, the rules cannot identify the specific ab-

normal pattern type. As in the prior model with labeling during the training phase, no 

change was made to normal patterns; only abnormal patterns were altered. As the 

Generation data for 6 patterns for test  

Moving Observation windows size  

 

Arrange and combine patterns (normal +abnormal)  

 

Features Extracting  

Normalization  

Test with Trained recognizer  

Performance Evaluation  

start 

End 

Figure 4. Testing flowchart for the fully developed patterns model using normal shift and small shift
datasets.

2.4.2. Fully Developed Patterns with Ensemble Classifiers Model
In the second phase, five distinct classifiers were utilized (decision tree, ANN, linear

support vector machine, Gaussian support vector machine, and KNN‑5). As a new ap‑
proach to CCPR, this study employed the ensemble principle to improve the accuracy of
majority voting for these five classifiers. It is necessary to emphasize this initial use of the
ensemble classifier using CCPs. At this stage, five distinct classifiers were applied, after
which an ensemble was created. With MLP, the outcome is superior to the first phase.

2.5. Dynamic Model with Developing Patterns (Moving Window Size)
In this model, five different classifiers (decision tree, ANN, linear support vector ma‑

chine, Gaussian support vector machine, and KNN‑5) were used in the first model with a
moving window size. This model’s training data were labeled based on the percentage of
normal and abnormal patterns in order to improve the ARL1 and detect abnormal patterns
before they become completely grown. In other words, the analysis identified all 24 win‑
dow size points in the first model as the precise abnormal pattern. Accordingly, the study
divided the window size in labeling during these 60 points on this model (30 points nor‑
mal and 30 points abnormal). Before the classifier stage, this model additionally uses the
run rules as a monitoring procedure to distinguish normal patterns from abnormal ones.
This step considerably lowers the time required, and increases performance by allowing
the classifier to operate only when necessary [60]. In other words, if the model is able to
differentiate the normal pattern from another abnormal pattern using run rules, it is not
necessary to transmit the normal pattern to the classifier for recognition when it has a false
alarm that can accumulate through a stable process. The classifier only operates when
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abnormal patterns are present; however, the rules cannot identify the specific abnormal
pattern type. As in the prior model with labeling during the training phase, no change
was made to normal patterns; only abnormal patterns were altered. As the abnormal pat‑
tern for thismodel, we utilized four distinct training cases (100%, 83%, 75%, and 67%) from
the observation window size.
• Pattern Monitoring by Run Rules

A run is a sequence of points on one side of the median. In addition, a non‑random
pattern or change signal is suggested by insufficient or excessive median line crossings
or runs. We count the number of times the data line crosses the median and add one to
obtain the number of runs above and below the median. When a control chart displays
an out‑of‑control state (a point outside the control limits or meeting one or more of the
criteria in the following rules), the assignable causes of variation must be identified and
eliminated.
• Training Phase

For the Developing Patterns model, the various labeling procedures depend on
the percentage of abnormal and normal patterns for each window size. Therefore, the
window size observation is 24 points. All normal patterns for the stable process were la‑
beled as normal, just as in the first model. The abnormal patterns were labeled based on
the proportion of abnormal points relative to normal points inside the window size. In
other words, the window size of 24 points included both normal and abnormal points,
and were labeled as the exact abnormal pattern. The prior model labeled all window
size points as abnormal, and did not include any normal points. This procedure enables
us to spot the irregular pattern as early as is feasible, before its complete development.
In addition, it has the benefit of decreasing the ARL1 for aberrant patterns. This study
considers four instances of window size percentage, with 100% of the first case’s win‑
dow size taken as abnormal patterns. Its mean (24) WS points are normal; while it has
completely established patterns, its deviations from the prior model are due to the use
of a moving window size and run rules. In the second instance, the WS was catego‑
rized as 83% abnormal and 17% normal (4 normal points + 20 abnormal points). In
the third instance, the WS was designated as 75% abnormal and 25% normal (6 nor‑
mal points + 18 abnormal points). In the fourth instance, the WS was determined to be
67% abnormal and 33% normal (8 normal points + 16 abnormal points). According to
the research, abnormal patterns require a minimum of 16 points to detect and classify
the right patterns. Therefore, this study selected the final example, the WS, which in‑
cludes 16 points of irregular patterns, to account for all potential Nelson’s rules [61]. The
network’s parameters and training specifications are configured similarly to the prior
model. Figure 5 shows the flowchart of the training phase.
• Testing Phase

We used run rules to modify the observation window utilized by the model. For sim‑
ulation purposes, this study combines the patterns as (normal + normal) normal. In addi‑
tion, with (normal + abnormal) every process begins with a normal pattern (stable process)
and deteriorates to an abnormal pattern. This approach generates 30 points for each pat‑
tern (normal and abnormal), which are then combined. The observation window size of
24 points is preferable, as larger window sizes, such as 60, are too late for quality‑related
judgments, while smaller window sizes such as 20 provide a risk of not identifying the cor‑
rect pattern type [62]. We used a moving observation window (from point 1 to point 24)
for each pattern and monitored this pattern by run rules. If the pattern is normal (stable),
it moves from point 2 to point 25. The same process monitoring using run rules, if stable,
continues to move until the end of the pattern’s last window observation from point (37)
to point (60), which is the last point of the pattern if all theWS are stable, thenmoves to the
next pattern. Suppose, however, that the run rules detect one of about eight rules. In this
situation, the procedure extracts the characteristics of this pattern, normalizes them, and
tests them using trained classifiers to determine the type of abnormal pattern and evaluate
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the performance of the model. Figure 6 depicts the flowchart for the testing phase of the
second model.
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shift datasets.
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Figure 6. Testingflowchart for thedevelopingpatternsmodelusingnormal shift and small shift datasets.

3. Results
This section discusses the results of the enhancement of the control chart pattern in

terms of recognition.

3.1. Result of Fully Developed Patterns with ANN‑MLP Model
The outcomes for the two distinct datasets (normal and small) are displayed in Ta‑

bles 5 and 6, respectively. In the normal shifting dataset, the stable process (normal pat‑
tern) has a correct recognition accuracy of 100%, while the unstable process (abnormal
pattern) has a correct recognition accuracy of 98.60%, for a total correct recognition accu‑
racy of 98.88%. The recognition accuracy of the six features with the dataset smaller than
1.5 is 99.90% for a stable process, though only 97.78% for an unstable patterns. The overall
accuracy of recognition is 98.13%. All of these findings are the average of ten runs. The
accuracy of 98.13% with a small variation needs to be improved in order to detect the type
of pattern correctly. For this reason, this study enhanced the classifier (ANN‑MLP) by
employing another type of classifier in the second phase (the ensemble classifier).
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Table 5. Confusion matrix with normal shift (1.5–2.8 sigma) with ANN‑MLP classifier.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 0.47 99.52 0 0 0 0
IT 0 0 98.76 0 1.23 0
DT 0 0 0 98.65 0 1.34
US 0 0 1.72 0 98.27 0
DS 0 0 0 2.19 0 97.80

Table 6. Confusion matrix small shift less than (1.5 sigma) with ANN‑MLP classifier.

NOR CYC IT DT US DS

NOR 99.9 0 0 0 0 0.05
CYC 0.45 99.55 0 0 0 0
IT 0 0 97.15 0 2.84 0
DT 0 0 0 97.29 0 2.70
US 0 0 3.06 0 96.93 0
DS 0 0 0 2.00 0 97.99

3.2. Average Run Length (ARL)
The Average Run Length (ARL) is an essential SPC performance evaluation vector.

Accordingly, (ARL0) estimates the length of time until a false alarm for a steady process,
with a larger ARL0 value being preferable, while for an unstable process (ARL1) indicates
the number of observations required before the correct unstable pattern is recognized. In
this work, the computation of (ARL0) for a stable process for the two distinct datasets was
(315) for normal shifting and (260) for small shifting. Likewise, ARL1 was computed for
the two separate datasets, normal shift and small shift, with ARL1 equalling (15) with a
normal shift and (15.5) with a small shift.

These results demonstrate that the ANN‑MLP model has a recognition accuracy of
98.88% and 98.13%and an ARL1 of 15 and 15.5 for the normal and small shift datasets, re‑
spectively. For this reason, we created the model in this study using a variety of classifiers.

3.3. Results of Fully Developed Patterns with Ensemble Classifiers Model
This study applied five distinct classifiers in order to increase recognition decisions

and ensure their accuracy. The study employed the ensemble principle to attain greater
precision by employing the majority voting technique for these five classifiers. Ensem‑
ble classifiers with majority voting have been utilized often in numerous fields, and have
yielded favourable results in comparison with individual classifiers [59]. Combining mul‑
tiple classifiers (i.e., ensemble classifiers) has recently become an important research topic
in machine learning. It is anticipated that high precision can be achieved by combining a
small number of precise classifiers. In other words, such a combination can compensate
for any errors made by individual classifiers in different regions of the input space. The
literature demonstrates that ensemble classifiers outperform several different single clas‑
sifiers in terms of prediction performance [63–65]. The outputs of numerous independent
classifiers are pooled inmajority voting. Methods of voting includemaximumand average
voting. In maximum voting, the output class with the greatest number of votes is selected
as the final category option. Multiple individual classifiers are averaged to determine the
outcome of average voting. In contrast, the weighted voting technique takes into account
certain output results of classifiers with greater weights than others when determining the
final classification output [63,66]. Using five classifiers, the average voting approach was
adopted for this investigation. Each classifier’s threshold was set to 0.75, with standard
values for each classifier algorithm.

Table 7 demonstrates that for the normal shift database the results are enhanced from
98.88% with MLP to 99.05% with the ensemble classifier, while for the small shift dataset
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the results improve from 98.13% to 98.37%. The ARL1 remains too high and must be
brought down; hence, the model in this study must be improved in order to detect ab‑
normal patterns more rapidly.

Table 7. The results for the second phase of the first model.

Classifier
Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma

Training
Accuracy%

Testing Accuracy
Full Developed ARL1 Training

Accuracy%
Testing Accuracy
Full Developed ARL1

DT 99.51 98.32 14.30 99.44 97.47 14.58

ANN‑MLP 99.07 98.88 13.84 98.74 98.13 14.01

Linear_SVM 99.02 99.07 13.90 98.28 98.10 14.52

G‑ SVM 99.05 99.01 13.98 98.35 98.30 14.04

KNN5 99.17 98.83 14.48 98.55 98.11 14.74

Ensemble 99.15 99.05 13.99 98.65 98.37 14.34

3.4. Results of Developing Patterns with Ensemble Classifier (Proposed Approach)
This study uses four different percentages ofwindow size for abnormal patterns in the

training data (100%, 83%, 75%, and 67%); each training dataset was evaluated to determine
the optimal training data, which resulted in greater accuracy in the test phase.
• Case 1: Training data as 100% abnormal + 0% normal (0 normal point + 24 abnormal

points) from point (31:54). In the first instance, this study identified the abnormal
patterns in the same manner as in the prior case; all abnormal points were labeled as
abnormal. As stated in Table 8, they were trained as full abnormal points from point
31 to point 60.

Table 8. Percentage of abnormal pattern points in the labeling step.

Normal Abnormal

30 points 30 points

0% 100%

Six feature selections were used to apply the results of all the classification algorithms.
This study compared two datasets, normal shift and small shift. All classifiers had accept‑
able identification accuracy for detecting a normal pattern (stable process), as observed.
This benefit was implemented during the process of monitoring the run rules.

In the normal range for the mean shift dataset, the decision tree classifier had only
71% accuracy in spotting abnormal patterns for the cycle pattern. For the increasing trend,
only 21% of inaccurate recognitions were correct, compared to 40% for normal and 39%
for cycle. The poor accuracy on the downward trend was just 6%, compared to 59% for
incorrect cycle recognition and 35% for normal recognition. For the increasing trend, the
upper shift pattern yielded 87% correct recognition and 13% incorrect recognition. For
the decreasing trend, the downshift pattern had 82% correct recognition and 18% incor‑
rect recognition. Table 9 shows that the overall rate of correct recognition is 61.16%. As
demonstrated in Table 10, the ANN classifier has 81.50% correct recognition. As indicated
in Table 11, the Linear Support Vector Machine classifier has a correct identification rate
of 95.16%. As demonstrated in Table 12, the Gaussian Support Vector machine classifier
has a 97.5% correct identification rate. According to Table 13, the KNN‑5 classifier has an
accurate identification rate of 91.83%. As indicated in Table 14, when the ensemble prin‑
ciple with majority voting was applied to these five distinct classifiers, decision‑making
improved, achieving a 99.55% accuracy level for each pattern.
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Table 9. Decision Tree Accuracy = 61.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 29 71 0 0 0 0
IT 40 39 21 0 0 0
DT 35 59 0 6 0 0
US 0 0 13 0 87 0
DS 0 0 0 18 0 82

Table 10. ANN Accuracy = 81.50%.

NOR CYC IT DT US DS

NOR 95 3 0 2 0 0
CYC 4 96 0 0 0 0
IT 1 8 91 0 0 0
DT 61 0 0 39 0 0
US 0 0 23 0 77 0
DS 0 2 0 7 0 91

Table 11. Linear_SVM Accuracy = 95.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 12 88 0 0 0 0
IT 2 2 96 0 0 0
DT 7 3 0 90 0 0
US 0 0 1 0 99 0
DS 0 0 0 2 0 98

Table 12. Gaussian_SVM Accuracy = 97.5%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 2 97 1 0 0 0
IT 3 0 97 0 0 0
DT 1 0 0 99 0 0
US 0 0 1 0 99 0
DS 0 0 0 7 0 93

Table 13. KNN_5 Accuracy = 91.83%.

NOR CYC IT DT US DS

NOR 99 1 0 0 0 0
CYC 13 87 0 0 0 0
IT 6 0 94 0 0 0
DT 0 0 0 100 0 0
US 0 0 17 0 83 0
DS 0 0 0 12 0 88

Table 14. Ensemble Accuracy = 99.55%.

NOR CYC IT DT US DS

NOR 99.99 0.01 0 0 0 0
CYC 0.49 99.51 0 0 0 0
IT 0 0.46 99.54 0 0 0
DT 0 0.45 0 99.45 0 0
US 0 0 0.8 0 99.19 0
DS 0 0 0 0.3 0 99.66
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For the small range mean shift dataset, this study indicates that all classifiers detect a
normal pattern (stable process) with high identification accuracy. The accuracy of the deci‑
sion tree classifier in detecting abnormal patterns for cycle pattern recognition is 100%. For
the increasing trend, only 25% of respondents correctly identified it, while 68% misiden‑
tified it as an upper shift and 7% as a cycle. In addition, 57% of inaccurate recognitions
were as a downshift, 14% of incorrect recognitions were as a cycle, and 5%were as normal,
contributing to the low accuracy of the downward trend, which stands at just 24%. The
normal and cycle recognition rates for the upwards shift pattern are 12% accurate recogni‑
tion and 68% and 20% wrong recognition, respectively. In addition, the recognition rate
for the downshift pattern is 7% correct, 73% incorrect as normal, and 20% incorrect as cy‑
cle. The correct recognition rate is 44.50% overall, as indicated in Table 15. According to
Table 16, the ANN classifier has an 84.16% correct recognition rate. According to Table 17,
the Linear Support Vector Machine classifier has a 92% correct recognition rate. According
to Table 18, the Gaussian Support Vector machine classifier has a correct identification rate
of 93.83%. According to Table 19, the KNN‑5 classifier has an accurate identification rate of
91.83%. As indicated in Table 20, the ensemble principle with majority voting was applied
to the five distinct classifiers, resulting in improved decision‑making; a 99.14% accuracy
level was achieved for each pattern.

Table 15. Decision Tree Accuracy = 44.50%.

NOR CYC IT DT US DS

NOR 99 1 0 0 0 0
CYC 0 100 0 0 0 0
IT 0 7 25 0 68 0
DT 5 14 0 24 0 57
US 68 20 0 0 12 0
DS 73 20 0 0 0 7

Table 16. ANN Accuracy = 84.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 35 65 0 0 0 0
IT 0 1 83 0 16 0
DT 0 0 0 69 0 31
US 0 12 0 0 88 0
DS 0 0 0 0 0 100

Table 17. Linear_SVM Accuracy = 92%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 21 79 0 0 0 0
IT 0 0 98 0 2 0
DT 1 0 0 86 0 13
US 3 1 0 0 96 0
DS 7 0 0 0 0 93
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Table 18. Gaussian_SVM Accuracy = 93.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 1 93 0 0 0 0
IT 0 0 83 0 17 0
DT 0 0 0 100 0 0
US 0 0 0 0 100 0
DS 12 0 0 1 0 87

Table 19. KNN_5 Accuracy = 91.83%.

NOR CYC IT DT US DS

NOR 99 1 0 0 0 0
CYC 4 91 0 0 5 0
IT 0 0 94 0 6 0
DT 0 0 0 98 0 2
US 14 1 3 0 82 0
DS 6 1 0 8 0 85

Table 20. Ensemble Accuracy = 99.14%.

NOR CYC IT DT US DS

NOR 99.89 0 0 0 0.19 0
CYC 0.7 99.32 0 0 0 0
IT 0 0 99.27 0 0 0.7
DT 0 0 0 99.15 0 0.8
US 0 0 0.15 0 98.5 0
DS 0 0 0 1.2 0 98.7

In addition to calculating the ARL1 for each classifier, the results permit a comparison
between the normal and small shift datasets. This study identifies superior accuracy of the
five Gaussian Support VectorMachine classifiers for normal and small shifts, with 97.5 and
93.83%, respectively. On the other hand, the decision tree classifier is only able to achieve
accuracy of 61.32 and 44.50%, respectively, on the normal and small shift databases. The
respective ensemble recognition accuracy for the two datasets is 99.55 and 99.14%. This im‑
plies that several classifiers are superior to a single classifier as the first phase (ANN‑MLP
classifier) in the first model (Fully developed patterns), as the decision‑making process is
dependent on multiple classifiers. In addition, the accuracy increased when the run rules
were implemented, from 99.05% and 98.37% for the normal shift and small shift, respec‑
tively, in the first model to 99.55% and 99.14% in the secondmodel. Table 21 shows that the
ARL1 improves from 14.34 to 13.96 with the new strategy utilized in the training phase.
• Case 2: In this instance, the size of the window is divided into training data as 83%

abnormal + 17% normal (4 nor + 20 abnormal) from point (27:50). This study catego‑
rized 83% of the abnormal patterns during the window size (24 points) as abnormal
and 17% as normal in this instance. As indicated in Table 22, all abnormal patterns
(20 points abnormal versus 4 points normal) have been categorized as abnormal.
On the normal shift dataset, it is evident that the ensemble classifier has a 100% recog‑

nition accuracy for identifying normal patterns (stable process). This benefit is imple‑
mented during the run rules monitoring process. The accuracy of the decision tree clas‑
sifier in spotting abnormal patterns for cycle pattern proper recognition is 96%, while it
incorrectly labels just 3% as normal and 1% as an increasing trend. The increasing trend
has a correct recognition rate of 66%; when incorrect, it identifies 32% as a cycle and 2% as
normal. The accuracy of the decreasing trend is only 55% accurate, with 41% inaccurately
recognized as normal and 4% as a cycle. As an ascending pattern, the upper shift pattern
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has a correct identification rate of 69% and an inaccurate recognition rate of 31%. In addi‑
tion, 69% of those who recognize the downshift pattern correctly and 31% incorrectly do
so as a decreasing trend. The decision tree has been enhanced fromCase 1. As indicated in
Table 23, the correct recognition rate was 75.83%, compared to 61.16% in Case 1. According
to Table 24, theANNclassifier has 75.16% correct recognition. As demonstrated in Table 25,
the Linear Support Vector Machine classifier has 91% accurate recognition. As indicated
in Table 26, the Gaussian Support Vector machine classifier has a correct identification rate
of 93.83%. The KNN‑5 classifier has 90.33% correct recognition, as shown in Table 27. The
ensemble classifier has higher accuracy, achieving 99.07%, as shown in Table 28.

Table 21. Correct recognition and ARL1 for all of the classifiers.

Classifier

Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma

Training
Accuracy%

Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1 Training

Accuracy%
Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1

DT 99.51 98.32 61.16 13.35 99.44 97.47 44.50 13.58

ANN 99.07 99.01 81.5 13.65 98.74 98.46 84.16 13.91

L_SVM 99.02 99.07 95.16 14.05 98.28 98.10 92 14.14

G‑SVM 99.05 99.01 97.5 13.83 98.35 98.30 93.83 13.94

KNN5 99.17 98.83 91.83 14.08 98.55 98.11 91.5 14.24

Ensemble 99.15 99.05 99.55 13.13 98.65 98.37 99.14 13.96

Table 22. Percentage of abnormal pattern points in the labeling step.

Normal Abnormal

26 points 34 points

17% 83%

Table 23. Decision Tree Accuracy = 75.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3 96 1 0 0 0
IT 2 32 66 0 0 0
DT 41 4 0 55 0 0
US 0 0 31 0 69 0
DS 0 0 0 31 0 69

Table 24. ANN Accuracy = 75.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 60 39 1 0 0 0
IT 7 0 93 0 0 0
DT 17 2 0 81 0 0
US 0 0 11 0 89 0
DS 0 0 0 51 0 49
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Table 25. Linear_SVM Accuracy = 91%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 2 96 0 0 0 0
IT 6 0 94 0 0 0
DT 9 0 0 91 0 0
US 0 0 12 0 88 0
DS 0 0 0 23 0 77

Table 26. Gaussian_SVM Accuracy = 93.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 1 98 0 1 0 0
IT 12 0 88 0 0 0
DT 2 0 0 98 0 0
US 0 0 5 0 95 0
DS 0 0 0 3 0 97

Table 27. KNN_5 Accuracy = 90.33%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 16 82 2 0 0 0
IT 6 0 94 0 0 0
DT 1 1 0 98 0 0
US 0 0 25 0 75 0
DS 0 0 0 7 0 93

Table 28. Ensemble Accuracy = 99.07%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 0 100 0 0 0 0
IT 0 0 98.3 0 0 1.6
DT 0 0 0 99.24 0 0.7
US 1.2 0 0 0 98.7 0
DS 0 0 0 1.7 0 98.2

For the small shift dataset, the decision tree classifier recognizes abnormal patterns for
cycle pattern recognition with high accuracy. The increasing trend has 66% correct recog‑
nition in Case 2, compared to 25% in Case 1; 28% are incorrectly identified as a cycle and
6% as an upward shift. The recognition accuracy for the decreasing trend pattern is 64%,
while it was only 24% in Case 1; 30% recognize it as a downshift, while 57% incorrectly
identified it as a downshift in Case 1. With only 4% correct recognition for downshift and
86% incorrect recognition as cycle pattern, 6% as IT, and 4% as normal, the upper shift pat‑
tern has a low degree of accuracy. The downshift pattern has an identification rate of 21%
correct, 74% incorrect as normal, 3% as a cycle, and 2% as a decreasing trend. The overall
correct recognition rate is 59%, while in Case 1 it was 44.50%, as shown in Table 29. The
ANN classifier has 81.33% correct recognition, as shown in Table 30. However, the Linear
Support Vector Machine classifier has 90.66% correct recognition, as shown in Table 31. As
indicated in Table 32, the Gaussian Support Vector machine classifier has a correct identifi‑
cation rate of 93.83%, which is the same as in Case 1 irrespective of the training data used.
According to Table 33, the KNN‑5 classifier has an accurate identification rate of 80.83%.
As demonstrated in Table 34, the ensemble classifier achieves a higher accuracy of 98.2%
for each pattern.
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Table 29. Decision Tree Accuracy = 59%.

NOR CYC IT DT US DS

NOR 99 1 0 0 0 0
CYC 0 100 0 0 0 0
IT 0 28 66 0 6 0
DT 6 0 0 64 0 30
US 4 86 6 0 4 0
DS 74 3 0 2 0 21

Table 30. ANN Accuracy = 81.33%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 5 95 0 0 0 0
IT 1 0 56 0 43 0
DT 1 0 0 96 0 0
US 1 9 0 0 90 0
DS 48 0 0 1 0 51

Table 31. Linear_SVM Accuracy = 90.66%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 12 83 0 0 5 0
IT 0 0 74 0 26 0
DT 0 0 0 87 0 13
US 0 0 0 0 100 0
DS 0 0 0 0 0 100

Table 32. Gaussian_SVM Accuracy = 93.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 6 89 1 0 4 0
IT 0 0 97 0 3 0
DT 0 0 0 95 0 5
US 2 0 3 0 95 0
DS 0 0 0 1 0 99

Table 33. KNN_5 Accuracy = 80.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 12 82 3 0 2 1
IT 0 0 81 0 19 0
DT 0 0 0 77 0 23
US 8 0 35 0 57 0
DS 6 0 0 6 0 88

For normal and small shifts, the accuracy of these five classifiers in the Gaussian Sup‑
port Vector Machine classifier is 96% and 95.83%, respectively, compared to 97.5% and
93.83% in Case 1. The decision tree classifier improved from 61.32% and 44.50% for nor‑
mal and small shifts in Case 1 to 75.83% and 59%, respectively. On both datasets, the
ensemble classifier has a correct recognition rate of 99.07% and 98.2%, respectively. As
shown in Table 35, with the ensemble classifier the ARL1 improved in Case 2 compared to
Case 1, from 13.13 and 13.96 to 12.63 and 13.09 for the normal and small shift databases,
respectively.
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Table 34. Ensemble Accuracy = 98.2%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 0 98.5 0 0 1.4 0
IT 2.2 0 97.7 0 0 0
DT 0 0 0 98.4 0 1.6
US 1.7 0 2.1 0 96.1 0
DS 0 0 0 1.7 0 98.2

• Case 3: Data collected during trainingwere interpreted as follows: 75% abnormal and
25% normal (6 nor + 18 abnormal) from point (25:48). In this case, the abnormal pat‑
terns that occurredwithin thewindow size of 24 points were labeled as 75% abnormal
and 25%normal. This indicates that the study categorized all of the abnormal patterns
(18 points classified as abnormal and 6 points classified as normal) and labeled them
as abnormal, as indicated in Table 36.

Table 35. Correct recognition and ARL1 for all the classifiers.

Classifier

Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma

Training
Accuracy%

Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1 Training

Accuracy%
Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1

DT 98.60 94.58 75.83 13.32 97.75 90.40 59 15.13

ANN 96.78 96.22 75.16 13.02 93.24 92.75 81.33 13.34

L_SVM 96.11 95.72 91 12.16 92.76 92.58 90.66 12.87

G_SVM 96.42 95.90 96 12.35 93.26 92.86 95.83 13.11

KNN5 97.20 96.04 90.33 12.69 94.84 92.05 80.83 13.16

Ensemble 98.82 96.14 99.07 12.63 98.54 92.90 98.2 13.09

Table 36. The percentage of abnormal pattern points in the labeling step.

Normal Abnormal

24 points 36 points

25% 75%

The accuracy of the decision tree classifier in recognizing abnormal patterns for cycle
pattern accurate recognition is high at 82%, and it incorrectly labels only 14% as normal and
4% as an increasing trend. The IT pattern has 92% correct recognition, compared to 66%
in Case 2, 7% incorrect recognition as cycle, compared to 32% in Case 2, and 1% as normal.
The poor recognition rate for the DT pattern is just 66%, compared to 55% for Case 2; 33%
of incorrect identifications are as normal and only 1% as cycle. The recognition rate for the
upwards shift pattern is 74%, compared to 69% in Case 2, and 26% of incorrect recognitions
are as an IT. In addition, the DS pattern has 85% correct recognition, compared to 69% in
Case 2. Moreover, 15% of incorrect recognitions are as a DT pattern. The decision tree is
improved from Case 2. The overall correct recognition is 83.16%, when it was 75.83% in
Case 2, as shown in Table 37. The ANN classifier has 73.50% correct recognition, as shown
in Table 38. The Linear Support Vector Machine classifier has 81.16% correct recognition,
as shown in Table 39. The Gaussian Support Vector machine classifier has 94.50% correct
recognition, an improvement from Case 2 at 93.83%, as shown in Table 40. The KNN‑
5 classifier improves from Case 2 as well, from 90.33% to 92.50% correct recognition, as
shown in Table 41. Finally, the Ensemble classifier has higher accuracy at 98%, as shown
in Table 42.
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Table 37. Decision Tree Accuracy = 83.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 14 82 4 0 0 0
IT 1 7 92 0 0 0
DT 33 1 0 66 0 0
US 0 0 26 0 74 0
DS 0 0 0 15 0 85

Table 38. ANN Accuracy = 73.50%.

NOR CYC IT DT US DS

NOR 98 0 0 2 0 0
CYC 3 80 8 9 0 0
IT 2 0 98 0 0 0
DT 44 0 0 56 0 0
US 0 0 14 0 86 0
DS 0 4 0 73 0 23

Table 39. Linear_SVM Accuracy = 81.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 18 81 1 0 0 0
IT 17 0 83 0 0 0
DT 8 0 0 92 0 0
US 0 0 27 0 73 0
DS 0 0 0 42 0 58

Table 40. Gaussian_SVM Accuracy = 94.50%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3 96 1 0 0 0
IT 14 0 86 0 0 0
DT 9 0 0 91 0 0
US 0 0 4 0 96 0
DS 0 0 0 2 0 98

Table 41. KNN_5 Accuracy = 92.50%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 5 95 0 0 0 0
IT 9 0 91 0 0 0
DT 2 0 0 98 0 0
US 0 0 19 0 81 0
DS 0 0 0 10 0 90

The decision tree classifier has a high level of accuracy when it comes to recognizing
abnormal patterns for the small shift dataset, with a correct recognition rate of 97% for the
cycle pattern and a rate of 3% for incorrect detection as normal. For an increased trend,
correct recognition is at 62%, while incorrect recognition is at 28% as a cycle pattern, and
normal recognition is at 2%. The accuracy of identifying a decreasing trend increased to
87% from 64% in Case 1, with 4% of incorrect recognitions as a cycle, and 2% as normal.
For the upwards shift pattern, the correct recognition accuracy increases to 49% from 4%
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in Case 2, while the incorrect recognition rate decreases to 27% as a cycle pattern, 22% as
an increasing trend, and 2% as normal. The downshift pattern is improved as well, from
21% correct recognition in Case 2 to 35%, with 62% of incorrect recognitions being as a
decreasing trend, 2% as normal, and 1% as cycle. Previously, it had a correct recognition
of just 21% in Case 2. As can be seen in Table 43, the total correct recognition is 71.66,
when in Case 2 it was equal to 59% and in Case 1 to 44.50%. According to Table 44, the
ANN classifier has a recognition accuracy rate of 77.66%. Table 45 reveals that the Linear
Support Vector Machine classifier achieves a recognition accuracy of 71.83%. According to
Table 46, the Gaussian Support Vector machine classifier has a correct recognition rate of
83.33%. According to Table 47, theKNN‑5 classifier improves froman incorrect recognition
rate of 80.83% in Case 2 to a rate of 82.33%. According to the data presented in Table 48,
the ensemble classifier achieves a high accuracy of 97.95%.

Table 42. Ensemble Accuracy = 98%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 0 97.3 0 0 2.7 0
IT 1.7 0 98.22 0 0 0
DT 0 0 0 98.1 0 1.89
US 0 0 3.8 0 96.17 0
DS 1.3 0 0 0 0 98.61

Table 43. Decision Tree Accuracy = 71.66%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3 97 0 0 0 0
IT 2 28 62 0 8 0
DT 2 4 0 87 0 7
US 2 27 22 0 49 0
DS 2 1 0 62 0 35

Table 44. ANN Accuracy = 77.66%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 5 95 0 0 0 0
IT 14 3 65 0 18 0
DT 11 0 0 87 0 2
US 4 9 21 0 66 0
DS 25 0 0 22 0 53

Table 45. Linear_SVM Accuracy = 71.83%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 16 78 0 0 5 1
IT 1 0 31 0 68 0
DT 1 0 0 23 0 76
US 0 0 1 0 99 0
DS 0 0 0 0 0 100
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Table 46. Gaussian_SVM Accuracy = 83.33%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 8 87 4 0 1 0
IT 5 0 87 0 8 0
DT 3 0 0 44 0 53
US 0 0 16 0 84 0
DS 0 0 0 2 0 98

Table 47. KNN_5 Accuracy = 82.33%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 7 88 2 0 2 1
IT 1 0 93 0 6 0
DT 10 0 0 89 0 1
US 8 0 36 0 56 0
DS 0 3 0 29 0 68

Table 48. Ensemble Accuracy = 97.95%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 2 97 0 0 1 0
IT 0 0 98.42 0 0 1.3
DT 1.39 0 0 98.61 0 0
US 0 0 4 0 95.97 0
DS 0.2 0 0 2 0 97.71

Additionally, the ARL1 for each classifier is calculated. The greater accuracy of these
five classifiers in the Gaussian Support VectorMachine classifier is 94% for the normal shift
database and 92.05% for the small shift database. The respective normal and small shift
classification increases from 75.83% and 59% in Case 2 to 83.16 and 71.66. For both datasets,
the ensemble classifier achieves 97.95% correct recognition. With the ensemble classifier,
the ARL1 improves in Case 3 compared to Case 2, as shown in Table 49, from 12.63 and
13.09 to 12.04 and 12.52 for the normal and small shift databases, respectively.
• Case 4: Training data as 67% abnormal + 33% normal (8 normal points + 16 abnormal

points) frompoint (23:46). In this case, the study labeled the abnormal patterns during
the window size (24 points) as 67% abnormal and 33% normal. That means that the
study labeled all abnormal patterns (16 points abnormal with 8 points normal) and
labeled them as abnormal patterns during labeling, as shown in Table 50.

Table 49. Correct recognition and ARL1 for all the classifiers.

Classifier

Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma

Training
Accuracy%

Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1 Training

Accuracy%
Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1

DT 98.61 94.27 83.16 12.87 97.58 90.47 71.66 13.05

ANN 96.38 95.88 73.50 12.02 92.84 91.91 77.66 12.97

L_SVM 95.65 95.51 81.16 11.25 92.08 91.19 71.83 11.78

G‑SVM 96.08 95.95 94.50 12.09 92.70 92.05 83.33 12.52

KNN5 97.03 95.69 92.5 12.24 94.70 91.73 82.33 12.86

Ensemble 98.27 96.15 98 12.04 97.53 92.15 97.95 12.52
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Table 50. The percentage of abnormal pattern points in the labeling step.

Normal Abnormal

22 points 38 points

33% 67%

For the normal shift dataset, it is clear that all the classifiers have recognition accuracy
of 100% when detecting a normal pattern (stable process). The decision tree classifier has
good recognition accuracy for abnormal patterns, with a cycle pattern correct recognition
rate of 75%; when wrong, it classifies 20%as normal and 5% as an IT pattern. The increas‑
ing trend pattern has 64% correct recognition, and for incorrect recognitions 32% are as
a cycle and 4% as normal. The accuracy in the DT pattern is poor, with just 51% correct
recognition; 48% of incorrect recognitions are as normal and 1% as a cycle. The upwards
shift pattern improves from 74% correct recognition in Case 3 to 82%, and all 18% of in‑
correct recognitions are as an increasing trend. Likewise, the downward shift pattern has
82% correct recognition, with 17% of incorrect recognitions as a decreasing trend and 1%
as normal. The overall correct recognition is 75.66%, as shown in Table 51. The ANN clas‑
sifier improves from 73.50% correct recognition in Case 3 to 86.33%, as shown in Table 52.
The Linear Support Vector Machine classifier achieves 79% correct recognition, as shown
in Table 53. The Gaussian Support Vector machine classifier has 95.16% correct recogni‑
tion, improving from 94.50% in Case 3 and 93.83% in Case 2, as shown in Table 54. The
KNN‑5 classifier has 88% correct recognition, as shown in Table 55. the ensemble classifier
achieves a high accuracy of 98.32%, as shown in Table 56.

Table 51. Decision Tree Accuracy = 75.66%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 20 75 5 0 0 0
IT 4 32 64 0 0 0
DT 48 1 0 51 0 0
US 0 0 18 0 82 0
DS 0 1 0 17 0 82

Table 52. ANN Accuracy = 86.33%.

NOR CYC IT DT US DS

NOR 99 1 0 0 0 0
CYC 1 98 1 9 0 0
IT 3 2 95 0 0 0
DT 12 4 0 84 0 0
US 0 0 19 0 81 0
DS 0 0 0 39 0 61

Table 53. Linear_SVM Accuracy = 79%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 10 88 2 0 0 0
IT 14 0 86 0 0 0
DT 10 0 0 90 0 0
US 0 0 37 0 63 0
DS 0 0 0 53 0 47
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Table 54. Gaussian_SVM Accuracy = 95.16%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3 96 1 0 0 0
IT 9 0 91 0 0 0
DT 6 0 0 94 0 0
US 0 0 4 0 96 0
DS 0 0 0 6 0 98

Table 55. KNN_5 Accuracy = 88%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 8 89 2 1 0 0
IT 9 1 90 0 0 0
DT 13 0 0 87 0 0
US 0 0 23 0 77 0
DS 0 0 0 15 0 85

Table 56. Ensemble Accuracy = 98.32%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 0 98.1 0 0 1.8 0
IT 0.18 0 99.8 0 0 0
DT 0 0 0 98.63 0 1.3
US 1.2 0 2.4 0 96.4 0
DS 0 0 0 2.99 0 97.01

For the small shift dataset, the decision tree classifier has good accuracy in recogniz‑
ing the abnormal patterns for cycle patterns, with correct recognition of 94%; of incorrect
recognitions, 3% are as an increasing trend and 3% as normal. For increasing trend pat‑
terns, recognition improves from 62% in Case 3 to 76%, with 10% of incorrect recognitions
as normal, 7% as cycle patterns, and 7% as upwards shifts. The accuracy of the DT pat‑
tern is 74%. Moreover, 18% of incorrect recognitions are as normal, 7% as downshifts, and
1% as cycles. The upwards shift pattern has 47% correct recognition, with 47% of incor‑
rect recognitions as an increasing trend, 5% as a cycle pattern, and 1% as normal. The
downshift pattern improves from 35% correct recognition in Case 3 to 56%, with 34% of
incorrect recognitions as a decreasing trend, 7% as a cycle, and 3% as normal. The overall
correct recognition is 74.50%; in Case 3 it was 71.66%, in Case 2 it was 59%, and in Case
1 it was 44.50%, as shown in Table 57. The ANN classifier improves from 77.66% correct
recognition in Case 3 to 85%, as shown in Table 58. The Linear Support Vector Machine
classifier has 67.5% correct recognition, as shown in Table 59. The Gaussian Support Vector
machine classifier improves from 83.33% correct recognition in Case 3 to 85.66%, as shown
in Table 60. The KNN‑5 classifier has 97% correct recognition, as shown in Table 61. The
ensemble classifier achieves high accuracy of 97.03% for each pattern, as shown in Table 62.

Table 57. Decision Tree Accuracy = 74.50%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3 94 3 0 0 0
IT 10 7 76 0 7 0
DT 18 1 0 74 0 7
US 1 5 47 0 47 0
DS 3 7 0 34 0 56
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Table 58. ANN Accuracy = 85%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 4 96 0 0 0 0
IT 10 1 68 0 21 0
DT 0 0 0 91 0 9
US 3 4 3 0 90 0
DS 2 0 0 33 0 65

Table 59. Linear_SVM Accuracy = 67.50%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 10 82 0 0 7 1
IT 11 0 17 0 72 0
DT 4 0 0 19 0 77
US 1 0 3 0 96 0
DS 0 0 0 9 0 91

Table 60. Gaussian_SVM Accuracy = 85.66%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 5 86 2 0 6 1
IT 4 0 92 0 4 0
DT 7 0 0 87 0 6
US 1 0 25 0 74 0
DS 0 0 0 25 0 75

Table 61. KNN_5 Accuracy = 79%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 10 85 2 0 1 2
IT 2 0 89 0 9 0
DT 5 0 0 90 0 5
US 1 2 44 0 53 0
DS 4 0 0 39 0 57

Table 62. Ensemble Accuracy = 97.03%.

NOR CYC IT DT US DS

NOR 100 0 0 0 0 0
CYC 3.5 96.59 0 0 0 0
IT 0 0 95.9 0 4 0
DT 0 0 0 98.98 0 1.02
US 0 0 4.2 0 95.71 0
DS 1.8 0 0 3 0 95

The highest accuracy of these five classifiers is the Gaussian Support Vector machine
classifier, with 95.16% and 85.66% for the normal and small shift datasets, respectively.
The ensemble accuracy is 98.32% and 97.03% correct recognition for the normal and small
shift ranges, respectively. The ARL1 is improved in Case 4 compared to Case 3, from 12.04
and 12.52 to 11.65 and 11.94 for the normal and small shift databases, respectively, with
the results for the ensemble classifier shown in Table 63.
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Table 63. Correct recognition and ARL1 for all the classifiers.

Classifier

Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma

Training
Accuracy%

Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1 Training

Accuracy%
Testing Accuracy
Full Developed

Testing
Accuracy

Moving WS
ARL1

DT 98.37 94.06 75.66 11.72 97.17 89.30 74.5 12.30

ANN 95.78 95.52 86.33 11.38 91.50 91.42 85 11.89

L_SVM 94.51 94.80 79 11.09 89.97 90.57 67.5 11.21

G‑SVM 95.27 95.40 95.16 12.07 90.81 91.49 85.66 12.19

KNN5 96.53 95.26 88 11.94 94.02 91.14 79 12.31

Ensemble 98.59 95.70 98.32 11.65 98.02 91.84 97.03 11.94

The current study is compared with, Lu, Wang [2], who proposed an approach with dy‑
namic observation window sizes (OWS) to study the different cutting parameters, implement‑
ing four different classifier algorithms. The shift range in their study was just (1.5–2.5 sigma)
a different range than that in the present study, which used a normal shift range of (1.5–
2.8 sigma) and small shift range of less than (1.5 sigma)with five different classifier algorithms
and an ensemble classifier.

We note here that it is very clear that the previous study has a drawback with nor‑
mal pattern recognition, as the present work achieves 98.32% recognition on all pattern
classes with the ensemble classifier. The maximum recognition accuracy for the previous
work, with Gaussian‑SVM, is 95.6%, while this study the same classifier achieves 95.16%.
However, the ensemble classifier has 98.32% recognition accuracy. The comparison of this
study with [2] for a normal shift range is shown in Table 64.

Table 64. Comparison of the present work with Lu [2].

Classifier

This Work Lu, Wang [2]

Training
Accuracy%

Testing
Accuracy

Moving WS

Training Accuracy% Testing Accuracy%

Normal
Condition

Abnormal
Condition Average Normal

Condition
Abnormal
Condition Average

DT 98.37 75.66 100 100 100 67.2 98.4 82.8

ANN 95.78 86.33 99.1 99.5 99.3 63.5 99.1 81.3

L_SVM 94.51 79 —‑ —‑ —‑ —‑ —‑ —

G‑SVM 95.27 95.16 100 100 100 71.4 98.9 85.15

KNN‑5 96.53 88 98 99.6 98.8 59.2 98.1 78.8

Ensemble 98.59 98.32 —‑ —‑ —‑ —‑ —– —

In detail, they combined their twoOWS for improved recognition accuracy. The high‑
est recognition accuracy they were able to reach with Gaussian‑SVM was 95.6%. This
study investigated four cases for different training datasets with five different classifier
algorithms and ensemble classifiers with (MV) techniques. The highest recognition accu‑
racy is 99.55%, achieved with the ensemble classifier, as shown in Table 65.

This approach was compared to others used in earlier studies to recognize control
chart patterns with small change variation. The results of the present study indicate that
the ensemble classifier has greater recognition accuracy in CCPR, attaining 99.55% and
99.14%, respectively, when using a normal shift range and a small shift range.
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Table 65. Four cases in the present study versus two OWS in [2].

Classifier This Work Lu, Wang [2]

Widows Size Case1 Case2 Case3 Case4 OWS1 OWS2 OWS1+OWS2

DT 61.1 75.9 83.2 75.7 85.2 88.7 93.4

ANN 81.5 75.1 73.5 86.3 86.8 89.5 91.7

L_SVM 95.1 91 81.2 79 —‑ —‑ —‑

G‑SVM 97.5 96 94.5 95.2 87.2 84.9 95.6

KNN‑5 91.8 90.3 92.5 88 82.8 83.9 89.9

Ensemble 99.6 98.7 98 98.3 —‑ —‑ —‑

4. Discussion
The classification that was produced by the ensemble classifier was more accurate

than the classifications produced by the individual classifiers. The decision‑making of the
ensemble classifier is the result of a collaborative effort made by five different classifiers,
with the vote of the majority of classifiers serving as the final decision. We discovered that
the proportion of incorrect answers for the final decision dropped. The purpose of this
study was to classify abnormal patterns with a mean shift less than 1.5 sigma by analysing
small shifts. This process replicates the online growth of a process through the use of
moveable windows. It can recognize abnormal patterns as soon as is feasible, reducing
production waste if at all possible. The purpose of the four training scenarios was to de‑
crease the average run length for the abnormal patterns (ARL1). The run rules differentiate
between normal and abnormal patterns, contributing to the improvement of themodel and
the reduction of misclassification. The similarities and differences between this study and
previous research are presented in Table 66.

Table 66. Comparison of this work with previous works.

Ref. Model Learning Algorithm Optimization Input No. of Patterns %

[29] KELM MGWO
kernel entropy component
analysis KECA as a feature

reduction algorithm

feature fusion
extraction (FFE)

6 Basic +
4 mixes 99.5

[21] MLP
scaled conjugate
gradient algorithm

(SCG)

Bees’ algorithm (BA) to find the
best features shape features 6 99.5

[53] MLP resilient
back‑propagation

EWMA computation the
incomplete data

Statistical
features 6 99.2

[31] RBF Bees’ algorithm association rules (AR) Statistical &
shape features 8 99.36

[25] MLP
Levenberg‑
Marquardt

(LM)

a hybrid system based on
statistical and shape features and
multi‑layer perceptrons neural

network (MLPNN)

Statistical &
shape features 8 99.5

[24] MLP Back‑propagation
(BP)

Recognition patterns in bivariate
SPC

Statistical
features Nain Category 96

[67] MLP descending gradient
algorithm new feature belief variable Statistical

features 6 97.36

[68] MLP
Levenberg‑

Marquardt (LM)
algorithm

One feature with three values Statistical
features 5 100

[20] MLP
Levenberg‑
Marquardt

(LM)

cuckoo optimization algorithm
(COA) Shape features 6 99.21

[69] RBF Back‑propagation
(BP) bee’s algorithm (BA) Shape features 6 99.61
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Table 66. Cont.

Ref. Model Learning Algorithm Optimization Input No. of Patterns %

[70] MLP descending gradient
algorithm MEWMA‑ANNs Statistical

features 8 86.57

[71] MLP
Levenberg‑
Marquardt

(LM)
One feature with three values Statistical

features 5 100

[72] MLP Back‑propagation
(BP)

two‑stage intelligent monitoring
scheme (2S‑IMS)

Statistical
features 7 98.5

[73] MLP BP (ICA) for the separation step and
a decision tree Shape features 6 basic +

6 mixed 87.96

[38] MLP Levenberg–
Marquardt (LM) ——– Statistical &

shape features 6 99.15

[39] MLP BFGS
new feature extraction method
without defining the basic

patterns

pattern
displacement into

account
7 98.05

[74] MLP RBF PSO Euclidean
distance 6 99.26

[40] MLP ABP improvement of the training
algorithm

Statistical &
shape features 6 99.21

This work MLP
Levenberg‑
Marquardt

(LM)

New feature selection approach
(RCF)

Statistical &
shape features 6 99.05

This work Ensemble New feature selection approach
(RCF)

Statistical &
shape features 6 99.55

The ensemble classifier significantly improves recognition accuracy (99.55%), as seen
in Table 66. This demonstrates that the performance of the ensemble classifier is superior to
that of the individual classifiers for the normal shift range. Within a small variation range,
the ensemble approach achieved 99.14% recognition accuracy. The run rules utilized in
this article demonstrate that the classification of both datasets (small and normal) is nearly
flawless (100%) for a stable process.

5. Conclusions
This study presents an improved control chart pattern recognition (CCPR) model fo‑

cusing on small mean shifts for X‑bar chart patterns. We beganwith the commonly utilized
ANN‑MLP algorithm from previous CCPR experiments. The MLP classifier achieved a
classification accuracy of 98.88% for normal mean shifting and 98.13% for small mean shift‑
ing. Our study revealed that the recognition accuracy is enhanced when implementing an
ensemble of five classifiers, namely, decision tree, ANN, linear support vector machine,
Gaussian support vector machine, and KNN‑5. The ensemble classifier reached an im‑
proved recognition accuracy of 99.55% formean shiftingwithin (±3σ) and 99.14% for small
mean shifting within (±1.5σ). We observed that the ARL1 was reduced from 15.5 to 11.94
for small mean shifting, suggesting that the implemented ensemble classifier enables faster
and more accurate detection. This study is a step forward in the intelligence manufactur‑
ing domain. It provides production and quality managers a tool for addressing process
variability, particularly within small changes in the process mean. It can provide a useful
guide for quality engineers in developing and implementing automated CCPR systems.
This research can be extended in the future to investigate multivariate patterns, as well as
other pattern classes.
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