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Abstract
Nanomaterials arewidely used in daily life due to their outstanding properties. Nanoparticles (NPs)will unavoidably discharge
andmigrate across the environment throughout theirwhole life cycle. Thedestiny andbehaviour ofNPs in porousmedia, aswell
as the co-transport ofNPswith other contaminants, have thus received a lot of interest. Despite their environmental friendliness,
hydroxyapatite nanoparticles (HAP) have beenused in fewEORstudies.Hence, EORapplicationsmust includeHAP transport,
retention, and adsorption on rock surfaces. Salinity affects NPs behaviour in porous media and EOR applications. Particle
adsorption on rock surfaces at distinct ionic strengths impacts reservoir NP movement. The effects of electrolyte solutions
with monovalent cations of NaCl on HAP transport behaviour through porous media are yet to be examined. HAP was
synthesised and functionalized in situ using sodium dodecyl sulphate (SDS). FTIR and XRD confirmed HAP synthesis,
while zeta potential analysis was used to measure its stability. HAP was transported through sandstone cores at varied ionic
strengths. The viscosity of brine was examined at varied concentrations and temperatures before utilising it in nanofluid
(NF) formulations. XRD, SEM, FESEM, and EDX were utilised on sandstone cores before and after flooding to assess NP
adsorption and retention. Breakthrough curves were used to access the transport and retention of HAP through sandstone.
Ultimate nanoparticle (NP) recovery is reduced with increase in ionic strength. Permeability measurements before and after
NP transport proved that fewer NPs were agglomerated in the rock sample. FESEM, XRD, and EDX results proved that more
NPs were adsorbed on the rocks during the transit. An increase in ionic strength causes NP retention to rise, leading to a
reduction in NP recovery.
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1 Introduction

Since 2008, the use of nanoparticles (NPs) for enhanced oil
recovery (EOR) has drawn significant attention [1–4]. A lot
of research has been done that can be broadly divided into two
categories: (i) The development of “contrast-agent” typeNPs
to improve the detection limitations of seismic techniques for
better reservoir characterisation [5], and (ii) the use of NPs
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as property modifiers to alter rock wettability and interfacial
tension (IFT) at the oil/water interface [6–9]. For each of
these uses, NPs must be able to travel considerable distances
in reservoir rocks. In contrast, thewidespread use of nanoma-
terials causes a significant build-up in the environment with
a high risk of contamination [10]. To minimise the threats to
the environment and human health, it is crucial to understand
these NPs’ mobility, sustainability, and ultimate fate.

Surface-active NPs, for instance, can stabilise emulsions
and foams for mobility control in improved oil recovery
methods [1–6]. These NPs’ special features offer a wide
range of possible uses in oil reservoirs. To measure specific
fluid and/or rock parameters within reservoir formations,
functionalized NPs can be introduced as tracers or sensors
[7–9]. Some of these applications require long-distance prop-
agation (> 102 m). Retention, which refers to the quantity of
NPs retained in porous media during transport, is one impor-
tant measure to determine NPs transportability in porous
media [10]. Retention has two implications in this piece.
One involves the injected NPs adhering permanently to sta-
tionary surfaces in the reservoir, particularly the rock’s grain
surface but also the interface between the flowing saline and
any remaining oil [10]. The design of slug size and concen-
tration is impacted by this kind of irreversible deposition,
particularly in situations where it’s crucial to preserve the
NPs concentration in the dispersion [11–14]. Reversible NPs
adhesion to stationary surfaces is the second. The speed of
propagation of the leading and trailing edges of a slug of
dispersion is impacted by this form of adsorption (in com-
parison with the speed of the flowing phase containing the
NPs) [15, 16]. These speeds are crucial for evaluating arrival
times or remote sensing-derived NPs placements in the reser-
voir (obtained at production wells).

Experimental studies to evaluate NPs mobility and
retention in water-saturated glass-bead/sand packs started in
the last ten years [11, 17, 18]. One-wall carbon nanotubes,
silica, fullerene, alumoxane, copper oxide, titanium oxide,
iron oxide NPs, and other materials have all been tested as
nanomaterials. The results of the experiments revealed dis-
tinct breakthrough curves for several nanomaterials [19–23].
This suggests that a porous medium’s ability to retain a par-
ticular type of NP is a quality of both the substance and the
medium. This is not a logical conclusion because, for many
NPs, van der Waals forces serve as the primary attraction
between the grain surface of the porous medium and the NP
[16, 24]. Accordingly, the medium’s specific surface area
should be the main factor influencing the medium’s ability
to adsorb substances [25]. Laboratory tests have equally
been performed for particular nanomaterials to assess the
impact of transport conditions on particle retention in porous
media. [21] investigated the flow rate effect on the retention
of fullerene NPs in water-saturated sand packs. Smaller
flow rates kept more NPs in the same column, according

to their findings. [26] found that iron NPs effluent history
plateau values decreased with flow rate. Solution salinity
and pH were discovered to have an impact on titanium NPs
retention in column floods [27]. In several of those trials
using post-flush, the recovery of NPs was estimated to be
a portion of the amount that was injected, ranging from 50
to 99%. Recently, many simulation works have monitored
NPs transport through saturated porous media under diverse
circumstances [10, 23, 28–30].

Despite the above-mentioned achievements, research on
NPs migration in porous media, however, still needs atten-
tion, particularly in the following three areas: (i) the impact of
ionic strength; (ii) the impact of particle size and concentra-
tion; and (iii) mathematical models of NP transport that have
been verified by trustworthy experimental data [6, 31, 32].
Regarding the first factor, it is important to further research
on how ions, particularly the presence of divalent or mono-
valent ions, which are common in oil reserves, affect particle
transit. The impact of cations on the transport behaviour of
NPs has been well evaluated [10, 11, 28]. When compared
to the monovalent cation Na+, it is anticipated that the diva-
lent cations Mg2+, Ca2+, and Ba2+ will be more efficient at
destabilising NPs and causing greater agglomeration, hence
lowering the transit rate [33, 34].

Predicting the subsequent environmental processes ofNPs
requires knowledge of both their occurrence and toxicity
as well as their transit in environmental media. NPs can
be carried with the flow in porous medium because they
are colloidally suspended [23]. However, co-existing NPs’
environmental behaviour and biological efficacy could have
an impact on the porous media during transport and reten-
tion [23]. Even though some studies have concentrated on
the transport of NPs in porous media with various influenc-
ing parameters [20, 28, 35], few studies, particularly those
that deal with the environmental toxicity, have systemati-
cally structured these influencing factors and their interaction
mechanisms. In this regard, the applicationof an environmen-
tally friendly NP in EOR and its transport through saturated
porous media is a call for concern.

The use of NPs or materials with nanoscale domains
in bio-ceramics, such as the creation of nanoparticle-
hydroxyapatite (HAP), has increased the field’s relevance
for nanotechnology [36]. The development of the calcium
phosphate ceramic material known as HAP depends on the
combination of the calcium/phosphorus atomic ratio (Ca/P)
[37, 38]. In terms of performance and application in various
processes, researchers found that HAP performs better than
larger-sized hydroxyapatite. Although it varies significantly
depending on synthesis techniques and chemical modifica-
tion, the Ca/P stoichiometric ratio for pure HAP is found to
be 1.664 0.005 [37, 38]. HAP is the hydroxyl ion (–OH–)
terminal member of the apatite group and has the chemical
formula Ca 10 (PO 4)6(OH)2.
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HAP stands out due to its outstanding bioactivity, low
cost, and biocompatibility. Studies have shown that there
is no risk associated with exposure to the Ca/P particle at
the dosages commonly used in clinical settings, cosmetics,
healthcare services, and biomedicine [39–42], making it safe

to be applied in the environment. It has been researched and
proven to be helpful in a variety of applications, including
tissue engineering, optical applications, bone regeneration,
catalysis, and adsorption. HAP includes an OH− ion, as well
as the functional groups PO4

3− and CO3
2−. These HAP

features are defined by the alterable Ca–O, C–O, P, and
O–P–O bonds that result in fluid adsorption with surfactant
ions. HAP has recently demonstrated excellent abilities in
enhancing oil recovery mechanisms through IFT reduction
and wettability alteration of sandstone. These abilities were
observed at varied HAP concentrations, temperature, and
brine concentration [45]. It exhibits an equally good abil-
ity in oil displacement through sandstone flooding at high
ionic strength [48]. Furthermore, HAP equally demonstrates
great potential in drilling mud formulations, both in cutting
transport and as a fluid loss additive [49].

Our research’s main objective is to measure HAP adsorp-
tion while it is transported across porous media under a
single-phase flow condition at varied ionic strengths. In order
to do this, we performed a large number of NPs trans-
port tests using consolidated brine-saturated sandstone core
plugs, systematically altering particle characteristics at high
temperature in order tomimic the reservoir conditions. Every
experiment’s breakthrough curve, also known as the NP
effluent concentration history, was noted, and the particle
adsorption during injection and after a protracted post-flush
were both estimated.

This study equally examines the effects of electrolyte
solutions with monovalent cations on particle transport
behaviour, for both large and small particles, in order to
advance our understanding of how NPs move through sat-
urated porous media with different salinities.

2 Materials and Procedures

2.1 Materials

Material Chemical formula Molecular weight CAS number Supplier

Sodium dodecyl sulphate (SDS) NaC12H25SO4 288.38 g/mol 151-21-3 Tay Scientific Instruments Sdn. Bhd
Malaysia

Calcium 4-nitratre tetrahydrate Ca(NO3)2· 4 H2O 236.15 g/mol g/mol 13477-34-4 Tay Scientific Instruments Sdn. Bhd
Malaysia

Disodium hydrogen phosphate Na2HPO4 141.959 7558-79-4 Tay Scientific Instruments Sdn. Bhd
Malaysia

Sodium hydroxide NaOH 39.997 g/mol 1310-73-2 VNK SUPPLY & SERVICES Johor
Bahru Malaysia

Hydrochloric acid HCl 36.47 g/mol 7647-01-0 VNK SUPPLY & SERVICES Johor
Bahru Malaysia

Sandstone core plugs XXXX XXXXX XXXX Sarawak Oil Field Malaysia

2.2 Procedures

2.2.1 Synthesis of HAP, Characterisation, and Fluid
Preparation

Disodium hydrogen phosphate and calcium nitrate 4-hydrate
were used in the wet chemical technique (co-precipitation)
to synthesise HAP, which was then in situ surface function-
alized with sodium dodecyl sulphate. In order to confirm
the presence of HAP and its characteristics, the synthe-
sised NPs were analysed using Fourier transform infrared
spectroscopy (FTIR), particle size analysis (PSA), X-ray
diffraction (XRD), and zeta potential analysis (ZP), respec-
tively. To evaluate the adsorption of NPs on the rock surface,
post-characterisation was done on sandstone cores both
before and after flooding with NPs. This involved using
x-ray diffraction (XRD), field emission scanning electron
microscopy (FESEM), electron scanningmicroscopy (SEM),
and elemental composition (EDX).

Nanofluids (NFs) with concentrations between 0.001 and
0.1 wt% were formulated using brine solutions with a range
of 5000–30,000 ppm. The selection of this concentration
range was based on the literature (optimal NF concentration
[5, 7, 32] for EOR applications). Concentrations beyond 0.1
wt% run the danger of blocking pore channels, triggering
rapid aggregation, damaging the formation, and degrad-
ing permeability [25, 43]. An RST Brookfield rheometer
(Rheo3000,USA),which has an operating temperature range
of 25–80 °C, was utilised for measuring the viscosity of the
brine. The dried NPs were gathered, weighed, and mixed
with brine solution in a beaker. The mixture was then heated
to 28 °C and stirred for five minutes using a magnetic stirrer.
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Fig. 1 Absorbance measurements with a maximum wavelength determination and b molar absorptivity

The generated solutionwas then homogenised for 15min in a
Branson DHA-1000-E, 100 W, 40 kHz, Danbury, ultrasonic
bath to reduce agglomeration.

2.2.2 Absorbance Measurements andMolar Absorptivity
Determination

The NPs concentration before and after flooding was deter-
mined using HAP’s absorbance and molar absorptivity. A
UV–VIS spectrometer was used to evaluate the absorbance
and wavelength prior to preparing fluids with varying con-
centrations of HAP. In order to determine theNPs’maximum
wavelength, the concentration was first maintained constant
while the absorbance was measured at various wavelengths
(Fig. 1a). The maximum wavelength was measured to be
369 nm which was then maintained constant for the sub-
sequent tests. To determine the molar absorptivity, the
wavelength was maintained constant while the concentra-
tion varied (Fig. 1b). The temperature and pressure were both
kept at ambient levels for both trials. Themeasurements were
performed by pouring the prepared sample into the cuvette
of the apparatus 3/4 full, gently placing inside the measur-
ing chamber after adjusting all the parameters with respect
to the current trial, and then conducting the test. Results
of absorbance were plotted against concentration (Fig. 1b).
Upon generating the gradient of the slope, the molar absorp-
tivity was then calculated using the Beer–Lambert’s Law
(Eq. 1)

A � ξλc (1)

Fig. 2 Sandstone cores for NPs displacement

where A Absorbance, ξ Molar Absorptivity, λ Wavelength
and c Fluid Concentration

The molar absorptivity was then used in the same corre-
lation on the measured absorbance to determine the concen-
tration during NP displacement.

2.2.3 Sandstone Cores Preparation

High-permeability sandstone cores (Fig. 2) with the param-
eters given in Table 1 were used for HAP-NF displacement
testing. The four high-permeability sandstone cores are all
from the same reservoir and have similar characteristics. The
cores were cleaned in a Soxhlet extractor with toluene and
acetone to eliminate contaminants. The cores were then dried
for 48 h in an oven set to 100 °C. The dry weight of the cores
was calculated by mass balancing. At 25 °C and atmospheric
pressure, the porosity was ascertained using a TPI-219
porosimeter after the bulk volume had beenmeasured using a
calliper. Then, using a VINCI Liquid Permeameter at 25 °C
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Table 1 Petrophysical properties
of sandstone core samples Core Length (cm) Diameter (cm) Porosity (%) Permeability (mD)

C1 7.1 3.5 25.6 295.031

C2 7.6 3.6 21.2 283.389

C3 7.0 3.5 26.5 314.215

C4 7.4 3.5 27.3 405.103

Where the brine concentration used for each core was C1(5000 ppm), C2(10,000 ppm, C3(20,000 ppm), and
C4(30,000 ppm), respectively

and under atmospheric pressure, the permeabilities of the
cores were calculated, and the findings recorded accordingly
(Table 1). Prior to the NPs recovery testing, the cores were
then completely saturated with brine and compressed at 2000
psi for 24 h. The porosity and permeability measurements
were repeated after each test.

2.2.4 Nanoparticles Displacement

Prior to conducting the transport tests, porous medium was
characterised, including the estimation of porosity and per-
meability. The initial transport test was the suspension of
HAP in 5000 ppm of brine and passing it through porous
sandstone media. After injecting 0.8 PVs, HAP was discov-
ered in the outlet. The amount of NP in the effluent gradually
increasedbefore dropping to zero. Then, until the 5thPVs, the
NP concentration quotient (Ci/CO) values varied. The NPs
concentration thereafter decreased until it was zero at the
sixth PVs. The experiment was repeated at respective con-
centrations of 10,000 ppm, 20,000 ppm, and 30,000 ppm.
To replicate the reservoir environment, all experiments were
conducted at a temperature of 80 °C (based on the equipment
temperature limitation). For each trial, the HAP concentra-
tion was held constant at 0.1 wt%.

The core flooding tests were conducted using high tem-
perature, high pressure (HTHP) equipment from Fars EOR
Technologies. Temperature and confining pressure are con-
trolled by an oven and a hydraulic pump, respectively.
Different injection configurations are possible with the sys-
tem thanks to three piston-like accumulators and a core
holder. For the purpose of pumping injectants from the accu-
mulator through the core, the apparatus was connected to
a Teledyne ISCO pump. The experimental setup is shown
schematically in Fig. 3. Before each NPs experiment, the
instrument was cleaned, and NFs and brine were added to
the accumulators. The oven temperature, the injection fluid
flow rate, and the confining pressure were all adjusted to
80 °C, 0.4 mL/min, and 1800psi, respectively. The initial
brine solution (5000–30,000 ppm) was displaced and each
core was saturated with 2 PV of NPs. After that, brine was
once more injected up till the NPs break through. Samples

of nanofluids were taken periodically at the effluent to mea-
sure the absorbance and the concentration deduced using the
Beer–Lambert’s Law (Eq. 1).

3 Results and Discussions

3.1 FTIR

The chemical characteristics of powder samples can be ascer-
tained using FTIR. The most distinct functional groups in
the FTIR spectrum of the synthesised nano-hydroxyapatite
are the phosphate group (PO4

3−) and hydroxyl group (OH)
(HAP). The results of the analysed HAP FTIR spectrum
are shown in Fig. 4. The stretching modes of the hydroxyl
groups in water molecules that have been adsorbed on HAP
are linked to the bands at 2849.85 and 2917.84 cm−1 [40].
These results showed that the surface of HAP was adsorbed
with a considerable quantity of structural OH groups and a
minor amount of water molecules from the aqueous solution.
When it comes to (P–O) bonds, the band at 1028.56 reflects
the symmetric stretching mode, while the bands at 602.04
and 55, 06 represent the asymmetric bending vibrations of
(P–O) bonds attributable to PO4

−3 [44]

3.2 PSA Analysis

The distribution of HAP was examined using the Malvern
Zeta Sizer version 7.11. The findings reveal that the major-
ity of the particles are nanosized, ranging from 220 to
450 nm, with only a small number being micrometre-sized.
The particles’ average hydrodynamic diameter, which is in
the nanometre range and can be recommended for use in
EOR, is 328.7 nm (Fig. 5) [45–48]. Due to the pore channels’
micrometre-sized size, the NPs’ diameters are appropriate
for EOR. The growth brought on by the adsorption of water
molecules during the fluid preparation process could also be
credited with the increase in particle sizes.
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Fig. 3 Fars EOR technology setup for flooding

Fig. 4 FTIR spectra
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Fig. 5 PSA spectra

Fig. 6 ZP spectra

3.3 Zeta Potential

The most used stabilisation test for determining if com-
pounded NFs have stable dispersion is sedimentation. But
because it takes a lot of time and produces insignificant data,
this method is ineffective for assessing HAP dispersion sta-
bility. In order to investigate the dispersion stability of the
generated NFs, ZP measurements were carried out to quan-
tify the surface charge. ZP as a function of pHwas calculated
using a Malvern Zeta Sizer version 7.11. The pH range at
which the greatest number of hydroxyl ions is dispersed on
the surface of the HAP was determined (Fig. 6). The HAP
positive charges could be neutralised by the SDS attachment
at a pH of 1.69 and replaced with negative SDS ions (acidic).
The ZP varies from − 5.69 mV to − 27.2 mV between pH
values of 1.69 to 12.8, according to the results, demonstrating
that the particles are more stable in a basic medium [45, 49].

Instable suspensions, most likely brought on by agglomera-
tion, are indicated by ZP values of NFs less than 5 (5.0 mV).
The average ZP value demonstrates the high stability of the
in situmodifiedHAP. Themagnitude suggests if the colloidal
system might be stable. A significant negative or positive ZP
will cause all of the particles in suspension to reject one
another and have no tendency to stick together. HAP can be
suggested for EORapplications since it exhibits colloidal sta-
bility and dispersion with a ZP of − 27.2 mV, which implies
long-term fluid stability [40].

3.4 XRD

In order to investigate the sample’s structural details, pow-
der X-ray diffraction was performed. The XRD patterns of
the HAP are shown in Fig. 8. The pattern’s sharper peaks
suggest enhanced crystallinity. There is excellent agreement
between the peak positions and the JCPDS (09432) [50, 51].
As can be seen, the hydroxyapatite XRD patterns with the
diffraction peaks produced at 2.82, 2.79, and 2.72 as well as
the other d-spacing values fully match the hexagonal system
with primitive lattice. The results of the XRD analysis used
in this analysis agree well with literature. The peaks were
solely crystalline in structure and consisted of the hexago-
nal HAP phase; no other secondary phases, such as calcite,
were found (Fig. 7) [52]. The large peaks around peaks (002)
and (211) show that the crystallite size was on the order of a
nanometre scale [53, 54]. The peaks that represent the (112),
(300), and (202) reflections, however, are overlapping as a
result of peak broadening [40]. This shows that crystallinity
and crystal size may have reduced, and the reduction may
have been caused by the presence of di-hydrogen phosphate.

The sandstone outcrops used for the NF displacement
were examined before and after flooding using XRD,
FESEM, and SEM in order to look into the NF adsorp-
tion and retention in the sandstone porous media. Despite
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Fig. 7 X-ray diffraction spectra for HAP

quartz being the most common mineral, the XRD data show
that feldspar and melanite are both present in almost all of
the supplied samples as small components. According to
the crystallography (Fig. 8a and b), HAP was discovered
on quartz after flooding, proving that it was maintained in
the sandstone. HAP altered the pre-NF mineral composition
of the sandstone, which initially included quartz (92.2%),
melanite (5%), and feldspar (2.8%). Figure 8a consists of
quartz, melanite, and feldspar, while Fig. 8b consists of
quartz,melanite, feldspar, andHAP.There are like changes in
the peak values from 8a to 8b, indicating that the adsorption
of HAP slightly modified the mineral content of the rock.

3.5 SEM Analysis

To determine whether the retained NPs are adsorbed onto
the rock surface or if they formed clusters with pore chan-
nels, SEM pictures of the crushed sandstone were collected
both before and after the flooding. As compared to the rock
sample before flooding (Fig. 9b), traces of HAP were found
deposited on the rock after flooding (Fig. 9d). The findings
showed that the majority of the particles were adsorbed on
the rocks and that there were few clusters form (Fig. 9c)
present. This suggests that, in contrast to traditional NPs, the
adsorption of the particles on the rock can cause them to stay
in the reservoir for longer periods of time. The adsorption
could equally be influenced by the presence of SDS since
surfactants have a high ability to absorb on rock surfaces
[55–58]. This long-term retention also causes a long-term
change in wettability, which is helpful for EOR [16, 32, 59].

The fewobserved clusters could be attributed to theNF stabil-
ity as explained by the ZP analysis in Sect. 3.3, resulting from
electrostatic repulsion between negatively charged HAP par-
ticles.

3.6 FESEM Analysis

Prior to the NPs adsorption, FESEM images were taken at
a reduced scale to better understand the mechanism of NPs
adsorption on the rocks. Most of the particles were adsorbed
with few clusters, confirming the SEM analysis and NF sta-
bility (Fig. 10). Due to the size of the particles, the flow of
NPs through porous medium displays a Brownian motion
[60–62]. Several forces, such as the Van der Walls forces,
draw in potential forces and regulate the interaction between
the particles and the walls of the porous media [63, 64]. The
NPs and the porous medium wall are attracted to and repel
each other, causing adsorption and desorption to occur [56,
65]. Diffusion, convection, and hydrodynamics in particu-
lar play a significant impact in the flow of particles across
porous media [66]. However, born repulsion and hydrody-
namic forces influence the adsorption of NPs onto the surface
of rocks, respectively. The born repulsion that develops as the
surface of the particle and thewalls of the porousmedia come
into contact influences the adsorption of NPs onto the sur-
face. When NPs move through porous media, hydrodynamic
forces that are low will cause the particles to be suspended
onto the pore surface, where they may become adsorbed
depending on the surface charge [67]. This is in contrast
to how the hydrodynamic force governs the suspension of
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Fig. 8 Post-analysis XRD spectra for a sandstone and b sandstone with HAP

Fig. 9 SEM spectra with a HAP, b sandstone, c and d sandstone with NPs adsorbed
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Fig. 10 FESEM spectra with a HAP, b sandstone, c and d sandstone with NPs adsorbed

a flowing liquid and is dependent on the surface charge of
the NPs. As a result, the high adsorption of HAP onto the
sandstone rock as indicated in Fig. 10d concludes that born
repulsion was dominant.

3.7 EDX Analysis

According to the EDX study, the presence of calcium and
phosphorus with high percentages in (Fig. 11a) is a result of
HAP, but the high concentrations of silicon and oxygen in
(Fig. 11b) are attributed silicon dioxide (quartz), the domi-
nant element in sandstone as initially confirmed by the XRD
results. Traces of other elements in small amounts could be
attributed to felspar and melanite. The presence of HAP is
confirmed with the inclusion of two previously non-existent
elements (calcium and phosphorus) in (Fig. 11d), with a
reduction in the fractions of silicon and oxygen as com-
pared to (Fig. 11b). The calculated Ca/P molar ratio, which
was obtained from the elemental composition, came out to
be 1.69, which is less than 2 and falls within the permitted
range of HAP values. Calcium and phosphorus should have
a standard HAP ratio of 1.67 [40].

3.8 Brine Viscosity

The ionic solution’s viscosity is influenced by three factors:
Brownian motion, Debye–Hückel interaction (electrostatic

potential caused by all surrounding ions), and structural tem-
perature impact (the tightening or loosening of the structure
caused by hydrated or un-hydrated ions, respectively) [26,
61]. The Debye–Hückel interaction and Brownian motion
always contribute favourably to the viscosity of any brine
[68]. However, the influence of structural temperature on
the viscosity of brine varies depending on the type of salts,
either positively or negatively [69, 70]. Three mechanisms
can be used to treat the physical cause of viscosity. First, each
ion is represented as a separate particle that, through Brow-
nian motion, transfers momentum from one region of the
liquid to another. Second, the Debye–Hückel theory, which
states that “a particular resistance to shear directly correlates
with viscosity and accounts for the influence of the ionic
interaction”. Thus, the Brownian motion and Debye–Hückel
interaction always make positive contributions to the vis-
cosity of any ionic solution. Finally, the presence of ions
changes the structure of water, affecting how strong the con-
nections are. Depending on the kind of salts used, this final
factor affects the ionic solution’s viscosity either favourably
or unfavourably [68]. Due to the presence of NaCl, the elec-
trostatic attraction between the water layers in this case is
heightened, resulting in an increased viscosity of the brine.
The overall cathodic current for both dilute and concentrated
NaCl electrolytes increases with increase in temperature
(Fig. 12). For NaCl electrolytes (5000–30,000 ppm), an
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Fig. 11 EDX spectra with spectra with a HAP, b sandstone, c image spectrum and d sandstone with NPs adsorbed

Fig. 12 Brine viscosity at varied
temperatures
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increase in temperature leads to higher conductivity, lower
viscosity, and oxygen concentration [71].

3.9 Nanoparticles Displacement

The findings from the NPs transport across porous media are
presented in Table 2. Figures 13 and 14 display breakthrough
curves for NP transport studies through porous sandstone

media. The two main methods for retaining HAP on the
sandstone grains are deposition and adsorption, respec-
tively. Therefore, the FESEM, XRD, SEM, and EDX studies
demonstrated the presence of HAP on the surfaces of the
sandstone grains with (a) 5000 ppm brine, (b) 10,000 ppm,
(c) 20,000 ppm, and (d) 30,000 ppm, respectively. According
to the findings, a rise in salinity from 5000 to 30,000 ppm led
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Table 2 Parameters for transport
of NPs through sandstone at
different ionic strengths

Brine concentration 5000 ppm 10,000 ppm 20,000 ppm 30,000 ppm

Area 0.00779 0.00684 0.00561 0.00229

PVBT 1.2 1.1 1.3 1.0

RNP 0.65 0.62 0.43 0.23

Ci/Comax 0.001639 0.001826 0.002372 0.000593

Porosity (%) 21.3 19.6 21.5 23.3

Permeability (mD) 275.001 243.369 274.697 395.103

N0. of PV 5.6 5.6 5.6 5.6

Where each brine concentration used for each core was C1(5000 ppm), C2(10,000 ppm, C3(20,000 ppm), and
C4(30,000 ppm), respectively

Fig. 13 Nanoparticles recovery for a 5000 ppm brine, b 10,000 ppm brine, c 20,000 ppm brine, and d 30,000 ppm brine

Fig. 14 Cumulative nanoparticles
recovery for all the brine
concentrations
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Fig. 15 Area calculations for breakthrough curves corresponding to a 5000 ppm brine, b 10,000 ppm brine, c 20,000 ppm brine and d 30,000 ppm
brine

to a decline in HAP recoveries from 0.65 to 0.23%, respec-
tively. In addition, it was found that the salinity rise resulted
in an extension of the NP’s breakthrough time and experi-
ment duration. Another factor that was noted during the tests
was a decrease in the outlet’s maximum NP concentrations
(Ci/CO max). The NP percentage recovery was calculated by
measuring the area under the breakthrough curves (Fig. 15)
and applying it in Eq. (2)

NP % Recovery � Surface area under BT

No. of PVs in suspension
× 100 (2)

Two processes are related to how long NPs stay in the
reservoir. Adsorption on the rock is favourable for EOR,
whereas pore channel obstruction is detrimental to EOR [6,
72]. The permeability measurements conducted before and
after the NPs flooding through core plugs, however, showed
that there was negligible pore channel obstruction. In light
of this, adsorption was the primary cause of the low NPs
recovery. Even though numerous studies have reported that,
90% or more of the NPs are retrieved after injection [35,
73–75], complete NPs recovery, on the other hand, results
from low adsorption, whereas NPs adhering to rock surfaces
and their retention in the reservoir cause long-term wetta-
bility changes which is intend beneficial for EOR [31, 76].
LowNPs recovery during EOR also results in low separation

costs after oil/NPs production [77]. This result therefore sug-
gests that HAP-NF is a good candidate for EOR processes
[7] based on the adsorption affinity onto sandstone Figs. 10
and 11, which will lead to long-term wettability alteration
[40, 76] during EOR mechanisms.

The decrease in NP recovery with increased salinity could
equally be linked to the agglomeration and aggregation of the
NPs at higher ionic strengths, resulting in poor NP mobility
through porous media [7, 20, 77–79]. The recovery could
also be linked to changes in the porosity and permeability
of the cores. There are many different processes that mod-
ify the porosity and permeability of a porous medium. These
processes include changes in mechanical stress, sedimenta-
tion, filtration, and mineral precipitation or dissolution [26,
80, 81]. The change in effective porosity contributing to flow
depends on the process that alters the individual pore space
[82]. The observed reduction in porosity and permeability is
therefore the result of NPs retention.

Due to the presence of clay minerals, sandstones have
a tendency to expand at elevated relative humidity, which
can have an impact on the material’s mechanical characteris-
tics and pore scale impact [83]. Nonetheless, an increased in
NaCl concentrations will result in a thinner diffuse double
layer (DDL), which will then result in a weaker repul-
sive force between clay particles. As a result, the specimen
clay will tend to show decreased residual swelling pressure
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Fig. 16 Differential pressure

with increase in NaCl concentration [84]. Furthermore, clay
aggregates increase due to the adsorption of NaCl ions (from
brine), which also promote mineral breakdown, increasing
permeability as a result [85, 86].

The Fars EOR Technology pressure gauge continuously
measured the differential pressure during the flooding exper-
iments. For each of the individual core plugs C1, C2, C3, and
C4, Fig. 16 shows the differential pressure and recovery data.
The cores received brine injections up until HAP-NF produc-
tion ceased. A rise in differential pressure was seen during
the first 0.5 PV of brine inundation. The differential pressure
fluctuated during the flooding, but it mysteriously increased
when brine was introduced at a pressure of about 0.5 PV into
this core plug. Some NPs may adsorb, clog pore channels,
and reduce the permeability of core plugs as a result. Given
that they all came from the same oil field, the differential
pressure of the individual core plugs displayed a similar pat-
tern. The tiny discrepancy in permeabilities between them
might be the cause of the fluctuation. Absolute permeability
increases with salinity, despite numerous studies showing
that low salinity floods increase NPs recovery.

4 Limitations and Recommendation

This research was restricted to sandstone cores at high salin-
ities and temperatures. As a result, research into alternate
reservoir rock types, like carbonates, is necessary. Addition-
ally, HAP must be checked for floods caused by low salinity.
While HAP in this study was produced and functionalized
in situ using SDS, other well-known chemicals for function-
alizing NPs, such as cationic surfactants and amines, might
be studied. The brine chosen for this study was sodium chlo-
ride only (monovalent cations in solution). The interaction of
HAP with divalent cations can equally be verified. Last but
not least, it is strongly recommended to use particle retention

models that take salinity and travel duration into account for
a detailed understanding of HAP transport through porous
media. Additionally, this work was aimed at addressing the
effects of monovalent cations on HAP transport and adsorp-
tion through porous media. However, NaCl is just one of the
many brines found in the reservoir. The application of other
cations especially divalent ions on HAP adsorption is thus
recommended.

5 Summary and Conclusion

In this study, the NP adsorption of HAP functionalized in situ
with SDS while it is transported across porous media under a
single-phase flow condition was comprehensively examined.
The following conclusions were drawn from the study’s find-
ings:

1. The P–O and O–H functional groups seen in the FTIR
results showed the formation of HAP, while the crystal
lattice of theXRD results suggested the formation of con-
ventional HAP. Furthermore, the ZP data demonstrated
the HAP stability in fluids and high temperature settings.

2. An increase in ionic strength causes NP retention to rise,
leading to a reduction in NP recovery. This is related to
the fact that NPs have limited mobility through porous
media when they aggregate and agglomerate at greater
ionic strengths.

3. There are two factors linked to the low NP recovery
(adsorption on the rock surfaces or aggregation of NPs
with the formation of clusters). However, the results of
the permeability tests performed on the core plugs before
and after flooding, as well as the SEM and FESEM
images of the sandstone taken, showed that it is almost
certainly due to adsorption.

4. The percentage of recovered NPs after flooding was
rather low in comparison with published works. This is
because the majority of studies concentrate on NPs that
pass through the reservoir without being retained. Two
benefits of the low recovery of theNPswithminimal pore
obstruction, however, mostly go unnoticed by most peo-
ple. Due to wettability alteration, long-term adsorption
of NPs on the rocks will result in negligible adsorption
of oil. Secondly, there will be fewer NPs produced along-
side the oil, resulting in lower separation costs after oil
production.

5. The majority of research on the transport of NPs across
saturated porous media uses simulation. However, in
order to comprehend the process at the laboratory scale
as well as in the field, equal emphasis needs to be paid to
laboratory methods.
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