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Graphical abstract Abstract 
 

Conventional power generation is one of the main contributors to the 

phenomenon of the greenhouse effect. This has led to a diversification 

of electricity sources including environmentally friendly energy sources 

such as solar energy. Off-grid PV systems have gained some traction due 

to their cost-effectiveness for rural communities. However, the 

intermittent nature of solar is the main challenge to developing the off-

grid PV system. Moreover, the high capital cost of PV systems as well as 

the storage batteries becomes the main concern for all PV users. Thus, 

this study aims to optimize the size of the PV system and battery 

simultaneously and design a cost-effective off-grid photovoltaic system 

considering various aspects such as battery power, solar irradiance, and 

PV panel selection while ensuring system reliability. The proposed system 

was optimized using improved Differential Evolution (DE) and its 

effectiveness was tested by comparing the results with Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA). The Improved DE 

algorithm provides the highest average cost savings compared to other 

algorithms, which is $500 per year. It is recommended that this method is 

very useful in the optimization of off-grid PV systems, considering other 

uncertainties that affect PV system performance. 

 

Keywords: Off-Grid flow, Optimization, Photovoltaic, Battery, Levelized 

cost of Energy 

 

Abstrak 

 
Penghasilan kuasa secara konvensional adalah salah satu 

penyumbang kepada kesan kumah hijau. Perkara ini mendorong ke 

arah kepelbagaian sumber tenaga termasuk tenaga mesra alam 

seperti tenaga solar. Sistem solar terasing telah menarik minat 

disebabkan kos berpatutan untuk kawasan pedalaman. 

Walaubagaimanapun, tenga solar yang tidak tetap manjadi cabaran 

utama dalam membangunkan system solar terasing. Tambahan, kos 

pembangunan PV dan bateri penyimpan menjadi kebimbangan 

utama kepada pengguna PV. Oleh itu, tujuan utama penyelidikan ini 

adalah untuk menentukan saiz PV dan bateri secara serentak dan 

merekabentuk sistem PV yang kos efektif dengan mengambil kira 

pelbagai aspek seperti kuasa bateri, solar radiasi dan pemilihan PV 
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1.0 INTRODUCTION 
 

The continuous depletion of fossil fuel sources and the 

drive to combat carbon dioxide (CO2) emissions have 

led to the exploration of renewable energy sources 

[1,2]. In 2018, the transition to renewable energy like 

solar, wind, and biomass in the power sector had a 

positive impact on CO2 emissions, as 215 Mt of 

emissions were reduced [2]. This is due to a 7% 

increment in electricity generation from sustainable 

sources that added 450 TWh to global power 

generation [2]. Without this transition, global CO2 

emissions could have reached 1.5 Gt, an increase of 

11% in emissions from the current power sector [2].  

In this context, it is crucial to use energy that is 

sustainable, economical, and less risky for the 

environment, while meeting the increasing energy 

demand [3]. The photovoltaic (PV) system can be 

considered the most far-reaching solution that is at 

the cutting edge of progress while guaranteeing the 

energy era with low environmental impact [4]. PV 

technology is quiet and clean, as it works with the 

radiation emitted by the sun, unlike traditional fossil 

fuels [3]. In addition, the installation of PV systems does 

not occupy a large space because the small solar-

powered systems can utilize unused areas on rooftops 

of existing buildings. Installing PV systems in rural 

communities in African countries is practical due to 

ineffective conventional infrastructure to supply 

electricity where it is far from the national grid or 

transmission infrastructure [5]. The poor nature of the 

road network connecting these distant communities 

makes it impossible to install generators and transport 

fuel to generate electricity in such an environment. 

The amount of solar radiation and the duration of 

solar radiation in most African countries make the use 

of the sun the most important source of energy in the 

future  [6].  

Over the years, this has brought into focus the 

discussion on inexhaustible, sustainable, and 

environmentally sound energy. Several research 

areas are aimed at developing off-grid PV systems 

that will be integrated into the architecture of the 

power grid of buildings, not only to solve the problem 

of electricity generation but also to provide a source 

of income for the owners of the buildings [7]. This 

development study includes a comparative study by 

Kamran et al. that investigated three hybrid systems 

consisting of diesel generators, hydropower, PV, and 

battery in rural Punjab, Pakistan [8]. HOMER was used 

in the economic analysis to determine which offers 

the better net profit cost (NPC) for energy per kilowatt 

among the three designs, based on BS link canal-1. 

The optimization result shows that the hydro and solar 

storage system offers an optimal solution with better 

NPC [8].  

In the electrification of rural residential houses in 

Cyprus, a mathematical model was used to 

determine the different parameters of the systems in 

the feasibility analysis of an island PV system 

conducted by Kamali, S. [9]. The life cycle cost, 

annualized life cycle cost including the unit price of 

electricity was determined[9]. However, the authors 

do not address the basic strategy for the off-grid 

configuration. The ideal configuration of the electrical 

power supply system is discovered in [10] using linear 

programming techniques in the General Algebraic 

Modeling System (GAMS) environment, taking into 

account characteristic constraints as well as hourly 

weather data, demand data, the tilt angle of PV 

models and shades analysis.   
The research carried out in [11] focuses on the 

optimization of an off-grid hybrid PV-wind-diesel 

system with different battery technologies is 

performed using a Genetic Algorithm (GA). The 

optimization considered the PV system sizing, 

mechanical structure, battery, inverter, charge 

controller, and tilt angle. However, only uncertainties 

of solar radiation are considered in the study. Eteiba 

et al. proposed a hybrid system with an economic 

analysis based on Harmony Search (HS), Flower 

Pollination (FPA), Artificial Bee Colony (ABC), and 

Firefly Algorithm (FA)[12]. The aim was to find the most 

suitable algorithm to achieve optimal sizing of the 

hybrid system. The result showed that FA is the fastest 

way to achieve the optimal solution, followed by HS 

and FPA, while ABC needs more time to accomplish 

the same outcome [12]. Islam et al. [13] carried out a 

comparative study to observe the performance of 

GA, Particle Swarm Optimization (PSO), and 

Differential Evolution (DE) in smart grid optimization 

problems. The result shows that employing DE 

algorithm can significantly minimize the problem with 

less computational time [13]. 

In a comparative study conducted by Ouyang & 

Pano, [14] three metaheuristic algorithms DE, GA, and 

PSO were used to optimize the gain of PID controller 

for tuning and performance evaluation. DE algorithm 

performed better than GA and PSO for both linear 

and nonlinear contours. This was attributed to the 

panel. Dan dalam pada masa yang sama memastikan 

kebolehpercayaan sistem terjamin. Sistem yang direkabentuk 

kemudiannya di uji menggunakan DE yang telah ditambahbaik dan 

kemudiannya keberkesanannya dibandingkan dengan PSO dan GA. 

DE yang telah dikemaskini memberi purata penjimatan kost yang 

tertinggi berbanding dengan algorithm lain iaitu $500 setiap tahun. Ini 

menunjukkan kaedah ini sangat berguna dalam mencari sistem yang 

optimum. 

 

Kata kunci: Pengaliran PV terasing, pengoptimuman, fotovaltaik, bateri, 

kos PV yang disekatakan  

 

 

© 2023 Penerbit UTM Press. All rights reserved 
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competence in population diversity and the mutation 

process, which makes DE more adaptive in staying 

away from local minima. To improve the 

performance of DE, Gao et al. [15] introduced a 

directional permutation differential evolution 

algorithm (DPDE) to determine the optimal solar PV 

parameters. The performance of the proposed 

algorithm is compared with the other 15 algorithms. 

The results show that DPDE performs better than its 

competitors in terms of solution accuracy. 

The DE algorithm is known for its better global 

convergence and robustness, and is suitable for a 

wide range of optimization problems, quickly making 

it an ideal algorithm in current optimization domains 

[16]. In DE, the population consists of several 

individuals, each of which represents a possible 

solution to an optimization problem. DE generates 

individual offspring through mutation, crossover, and 

selection, which must converge to the ideal solution. 

Implementation of mutation to all competitors 

characterizes an investigation rule on other 

candidate solutions. Regardless of the capability of 

DE, some adjustments are basic fundamental to 

improve its performance, particularly in tending to 

high-dimension issues [17]. Stagnation, untimely 

combination and its sensitivity to control parameters 

such as tuning of PVs and batteries are some of the 

problems that impact the exhibition of DE [18]. 

To address these shortcomings of DE, numerous 

improvements were proposed, most of which focused 

on control parameters and mutation techniques. 

Population size NP, scaling factor F, and crossover CR 

are three key control parameters. In many works in 

the literature, there is evidence that the performance 

of DE can be improved by changing these control 

parameters [19].  

Hybridization of DE with other evolutionary 

algorithms has led to remarkable optimization results 

due to its flexibility in interaction with other algorithms 

[20]. Based on the literature in optimization area over 

the years show that the use of batteries in conjunction 

with renewable energy is reliable and 

environmentally friendly [3].  

However, several optimization problems are not 

direct and unexplored [21] such as uncertainties 

related to renewable energy sources, load demand, 

and non-linear characteristics of certain parts [4]. 

Moreover, the high capital cost of PV systems and 

storage batteries compared to conventional fossil 

fuel power plants is a major obstacle affecting their 

deployment on a larger scale. However, this factor is 

less considered in existing research. Considering the 

above studies, this study aims to design a cost-

effective off-grid PV system that takes into account 

various aspects such as battery power, solar 

irradiance, and PV panel selection, while ensuring the 

reliability of the system. The size of the PV system and 

the battery are optimized simultaneously using the 

improved DE. The improved DE is introduced by 

adopting the iteration-dependent factor (λ) in the 

mutation process. This proposed method provides 

better exploration and exploitation in the optimization 

process. 

 

 

2.0 MODELLING OF OFF-GRID PV SYSTEM 
 

The modelling process focuses on optimizing the PV 

and battery size using the improved DE algorithm. The 

optimization process starts by randomizing the 

number of PV and battery sizes simultaneously as 

shown in the flow chart of Figure 1. The irradiance 

level is then called to access the level of energy that 

can be harnessed from the irradiance. The hourly 

solar irradiance data that are obtained from NASA 

are utilized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Flow chart for the optimization process 
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Based on the randomized PV number and solar 

irradiance, the power produced by the PV, 𝑃𝑃𝑉 and 

power stored in the battery are determined. The net 

power of PV and battery, 𝑃𝑃𝑉𝐵𝑎𝑡𝑡 is then calculated 

and matches the load demand. At the point where 

there is excess solar energy available, the excess 

energy from the PV is stored in the battery storage 

until it is completely charged. On the other hand, 

the battery will be released and constrained by a 

charge controller to supply the load if solar PV is 

deficient or inexistent to avoid the battery's fast 

degrading which will affect its lifetime.  

Typically, an off-grid PV system comprises four 

fundamental segments, which are the PV module, 

battery storage, charge controller and inverter. The 

power supplied by the PV system feeds both the 

load and the storage battery being regulated by 

the charge controller. The excess energy from the 

PV that circulates in the system is stored by the 

battery storage until it is completely charged. On 

the other hand, the battery is released to supply the 

load when the solar energy is deficient and also to 

ensure the two constraints, SOC and load demand 

requirement are met. 

 

2.1 PV Array Modelling 
 

The output energy obtained from the PV is 

calculated based on the peak sun hours and 

ambient temperature [22]. Loss of efficiency due to 

high-temperature Floss (t) and energy generated by 

PV (Psol(t) are respectively estimated in equation (1) 

and (2). 

( ) (1 ( ( ) 25 )loss refF t T t = − −                               (1) 

Where T(t) must be greater than 25oC. 
( )

( ) ( ) Prsol loss

Gh t

GS
P t F t=                         (2) 

where, βref the temperature coefficient, (Psol(t) is the 

output power of a single solar panel and Pr 

manufacturer’s power rating of a single PV. GS is the 

standard incidence radiation (1000 W/m2) while 

Gh(t) is the series irradiance data recorded at the 

location. In this study, the 0.0038K is chosen for βref 

[23] and 315W SPR-315E-WHT-D monocrystalline cell 

is selected as a PV model. 

Traditional method can also be adopted in 

implementing PV systems. In this approach the 

number of PV panels required for a specific 

installation is given by, 

 

                     𝑁𝑃𝑉 =
(𝐸𝑟𝑒𝑞−𝐷𝑎𝑖𝑙𝑦/(𝐻𝑜𝑎×𝜂𝑠))

𝑃𝑃𝑉
                           (3) 

 

Where 𝑁𝑃𝑉 is the Number of PVs, 𝐸𝑟𝑒𝑞−𝐷𝑎𝑖𝑙𝑦 daily 

energy consumption in watt-hours, 𝐻𝑜𝑎 average 

daily solar radiation, 𝜂𝑠 system efficiency and 𝑃𝑃𝑉 is 

the PV panel power rating. The module efficiency, 

inverter efficiency, wiring efficiency, and other 

system losses constitute the system efficiency. The 

average solar radiation received by Ghana each 

day ranges from 4.0 to 6.5 kWh/m2, with sunlight 

hours per year averaging 1800 to 3000h [24]. 

The traditional method of estimating the number 

of PVs and batteries for a solar power system 

involves determining the daily energy needs, 

calculating the daily solar energy production, sizing 

the PV and battery systems, and adding safety and 

redundancy factors.  

The location chosen for this study is located in the 

southern part of Ghana where the rainfall pattern is 

enormous during the rainy seasons. Therefore, 

replicating this in a similar or better geographical 

location will result in optimal-size PVs and storage 

battery systems. 

 

2.2 Irradiance Data Modelling 

 

Solar radiation modelling is carried out by studying 

the solar orbit and its effect on the solar panels and 

how much energy can be generated [25]. In this 

model, the parametric component to be 

considered is the time and day of the year. The 

maximum amount of incident solar radiation is 

measured on an inclined surface, whereas global 

solar radiation is typically measured on a flat surface 

[26]. Global solar radiation is typically measured on 

horizontal surfaces at weather stations. However, 

most stationary solar systems, including solar 

photovoltaic and flat plate solar collectors, are 

positioned on inclined surfaces to fully exploit the 

sun radiation on collector surfaces. 
Finding the best accurate model for each region 

is necessary due to the latitude that has a significant 

impact on estimating models. Comparing 

measured values and estimated values using 

various statistical indicators will reveal an accurate 

model [24, 25]. The boundary parameters are 

utilized in determining the sun's elevation, 

declination, and azimuth, the tilt angle of the earth 

pivot, and the tilt angle of PV cells [28]. 

 

2.3 Temperature Modelling 

 

The output voltage of a PV model is affected by 

temperature variations. The output voltage is highly 

dependent on temperature and an increase in 

temperature leads to a decrease in output 

voltage[29]. The widely used method to model the 

temperature of a PV cell is by utilizing the nominal 

operating temperature (NOCT) of the PV module 

concerning the Ross model that is expressed in 

Equation (4). 
( 20)

( )
800

NOCT
C a

T
T T Gh t

−
= +                             (4) 

where Tc is the temperature of the PV cell, Ta is the 

ambient temperature, Gh(t) is the series irradiance 

data, and TNOCT is the Nominal Operating Cell 

Temperature. The NOCT of 315W SPR-315E-WHT-D 

cell of 46.0ºC was used.  

 

2.4 Load Modelling 

 

Load profile characteristics are an essential 

component in determining the reliability and 

appropriate sizing of an off-grid system. Proper 

modelling of the load profile provides a reliable load 

forecast of how much energy is needed to power 

the off-grid PV systems. The load profile is modelled 

in this study based on residential energy demand 

assessment data obtained from the Ghana Power 

Utility company. 
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2.5 Battery Storage Modelling 

 

The state of charge SOC of the battery at any time 

t (hour), is identified with the preceding SOC [SOC(t–

1)] that relates to the production of energy and 

utilization circumstance of the system within a 

duration of (t-1 to t) [30]. In this charging process, 

when the battery power PBatt (t) at time t flow 

towards the battery (i.e., PBatt (t) > 0), the accessible 

battery SOC at time t (hour) can be estimated by 

equation (5). 

( )

_

( 1)
1000

Batt
t

rated

P t
SOC SOC t

C


= − +


                    (5) 

where 𝐶_rated is the nominal total capacity of a 

battery in kilowatt-hours and Δ𝑡 is the step time of 

simulation (set equal to 1hr). Furthermore, when the 

battery is discharging, the battery power flows 

outside of them (i.e., PB<0), so the accessible 

battery charge at time t can be expressed using 

equation (6). 

( )

_

( 1)
1000

Batt
t

rated

P t
SOC SOC t

C


= − −


                      (6) 

The discharge capacity (C_ discharge) of a working 

battery is the discharge energy limit when it is 

discharged. Likewise, the SOC is characterized as 

the percentage level of discharge limit compared 

with the battery-rated capacity (C_ rated), as a state 

by the manufacturer [31]. 
 

_ arg
100

_

C disch e
SOC

C rated
=                        (7) 

 

Disregarding the effect of ageing and the 

operational efficiency of the battery, the SOC is 

calculated using equation (8). 

 

( ) 100% ( )SOC t DOD t= −                     (8) 

 

To ensure that the battery life is prolonged, the 

battery ought not to be overcharged or discharged. 

This implies that SOC at any hour t should conform to 

the set constraints. 

 

max max(1 ) ( )DOD SOC t SOC−                       (9) 

 

where DODmax and SOCmax are the maximum 

allowable depth of discharge and state of charge 

respectively. The storage capacity of the battery 

required (Cbank_req) during the days of autonomy 

and the rate of discharge of energy from the battery 

is determined by the Depth of Discharge (DoD) [32]. 

The greater the DoD and temperature adjustment 

factor (Mftem_Batt) of a battery, the better the output 

that depends on the battery manufacturer’s 

temperature characteristics [33] [34]. The required 

charge daily, (Creq_daily) and the required battery 

bank capacity (Cbank_req) is determined by equation 

(10) and (11) respectively. This formular also consider 

85% efficiency factor that accounts for energy losses 

due to battery charging and discharging. 

_ _

_

max

req Daily autonomy

req daily

E T
C

SV DoD
=                           (10) 

where SV is the system voltage as a state by the 

manufacturer on the nameplate in the order of 

6,12V, 24V, or 48V, etc. To determine the capacity 

of the battery bank required (Cbank_req) the daily 

charge required (𝐶𝑟𝑒𝑞_daily) is substituted given 

Equation (11). 

_

_ _

max _

autonomy

bank req req daily

temp Batt

T
C C

DoD Mf
= 


            (11) 

where Mftemp_Batt is the temperature derating factor of 

the battery. The charge required is given by the 

Output of the PV array (Ah) and must be greater than 

Crequired_daily. T_autonomy is the coefficient that 

determines the period within which the battery is 

capable of meeting the load demand without any 

energy from the PV which is normally taken as 4 days 

[35]. It is essential to design the Off-Grid PV system 

with a maximum daily SOC of less than 20% in other 

to prolong the life span of the battery. In determining 

the daily SOC, equation (12) is used. 

_

_

_

req daily

daily

bank selected

C
DoD

C
=

                         (12) 

2.6 Problem Formulation 

 

The variables to be optimized are the number of PVs 

and batteries. The objective of the formulated 

problem is to minimize the initial cost of PV and the 

battery including the inverter as in equations (13), 

(14), (15) and (16) [33].  

 

𝑓 = 𝑀𝑖𝑛(𝐶𝑃𝑉 + 𝐶𝐵𝑎𝑡𝑡 + 𝐶𝑖𝑛𝑣)                 (13) 
[ *(1 _ *( *(1 ).^ ( _ )]

[(1 ).^ _ ) 1)]

batt
Batt

N Batt C i i Bat L
C

i Bat L

+ +
=

+ −
    (14) 

 [ *( ) *( *(1 ).^ ( _ )]

[(1 ).^ _ ) 1)]

sol PV sol
PV

N P GS C i i PV L
C

i PV L

+ +
=

+ −
  

 (15) 
[ *(1 _ *( *(1 ). ^ ( _ )]

[(1 ). ^ _ ) 1)]*( )]

sol
inv

PV

N inv C i i Bat L
C

i Bat L P GS

+ +
=

+ −
        (16) 

 

Where BattC  is the cost of the battery, ,PVC is the cost 

of PV, invC  is the cost of the inverter, 𝑁𝑠𝑜𝑙 is the 

number of solar panels, _PV L  is PV lifetime, PVP  is 

the power rating of the selected PV, battN the 

number of batteries _Batt C  the unit cost of the 

battery, _Bat L  lifetime and Csol is the unit cost of the 

solar panel.  

The constraints play a significant role in the 

formulating of algorithms and programming for the 

general obliged issue. Thus, the related cost is 

minimized while satisfying battery constraints. The 

SOC must be greater than 21% [35] and the PV 

output must be greater than the charge required. In 

addition, the load demand should be met by either 

PV or battery, which means that at each instant 

sufficient power should be available.  

The economic cost analysis is an integral part of 

evaluating the returns of an Off-Grid PV system. One 

of the economic analysis tools is the Levelized Cost 

of Energy (LOCE) whereby the life cycle cost of the 

off-grid system is estimated using equations (17) and 

(18) [36]. 

 

, ,[ ] _ cos ( (2), (1),0)
PV Batt invC C CAnnual economic t x x=       (17) 

_ cos / ( 1) / 3LCOE Annual t sum load=           (18) 
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Where load1 is the estimated load at the location 

for the period under study. 

 

 

3.0 OPTIMIZATION OF OFF-GRID PV SYSTEM 

USING IMPROVED DE ALGORITHM 
 

The off-grid PV system is optimized using an 

improved DE algorithm. The effectiveness of the 

proposed algorithm is observed by comparing it 

with GA and PSO.  Since the number of variables to 

be optimized is two which are the number of PV 

systems and batteries, the population size (NP) is set 

to 20 where the recommended population size is ten 

times the problem dimension [37]. A mutation factor 

of 0.5 and a crossover rate of 0.7 were chosen. 

Details of the solar modules, battery units, and 

inverters considered are given in Table 2. The 

algorithm uses the standard test conditions (STC) of 

a 315W SPR-315E-WHT-D monocrystalline cell with a 

nominal cell temperature (NOCT) of 46.0ºC to 

determine the optimal photovoltaic (PV) system size 

[38] and selects 1400 battery units as the upper 

boundary that have sufficient ampere-hour (Ah) 

capacity to meet the load demand of the 

autonomy days. 1000 and 1400 were set as the 

upper limit of the search space for the PV unit and 

the battery unit, respectively, while 1 was set as the 

lower limit of the search space for the PV unit and 

the battery unit. 

 

3.1 Improved Differential Evolution Algorithm 

 

The improved DE algorithm searches for the 

optimum global point i a D-dimensional real 

parameter of a given space [39]. The initialization 

starts with a randomly initiated populace of NP D 

dimensional genuine esteemed parameter vectors. 

Like other developmental strategies, DE manages a 

populace, 𝐺𝑖, of candidate solutions [40]. The 

populace contains NP solutions. Every solution 𝑋𝑛
𝑖  

contains a lot of the optimizing parameters xn. The 

lower optimum limit of PV modules and battery units 

are set to unity, which implies that at least one PV 

module and one battery unit are chosen. This limit is 

the lowest possible practical limit. The maximum 

number of battery units that can be selected by the 

DE is limited by the load demand during the days of 

autonomy [41]. 

 

1 2 3[ , , , , , ]i T

NPG X X X X=                     (19) 

1, 2, 3,,,, ,[ ]i

n n n n nDX x x x x=                   (20) 

 

3.2 Initialization  

 

DE begins with the underlying populace produced 

randomly utilizing the lower and upper limits as 

shown in equation (22). 

 

,min ,max ,min*( )ij j j jx x Rand x x= + −            (21) 

1,2...., 1,2...i NPandj D= =                            (22) 

 

where Gmax is the maximum number of generations, 

NP is the population size, D is the number of 

parameters to be optimized, xj,min is the lower bound 

of optimized parameter j, xj,max is the upper bound of 

optimized parameter j.  

 

3.3 Improved Mutation Process 

 

The mutation process takes part after the 

initialization. This process is the primary segment that 

distinguishes DE from other populace algorithms 

[17]. Applying the mutation to all competitors 

characterizes an investigation rule depending on 

other candidate solutions. Regardless of the 

capability of DE, it is clear to researchers that some 

adjustment to DE is a basic fundamental to improve 

its performance, particularly for high-dimensional 

issues [17]. Stagnation, untimely combination, and its 

sensitivity to control parameters such as tuning of 

PVs and batteries are some of the principles that 

affect the exhibition of DE. DE is exceptionally reliant 

on the control parameters involved [42, 43]. Fine-

tuning these fundamental parameters in practice is 

very cumbersome depending on the complexity of 

the problem. However, improving the mutation of 

the DE Algorithm will keep the multiplicity of the 

population and also enhance the capacity of the 

local search [43] with less computational time to 

achieve a desirable solution. 

The mutation activity is appraised as the initial 

move toward the age of a new solution [44]. Then, 

for each solution in the population, 𝑋𝑖
(𝑡) two solutions 

𝑋𝑟1
(𝑡), 𝑋𝑟2

(𝑡) are randomly chosen and a freak vector 

𝑉𝑖
(𝐺) is created as shown in equation (23) [45].  

 

1 2 3( 1) ( ) .( ( ) ( )i r r rV g X g F X g X g+ = + −                    (23) 

 

where 𝑖 ≠ 𝑟1 ≠ 𝑟2 = 𝑟3,𝑖 = 1,2. . . 𝑁𝑃 are randomized 

integers generated from the set, g the current 

iteration number of the generation,  and a new 

population is generated as ( 1)iV g +  i.e., the quantity 

of the optimized parameters [46].  

 

1 2 3/ /1 ( )t t t t

i r r rDE rand V x F x x→ = + −          (24) 

1,2,..,...j D=  

2 3/ /1 ( )t t t t

i best r rDE best V x F x x→ = + −               (25) 

 

Considering equations (24) and (25),
1, 2, 3

t t t

r r rx x x  are 

different randomized individuals that are not the 

same as one another. Meanwhile, t

bestx  is the best 

individual in the populace. F is the mutation factor 

which is set within [0, 1] [45, 49]. 

Consolidating the attributes of these two diverse 

mutation strategies, the impacts of random 

individuals 𝑋𝑡
𝑟3, and ideal individuals  𝑋𝑡

𝑏𝑒𝑠𝑡, are 

taken into account when making the transformation 

process of the mutation equation [46] [47]. Thus, the 

mutation strategy adopted is written in equations 

(26) and (27). 

 

1 2 3(1 ) ( )t t t t t

i r best r rV x x F x x = + − + −               (26) 

_ max _ max( ) /T t T = −                                 (27) 

 

where λϵ [0, 1]. If λ= 1 then equation (26) turns into 

equation (24). Meanwhile, equation (27) turns into 
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equation (25) that corresponds with DE/rand/1 and 

DE/best/1 respectively if λ=0. T_max is the largest 

number of iterations and t is the current number of 

iterations. Thus in the evolutionary process, λ can 

gradually change from 1 to 0 to realize combining 

local search with global search [46]. Accordingly, λ 

is set as the annealing factor as shown in equation 

(27).  Integrating the local and the global search 

capabilities offers the best precision and 

convergence rate thereby improving the mutation 

process [46].  

 

3.4 Constraint 

 

Loss of load probability (LoLP) is a statistical 

parameter that portrays the chances of failure in 

power supply either due to low resource availability 

to meet energy demand or due to technical failure. 

LoLP is calculated using equation (27). 

 

( ( ) _ ( ) ( ))

( )

P t P out t P tpv BLoad
LoLP

P t
Load

 − +
=



    (28) 

 

3.5 Finding the Optimal Solution 

 

To find the global, or near-global, optimal solution, 

the candidate solution objective function 

estimation is compared with that of the best solution 

objective in the following generation [40]. 

 

 

4.0 RESULTS AND DISCUSSION 
 

The allocation of an Off-Grid PV system for 

households for a small community located in Ghana 

at longitude and latitude coordinates of -1∘35’59.99 

and 5∘54’59.99, respectively. Annual solar irradiance 

data of the site is shown in Figure 2 were taken from 

the NASA website. Considering the radiation 

pattern, it is evident that the location has the 

potential to implement the Off-grid PV system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Annual Solar irradiation of location 

 

 

Nevertheless, the proper implementation of an 

Off-grid PV system is highly important to maximize 

the benefit of the solar energy system. Furthermore, 

the installation of solar panels at a proper elevation 

of tilt angle contributes significantly to maximizing 

the output power of the generation. 

The optimum tilt angle is analyzed by adding 15o 

to the latitude in the winter and subtracting 15o from 

the latitude during the summer. Since the site under 

study is located -1.355˚ North and 5.545˚ West 

longitude, therefore the solar panels' optimal angle 

is adjusted to be 15˚ facing southward. For fixed and 

non-rotational panel systems, the aforementioned 

tilt angles were chosen for the optimal year [3]. 

Testing of photovoltaic modules is carried out at a 

temperature of 25oC (STC) which is about 77 

degrees on the Fahrenheit (F) scale. Depending on 

the location of the installation, the temperature can 

affect the efficiency of the output by 10-25% [48]. 

This results in an exponential increase in current 

and a linear decrease in voltage [23]. Figure 3 shows 

the temperature of the location ranging from 19-38 
oC. The result shows that the maximum temperature 

is 38oC. The cell temperature is determined by 

steady-state power balance. An assumption is 

commonly made that states that a drop in cell-

ambient temperature increases linearly with 

irradiance [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 Annual temperature location 

 

 

4.1 Sizing of Off-grid PV System 

 

Sizing of PV and battery are conducted based on 

the manufacturer’s datasheet of the selected PV 

panel, type of battery storage, Inverter type and the 

economic rate of interest, and other factors as 

provided in Table 1.  

 
Table 1 Technical specification and economics of the system 

 

Type 
315W SPR-315E-WHT-D 

MONOCRYSTALLINE CELL 
 

SI UNITs 

 STC Power Rating Pmp (W) 315 W 

 Open Circuit Voltage Voc (V)  64.6 V 

 Short Circuit Current Isc (A)   6.14 A 

 Nominal Operating Cell Temperature 

(NOCT)  
46.0ºC 

 

 

Panel Efficiency  19.3% 

Fill Factor  79.4% 

 Unit Price (USD)     416.078 

 Life expectancy 25 years 

Deep-Cycle Flooded/Wet Lead-Acid Battery  
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Type 

315W SPR-315E-WHT-D 

MONOCRYSTALLINE CELL 

 

SI UNITs 

 Trojan J305H-AC Flooded Battery 360Ah 

System Voltage  6.0V 

Bulk Charge 7.14V 

 Unit Price (USD) 408.66 

 Life expectancy 5years 

 Operating Temperature: -20+55°C 

APOLLO STP-2110 Cp (L) Bidirectional Parallel Inverter 

 At 25.0 ºC. CosΦ= 1 18KVA 

 Nominal Voltage   48 VDC  

 Maximum charging current   240 A 

 Efficiency  95% 

 Economic parameters  

 Interest rate 6% 

 Inflation rate 1% 

Operation and maintenance cost usd1/KW 
 

 

This includes the power ratings, efficiencies NOCT 

of the PV cell, and the operating temperature of the 

battery. The load demand is supplied by solar 

energy and battery bank. In the daytime when 

sufficient solar energy is available, the load is 

supplied by the solar panel, while in the days of 

autonomy period battery storage is used to supply 

the required energy. To maintain a continuous 

balance between electricity production and 

consumption, there are strict constraints on the 

whole system.  

It is important to have in full sight the 24-hour load 

profile which best analyses the consumption pattern 

to determine the appropriate sizing for PV and 

battery. A typical 24-hour load profile of a residential 

housing unit is shown in Figure 4 with the maximum 

load demand recorded in the evening hour of the 

day. This is normal because consumers leave their 

various homes in the daytime to their farms and 

place of work and return home in the late afternoon 

resulting in a load rise that continues to the evening. 
 

 
 

Figure 4 24 hours load profile of location 
 

 

The efficiency of the photovoltaic panel, battery, 

and inverter as provided by the manufacturer’s 

datasheet are 19.3%, 90%, and 95%, respectively. 

Furthermore, the highest maximum load demand of 

the system recorded is 57 kW as shown in Figure 4. 

The load is expected to remain within this range 

looking at the load pattern. 

 

4.2 Optimization Algorithms Results 
 

The improved DE algorithm optimizes the size of the 

PV and battery to reduce the overall cost of the 

system based on two constraints and boundary 

conditions. The annual cost of the system's energy 

production was chosen as the objective function. 

The system analyzed three years of data and the 

results are based on the best fitness function. The 

results of the improved DE algorithm converged in 

less than 50 iterations. The optimization of DE results 

in an optimal number of 1154 PV units with 315 W 

solar-powered monocrystalline cells and 813 battery 

units of 360Ah each. This means that the peak power 

of the PV source is 363.5 KW. The result for the 

optimal sizing of the off-grid PV system with the 

battery using DE, PSO, and GA is shown in Table 2. 

The result shows a significant reduction in the 

electricity price with improved DE compared to PSO 

and GA. For the electricity cost (USD/kWh), by 

reducing the proportion of PV system and battery, 

some useful results are obtained, which lead to 

significant savings in annual energy cost and 

electricity cost. 
 
Table 2 Optimum Sizing using improved DE, PSO and GA 

 

Description  DE PSO GA 

No. of PV modules 1154.0 1161.0 1170.0 

No. of Battery units 823.0 824.0 825.0 

Load served (kWh) 351.49 351.49 351.49 

Annual cost of energy 

(USD) 

73438.0 73946 73949 

Cost of energy per kwh 0.2089 0.2104 0.2104 

Function count 243.86 1960 3841 

Number of Iterations 50 97 95 

Constraints Violated 13759 13735 1780 

 

 

The function count shown in Table 2 indicates 

how many times the algorithm is executed 

depending on the loop used in the program. The 

loop defines the time complexity of the program, 

and is always prudent to reduce the loops in a 

program thereby reducing time complexity.  

In accessing the performance of the system, the 

response time is of great essence. The function 

count of the various algorithm is a determinant 

factor in ensuring faster convergence. One of the 

simplest ways to handle constraints is through the 

penalty function method. It operates by punishing 

the impractical candidate solutions and changing 

the confined optimization problems into their 

unconstrained equivalents [49]. By creating a 

fictitious penalty for breaking the constraint, penalty 

functions aim to transform constrained issues into 

unconstrained problems.   

Equations (3) and (10) were used to compare the 

simulated optimized result to the traditional method, 

based on the system specifications in Table 1 and 

the estimated load demand of 351.49kWh in Table 

2. The number of PVs (NPV) obtained from equation 

3 is 1213 PV modules, whereas the DE simulated 

result in table 2 yields 1154 PV modules. The size of 

the battery bank is determined by the amount of 

energy to be stored and the maximum DoD 

recommended for the battery type. Using equation 

(10) and the Trojan J305H-AC Flooded Battery's 

autonomy day of 4, DOD of 80%, efficiency factor of 

85% due to battery charging and discharging, and 

360Ah rating as shown in Table1. The traditional 
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method required 958 batteries, whereas the 

DE required 823 batteries, as shown in Table 2. The 

results show that the number of PVs and batteries 

obtained using the traditional method far 

outnumber those obtained using the three 

algorithms. Overengineering a PV system leads to 

decreased energy efficiency and significant 

financial losses, such as higher upfront costs and 

higher maintenance costs. 

 

4.3 State of Charge of Battery Bank  

 

The charging and discharging characteristics of the 

battery bank for one week on an hourly basis are 

shown in Figures 5 and 6. It can be seen that the 

state of charge of the battery is slightly higher than 

the load demand, which ensures the reliability of the 

system. It can also be seen that the energy 

generated is far sufficient to meet both the load 

demand and the storage bank. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5 Hourly PV generation, battery and load profile 

 

 

The weekly SOC in Figure 6 shows the 

uncertainties of irradiance and its impact on PV 

system performance. This plays a critical role in 

determining the objective function and its 

implication on cost analysis concerning the storage 

requirements of the system. Analysis of 20 years of 

solar irradiance historical data is modelled to 

mitigate these uncertainties. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 A week plot of load, irradiance, battery and SOC 

 

 

Optimally selecting storage capacity is to ensure 

that the cost of the system is reduced since storage 

batteries and PV panels constitute 65% of the entire 

cost of installing PVs [50].  

In this study four days autonomy period is 

considered effective in addressing the constraint of 

prolonged non-sunny days. To evaluate the 

electrical performance among the three algorithms 

the same number of PVs and batteries 1154, 823 

respectively was used to run the PSO, DE and GA 

algorithms. The result in Figure 7 below shows the 

outcome of three algorithms showing clearly that 

the PSO and GA have violated the constraint of the 

SoC of 80% set for the successful operation of the 

system. This means the battery will discharge 

beyond 80% allowable limit which when allowed will 

affect the performance of the battery, especially 

the cycle life.  
 

 
Figure 7 Optimised SOC for (a) DE (b) PSO and (c) GA 

plotted  
 

 

The battery capacity available for a cell is 

indicated by its state of charge (SOC), which is a 

function of its rated capacity. The SOC value ranges 

from zero to one hundred per cent. The cell is said to 

be fully charged if the SOC is 100 per cent, while an 

SOC of 0 per cent denotes a discharged cell. Thus, 

the restricted depth of discharge was set at 0.8, 

implying that the battery bank can discharge 80% of 

its charged capacity with a reserve margin of 20%. 

The SOC of DE shown in Figure 7 indicates that 

the battery bank has sufficient capacity to meet the 

load demand during the days of autonomy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 SOC of the battery for the worst month 
 

 

To ensure that the system is optimally selected 

and the PV modules and battery units are not overly 

designed, the lower PV modules than the optimized 

size are tested. According to Figure 8, the SOC 
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measured between 13700 and 13800 hours was the 

worst, dropping to the 20% constrained value. The 

State of Charge (SOC) of a battery reaches a 

specified minimum SOC threshold when it reaches a 

limited value of 20%, which is set by the system or 

application. This restriction is put in place to 

guarantee that the battery is kept at a minimum 

level of charge for a variety of reasons, including 

safety, performance, or longevity. Figure 9 is an SOC 

performance when the 1130 PV modules are 

applied. The result shows that when the number of 

PV modules are reduced, the SOC of the battery 

bank decreases below the threshold value, violating 

the constraint, so the selected design is optimal. The 

reduction of the number of PVs results in worse SOC 

performance.  
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9 System SOC with reduced PV below optimal 

design 
 
 

4.3 Economic Cost Analysis 
 

The Levelized Cost of energy is dependent on the 

efficiency of the battery bank and converter 

efficiency. The Levelized cost of electricity (LCOE) 

increases when either the battery bank or the 

efficiency of the converter decreased. When the 

converter efficiency decreases, a lot of energy is lost 

from the battery bank during conversion, resulting in 

the need for a large battery bank. Consequently, it 

increases the cost of energy per kilowatt. 

By implementing the improved DE algorithm to 

the optimization problem, the detailed analysis of 

the LCOE with change in efficiency is presented in 

Figure10 below while the cost of energy per kWh is 

shown in Figure 11. The cost of energy per kWh from 

the result among the three optimization methods 

(improved DE, PSO, and GA) adopted stood at 

0.2089, 0.2104, and 0.2104 USD, respectively as 

shown in Table 2. An average annual cost savings of 

500 USD is obtained by the improved DE algorithm 

when compared with the PSO and GA algorithms. 
 

 

Figure 10 Variation of LCOE with change in converter 

efficiency 

 

 
Figure 11 Variation of iteration vs price of electricity for DE 

 

 

In each case, the simulation of the optimization 

algorithm is performed for three different values of 

loss of power supply probability (0%, 0.1%, and 0.6%).  

Figures 11, 12, 13 and 14 present the evaluation 

of the price of energy obtained using the DE, PSO 

and GA, respectively for Loss of Load Probability 

(LOLP). These results validate further the overall 

superiority of the improved DE performances 

compared to the PSO and GA.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 Variation of iteration vs price of electricity for PSO 

 

 
Figure 13 Variation of iteration vs price of electricity for GA 
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Figure 14 Price of electricity for DE, PSO and GA 

 

 

4.4 Performance of the Algorithm 

 

The convergence of the system determines the 

robustness of the system under study. Figure 15 

shows the convergence of the improved DE 

algorithm simulated throughout the study with the 

lower bounds of [200 200] and upper bound of [1400 

1400] for the PV panels and battery.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15 Convergence of the DE algorithm 
 

 

The same bounds were selected for GA and PSO 

in the subsequent simulations. Figure 15 shows that 

the convergence of the improved DE algorithm is 

very fast and converges to the final solution in 50 

iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15 Fitness function of the DE algorithm 
 

 

The fitness function of PSO and GA is shown in Figures 

16 and 17 respectively. This simulation is conducted 

under Standard Test Conditions as a basis of 

comparison to the parent algorithm DE used in 

implementing the system under study. It could be 

seen that convergence of DE is approximately three 

times faster than GA, since the lower and the upper 

bounds are the same for the two algorithms. 

Comparing Figures 15 and 17, the DE converges at 

approximately 500 iterations and GA converges at 

1800 iterations and that of PSO is 800 iterations. The 

GA, as a rule, executes faster if its fitness function is 

vectorized. 
 

 
Figure 16 Fitness function of the PSO algorithm 

 

 

This means that GA calls the fitness function only 

once, but expects the fitness function to register 

readiness for all individuals in the current population 

immediately [51]. For the nonlinear constraint 

function, the fitness function must recognize any 

number of columns to use vectorization. Through 

inheritance operations such as crossover and 

mutation, GA can converge and produce the fittest 

chromosome that has a higher wellness value at the 

end of the GA process. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 Fitness function of the GA algorithm 

 

 

The raw fitness score is converted by fitness 

scaling that is returned by the fitness function values 

in an order that is reasonable for the selected 

function. The selected function utilizes the values of 

the scaled fitness to choose a higher probability of 

the selected individuals with esteem values. The 

scope of the scaled influences the performance of 

the GA, the scaled value shifts too broadly, and the 

individuals with the most elevated scaled value 

duplicate too quickly, assuming control over the 

populace genetics and keeping the hereditary 
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algorithms from looking through different territories 

of the arrangement space. 

 

 

5.0 CONCLUSION 
 

The optimal size of PV and battery storage Off-Grid 

PV system is a fundamental requirement for 

improving the efficiency and reliability of the system. 

In this project, improved DE was adopted for 

optimum sizing of the Off-grid PV system considering 

the uncertainties of the system. The hourly load 

demand and series data of Assin Bungalow as 

obtained from the Electricity Company of Ghana 

(ECG) and National Aeronautics and Space 

Administration (NASA) respectively are presented in 

the analysis. 

The main goal of this project is to minimize the 

cost of installing the system and thereby reduce the 

price of electricity by determining the appropriate 

optimum number of PV modules and battery banks 

required for the case study. The proposed system's 

effectiveness was tested using improved DE, PSO 

and GA utilizing MATLAB algorithm carried out under 

desirable test conditions to specific advance 

changes in irradiance pattern and other 

uncertainties associated with the system.  

The outline of various search ranges set for PV 

and Battery technologies and their objective 

function is presented. The impact of the control 

parameters setting and the influence of those for 

various algorithms have been analyzed. The result 

shows that DE offered the best optimal solution in 

terms of cost and convergence time. 

The capacity of the storage battery is optimally 

selected to store energy when there is excess 

energy available, to provide when required, and to 

prevent instability during current and voltage 

transients.  

The improved DE algorithm minimizes the 

premature convergence to local minima, 

associated with conventional metaheuristics 

algorithms. DE algorithm is more efficient as 

compared to PSO and GA algorithms and requires 

less computational time and memory for 

implementation as it converges faster. The result of 

the optimization shown in this project can be 

implemented to meet specific requirements. 
Analyzing the three fitness functions it could be seen 

clearly that the convergence rate of the DE is about 

30% faster than PSO and far better than GA which 

means more computational time and memory are 

required for both PSO and GA. 
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