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Abstract
In this work, a simple and efficient method is proposed to determine the ideality factor of solar cells and modules using the
knee point of the shunt resistance curve. The method was implemented by deriving a nonlinear empirical equation, which is
a function of the shunt resistance and ideality factor, from which a peak value of the function is obtained that corresponds to
the knee point of the shunt resistance. Researchers can use this simple approach to efficiently determine the ideality factor
by either having the datasheet information or experimental current–voltage (I–V) data. Also, the determined ideality factor
can be utilized to extract the other parameters of solar cells/modules, thereby modelling the I–V curve of these devices at
different conditions. The method was validated on four different PV modules that are available on the market, namely Poly-
Si, Mono-Si, thin film and multijunction (hybrid). It was found that the determination of the ideality factor by applying the
proposed approach is easier and more efficient than the methods reported in the literature.

Keywords Solar cell · PV module · Parameter extraction · Simple approach · Datasheet information

1 Background and Literature Review

Solar energy has a lot of potential tomeet our energy needs in
the future as it can be used in various interesting ways. Pho-
tovoltaic (PV) technology involves the conversion of solar
energy into usable electrical power by means of solar cells
or modules [1]. Four solar cell technologies are currently
available on the market that utilize monocrystalline, multi-
crystalline, thin film, and hybrid semiconductors [2–4]. A
precise model of the current–voltage (I–V) characteristics of
solar cells/modules enables effective quality control and per-
formance analysis of these devices [5–7]. It is also essential
for the prediction of energy yield, understanding solar cell
defects, and assessing PV modules in different environmen-
tal conditions [8–10]. However, to carry out a successful I–V
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modelling, it is imperative to determine the parameters of
solar cell/module devices. These parameters include the ide-
ality factor (n), series resistance (Rs), shunt resistance (Rsh),
photocurrent (Iph), and saturation current (Io), which can be
described by the single-diode model (SDM) [11].

The ideality factor (n) indicates the degree to which a
solar cell resembles the characteristic of an ideal diode (for
ideal diodes, n = 1). Therefore, the ideality factor is cru-
cial in determining the electrical response and fill factor of
solar cell devices [12, 13]. The value of ideality factor for
conventional solar cells is typically between one and two;
however, it can be greater than two for organic and per-
ovskite solar cells. In addition to the accurate I–V modelling
of solar cells and modules, determination of ideality factor is
important for the study of recombination mechanisms, solar
cells/modules ageing [14–17] and understanding the effects
of temperature and illumination energyon the performanceof
solar cells [18–22]. Furthermore, very recently, researchers
used deep-learning approach to monitor the ideality factor,
thereby estimating iron concentration in silicon solar cells
[23]. Williams et al. revealed the importance of the ideal-
ity factor to being a key variable for the design of tandem
perovskite-on-silicon solar cells, due to its strong influence
over whether tandem sub-cells should be current-matched or
intentional current mismatched [24]. Also, investigation of
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ideality factor plays an important role in understanding the
electrical and microscopic properties of both light-emitting
diodes and normal diodes [25, 26].

A survey of literature revealed the availability of a number
of computational and analytical techniques for determining
the ideality factor (n) and the four parameters (Rs,Rsh,Iph,Io)
that assist researchers simulate the I–V response of solar cells
and modules [27–36]. Analytical methods are not accurate
due to neglecting part of the quantities in the manipulation
process of equations [37–40]. Computational metaheuris-
tic algorithms were also used to find the ideality factor and
other parameters simultaneously, but they are computation-
ally complex and less stable in locating the best value of
ideality factor compared to the deterministic computational
methods [41–44].

Along this line, several methods were proposed to deter-
mine the ideality factor [45, 46]. For instance, Singh et al.
used special trans function theory (STFT) to determine the
ideality factor of grey and blue solar cells [47]. The advanced
STFT was also proposed as an alternative exact analytical
approach to determine the ideality factor of solar cells [48].
However, the implementation of these methods is complex
and it leads to obtain a less accurate I–V modelling, espe-
cially around the maximum power point (MPP). Moreover,
Bayhan and Bayhan proposed a simple analytical technique
to find the ideality factor of solar cells under illumination,
which was less accurate due to considering equal approxi-
mate values of the photocurrent (Iph) and short-circuit current
(Isc) in the utilized equations [49]. The methods of D.C. and
A.C. electro-analytical were also reported tomeasure the ide-
ality factor [43]. However, they are complex and unable to be
implemented when only datasheet information of the solar
cell/module is available. On the other hand, the use of ana-
lytical methods to find the ideality factor together with the
Rs, Rsh, Io and Iph parameters leads to inaccurate estimation
because approximations are carried outwith all parameters to
model the I–V response [50–54]. Noticeably, a trivial uncer-
tainly in the ideality factor results in a high relative error
of the I–V model [28]. Therefore, it has been inferred that
deterministic computational techniques can perform better
to determine the ideality factor if a right optimization algo-
rithm is chosen. In our previous works [27–29], different
deterministic approaches were proposed to extract the five
parameters of solar cells and modules accurately, thereby
modelling the I–V characteristics. However, accurate ideal-
ity factor had to be determined by simulating a collection of
I–V curves relative to the reference I–V curve, which was
relatively a complex and time-consuming operation.

2 Research Gaps

A comprehensive literature review revealed that there has
not been a defined approach for determining the ideality
factor of solar cells and modules in a simple and efficient
manner (trade-off between simplicity and accuracy). Meta-
heuristic approaches may provide a precise estimate of the
ideality factor, albeit at the expense of computational effi-
ciency. In addition, analytical and deterministic methods can
provide a straightforward estimation of the ideality factor at
the expense of precision.

3 Research Objective

This paper proposes a simple and efficient numerical
approach for determining the ideality factor of solar cells and
modules. The proposed method is meant to be applicable to
all types of solar cells and modules, and the ideality factor
can be computed using either the datasheet information or
experimental I–V measurements.

4 Research Contribution

The contribution of this work is to aid researchers, engineers,
and end-users of solar cells and modules in determining the
ideality factor with only the basic datasheet information or
measured current–voltage data. This method is novel in that
it employs the shunt resistance (Rsh) curve at its knee point
to find the ideality factor (n) readily and efficiently.

5 Mathematical Formalism

The single-diode model (SDM) equation can be used to
model the I–V characteristic of solar cells, which includes
the five parameters (n, Rs, Rsh, Io and Iph) [28]:

I = Iph − I o

[
exp

(
V + I Rs

nVt

)
− 1

]
− (V + I Rs)

Rsh
(1)

where Vt is the thermal voltage (kBT /q), kB is Boltzmann’s
constant, q is the elementary charge, and T is the cell’s tem-
perature in Kelvin. The theoretical value of the ideality factor
is assumed to be one (n= 1), implying that the recombination
of charge carriers does not occur in the p–n junction (deple-
tion region) of the cell. However, recombination may occur
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differently in various regions of the active layer, resulting in
a deviation from unity of the ideality factor. Consequently,
the ideality factor is a main tool used for determining the
type and order of charge recombination in various types of
solar cells. For a PV module, which is made from N series
of connected cells, the ideality factor (n) in Eq. 1 and the rest
of derived formulas should be replaced by N × a, where a is
the ideality factor of the PV module.

5.1 Boundary Condition andManipulation

Taking into account the boundary conditions at the short-
circuit current (Isc), open circuit voltage (Voc), andmaximum
power (Pm) in Eq. 1, it is possible to derive the following
equations:

0 = Iph − Voc
Rsh

+ Io

[
1− exp

(
Voc
nVt

)]
(2)

Isc = Iph − Rs Isc
Rsh

+ Io

[
1− exp

(
Rs Isc
nVt

)]
(3)

Im = Iph − Rs Im
Rsh

− Vm
Rsh

+ Io

[
1− exp

(
Vm + Rs Im

nVt

)]

(4)

The simultaneous Eqs. 2 and 3 can be used to solve for
the saturation current (Io):

Io =
Isc + Rs

Rsh
Isc − Voc

Rsh

exp
(
Voc
nVt

)
− exp

(
Rs Isc
nVt

) (5)

The term exp
(
Rs Isc
nVt

)
is small enough to be neglected

[55–57], so Eqs. 3 and 5 are rewritten as follows:

Iph = Isc + Rs Isc
Rsh

− Io (6)

Io =
Isc + Rs

Rsh
Isc − Voc

Rsh

exp
(
Voc
nVt

) (7)

It is known from the theoremof themaximumpower trans-
fer thatwhen the internal impedance (Z in) of a power source is
equal to the external impedance of the connected load (Zout),
maximum power (Pm) is delivered to the load. This can be
represented by [28]:

Vm
Im

= Zout = Z in (8)

The internal impedance formula can be derived from the
equivalent circuit of the single-diode model and is equated

to the external impedance:

Rs + rd Rsh

rd + Rsh
= Vm

Im
(9)

where rd is the dynamic non-ohmic resistance of the diode,
which is estimated by taking the first derivative of the diode
equation as follows:

rd = dVD

dID

∣∣∣∣
Pm

= nVt

Ioexp(
Vm+Rs Im

nVt
)

(10)

Then, substituting for rd in Eq. 9, one can get:

nVt (Im + Rs Im
Rsh

− Vm
Rsh

)

Vm − Rs Im
= Ioexp

(
Vm + Rs Im

nVt

)
(11)

Also, subtracting Eq. 2 from 4 yields

Ioexp

(
Vm + Rs Im

nVt

)
= Isc + Rs

Rsh
(Isc − Im) − Vm

Rsh
− Im

(12)

Now, the simultaneous Eqs. 11 and 12 can be solved to
make Rsh subject as follows:

Rsh =
R2
s

(
Isc Im − I 2m

)
+ Rs(nVt Im − IscVm ) + V 2

m − nVt Vm

Vm(Isc − Im) + Rs

(
I 2m − Isc Im

)
− nVt Im

(13)

Another expression can be achieved from Eq. 6 and 4 as
follows:

Isc + Rs Isc
Rsh

= Im + Rs Im
Rsh

+ Vm
Rsh

+ Ioexp

(
Vm + Rs Im

nVt

)
(14)

Substituting for Io in Eq. 14, another formula for the shunt
resistance (Rsh) can be derived, which is:

Rsh = Rs(I scA − Isc + Im) + Vm − VocA

Isc(1− A) − Im
(15)

where A = exp
(
Vm−Voc+Rs Im

nVt

)
.

Finally, by equating Eqs. 13–15, a relation between the
ideality factor (n) and series resistance (Rs) can be estab-
lished:

Rs =

nVtVm(2Im − Isc)A
−1 + nVt (IscVm − ImVoc)

+VocVm(Isc − Im) − V 2
m Isc

Isc Im(Voc − Vm) − I 2mVoc
(16)
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Fig. 1 The relation between ideality factor with shunt resistance and
root mean square error for PV modules made from a monocrystalline
silicon, b polycrystalline silicon, c thin film, and d hybrid active layers

5.2 ProposedMethod

This study was inspired by a number of experimental inves-
tigations conducted on the modelling of I–V characteristics
of solar cells and modules, with the intention of showing
an intriguing relationship between shunt resistance (Rsh) and
ideality factor (n). It was determined that the most accurate
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Fig. 2 a Determination of the ideality factor where Eq. 17 shows its
highest value at the knee point of Rsh-n, and b the I–V curve of a
sample module (SM55) which is opposite to the shape of Rsh-n curve

I–V model (the one with the minimum error) is obtained
when the ideality factor corresponds to the knee point of the
nonlinear curve of Rsh. Equation 15 can be used to draw this
nonlinear curve of Rsh as a function of the ideality factor. To
justify this finding, plots ofRsh versus root mean square error
(RMSE) of the I–V modelling were drawn for the four types
of solar cell technologies (monocrystalline, polycrystalline,
thin film and hybrid), as shown in Fig. 1. As can be seen,
the best I–V model is at the knee point of the positive values
of Rsh curve. Therefore, the ideality factor at the knee point
represents the most accurate value.

To develop an algorithm for extracting the ideality factor
at the knee point of the Rsh curve, we have transformed the
curve so that the knee point corresponds to a maximum point
(vertex) on the new curve, as shown in Fig. 2a. The new curve
was produced as follows; each single value of Rsh was sub-
tracted from its maximum value, i.e.

(
Rsh_max − Rsh

)
, where

Rsh_max is the maximum value beyond the knee point. Later,
the function was multiplied by the ideality factor to obtain:

f (Rsh, n) = (
Rsh_max − Rsh

) × n (17)

where f (Rsh, n) is the new curve function having a maximum
point which corresponding to the knee point of Rsh. Figure 3
shows the pseudocode used to execute the algorithm through
which the ideality factor was determined at the knee point of
the Rsh curve.
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Fig. 3 TheMATLAB coding steps of the proposedmethod to determine
the ideality factor

6 Results and Discussion

The proposed method was validated on four types of
PV modules that are available on the market, including
monocrystalline-Si (SM55), polycrystalline-Si (KC200GT),
thin film (ST40) and hybrid (CTJ30), whose datasheet
extracted I–V data can be found elsewhere [27, 58, 59]. The
photovoltaic parameters and number of cells of the PV mod-
ules at standard test condition (STC), which are reported in
the manufacturer’s datasheet, are shown in Table 1.

The accuracy of the proposed method to determine the
ideality factorwas assessed by finding the percentage relative
error (RE%) between the calculated I–V and measured I–V
data. This is because there are no benchmark ideality factors
for the PVmodules to be compared with the calculated ones.
Consequently, thefive intrinsic parameters of thePVmodules

were determined and utilized to generate the calculated I–V
data. Interestingly, the percentage relative error (RE%) was
found to be low enough, from 1 to 2.9%, when the proposed
methodwas used to simulate the I–Vcurve of the PVmodules
at STC, as shown in Table 2.

As shown in Table 3, the uncertainty of the ideality factor
estimated for the PV modules by the proposed method was
compared to those determinedbyother techniques reported in
the literature. Notably, the proposed method was found to be
more accurate (lowerRE%, as shown in bold inside parenthe-
sis) than the previous approaches in determining the ideality
factor. In addition, the two approaches developed by Zaimi
et al. [60] and El-Achouby et al. [61] exhibited high errors
when used to determine the ideality factor and other param-
eters of the thin film PV modules, but they performed better
for the mono-Si and poly-Si modules. It is worth mention-
ing that despite the higher accuracy of the proposed method,
the methodology process is much simpler than the methods
reported earlier.

The competence of the proposed method was further
demonstrated by estimating the ideality factor of several
PV modules at varying temperatures and irradiance levels.
Figure 4 shows the effect of temperature and irradiance on
the ideality factor of the investigated PV modules using the
proposedmethod.One cannotice that for themonocrystalline
PV module, the ideality factor was relatively increased and
decreased with the increase of temperature and irradiance,
respectively. This result was found to be in agreement with
the previously reported experimental investigations [18, 50].
However, the ideality factor change for the polycrystalline
and thin film PV modules was observed to follow a reverse
trend with the increase in temperature and irradiance [28].
Comparably, the change in the ideality factor was found by

Table 1 Photovoltaic parameters
of four types of PV modules at
STC extracted from their
datasheets

PV module PV parameters

Voc (V) Isc (A) Vm (V) Im (A) N

Mono-Si (SM55) 21.7 3.45 17.4 3.15 36

Poly-Si (KC200GT) 32.9 8.21 26.3 7.61 54

Thin film (ST40) 23.3 2.68 16.6 2.41 36

Hybrid/Multijunction (CTJ30) 2.610 0.473 2.314 0.452 3

Table 2 Intrinsic parameters of
different PV modules extracted
by the proposed method at STC

PV module Module parameters

n Rs (�) Rsh (�) Io (A) Iph (A) RE%

Mono-Si (SM55) 1.256 0.381 479.2 2.816E-8 3.453 1.04

Poly-Si (KC200GT) 1.192 0.212 388.6 1.675E-8 8.184 1.87

Thin film (ST40) 1.992 0.899 278.2 6.519E-6 2.687 1.66

Hybrid/multijunction (CTJ30) 1.028 0.055 425.1 2.83E-15 0.473 2.85
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Table 3 The determined ideality
factor of different PV modules
using the proposed method in
comparison to those estimated by
other researchers

PV module Ideality factor (n) (RE)

This work Ref. [60–62] Ref. [63]

Mono-Si (SM55) 1.256 (1.04%) 1.036 (1.53%) 1.64 (1.41%)

Poly-Si (KC200GT) 1.192 (1.87%) 1.043 (2.34%) 1.22 (2.19%)

Thin film (ST40) 1.992 (1.66%) 1.148 (2.21%) 1.38 (1.73%)

Hybrid/Multijunction (CTJ30) 1.028 (2.85%) NA NA
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Fig. 4 The simulated I–V curve of thin film (ST40) PVmodule at a dif-
ferent irradiances and b temperatures compared to those reported in the
datasheet and literature

other researchers to be insignificant with the increase in tem-
perature and irradiance [64].

Additionally, in order to observe the fitness quality of the
simulated I–V curves at different irradiances and tempera-
tures, the determined ideality factors were used to calculate
the I–V data at each condition. The results of this simulation
is shown in Fig. 5 for the thin film (ST40), as a represen-
tative PV module. It was found that the proposed method
has well fitted the datasheet I–V at different environmen-
tal conditions. Noticeably, there has been less deviation of
the calculated curves from those of the measured ones at
low temperatures and high irradiances, implying an efficient
response of the proposed method compared to those reported
in the literature. It was observed that the proposed method is
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Fig. 5 The simulated I–V curve of thin film (ST40) PVmodule at a dif-
ferent irradiances and b temperatures compared to those reported in the
datasheet and literature

more efficient at the maximum power point (MPP) and at the
voltages beyond Vm (see Fig. 5) compared to that reported
by Chaibi’s et al. [63].

7 Conclusions

A new simple and efficient numerical method was success-
fully implemented to extract the ideality factor of solar cells
and modules from the knee point of the shunt resistance
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curve. The ideality factor of mono-Si (SM55) was deter-
mined to be 1.256, while that for poly-Si (KC200GT), thin
film (ST40) and hybrid (CTJ30) were found to be 1.192,
1.992 and 1.028, respectively. The relative error percentage
in the ideality factors estimated by the suggested method
was found to be lower than those reported by previous meth-
ods. Noteworthy, the relative errors in the ideality factor
of mono-Si (SM55), poly-Si (KC200GT), thin film (ST40)
and hybrid (CTJ30) were calculated to be 1.04%, 1.87%,
1.66% and 2.85%, respectively. Importantly, the proposed
method can use either the datasheet information or exper-
imental current–voltage (I–V) data to extract the ideality
factor, through which the other four parameters of solar
cells/modules can also be determined. This allows for the cor-
rectmodelling of I–V characteristics under diverse scenarios.
It was determined that the proposed method for obtaining the
ideality factor is simpler and more effective than the meth-
ods described in the literature. The proposedmethod can help
researchers, engineers, and end-users of solar cells and mod-
ules in determining the ideality factor with only the basic
datasheet information or measured current–voltage data.
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