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Abstract: Blasting operations involve some undesirable environmental issues that may cause damage
to equipment and surrounding areas. One of them, and probably the most important one, is flyrock
induced by blasting, where its accurate estimation before the operation is essential to identify the
blasting zone’s safety zone. This study introduces several tree-based solutions for an accurate
prediction of flyrock. This has been done using four techniques, i.e., decision tree (DT), random forest
(RF), extreme gradient boosting (XGBoost), and adaptive boosting (AdaBoost). The modelling of
tree-based techniques was conducted with in-depth knowledge and understanding of their most
influential factors. The mentioned factors were designed through the use of several parametric
investigations, which can also be utilized in other engineering fields. As a result, all four tree-based
models are capable enough for blasting-induced flyrock prediction. However, the most accurate
predicted flyrock values were obtained using the AdaBoost technique. Observed and forecasted
flyrock by AdaBoost for the training and testing phases received coefficients of determination (R2)
of 0.99 and 0.99, respectively, which confirm the power of this technique in estimating flyrock.
Additionally, according to the results of the input parameters, the powder factor had the highest
influence on flyrock, whereas burden and spacing had the lowest impact on flyrock.

Keywords: mine blasting; environmental issue; flyrock; tree-based techniques; prediction

1. Introduction

Blasting operation is the most conventional method for achieving the desired frag-
mentation in mining and civil projects [1]. In this operation, just about 20–30% of the
energy produced by blasthole explosives is consumed for the breaking of rockmass [2]. The
residual part leads to undesirable phenomena such as airblast, ground vibration, and fly-
rock [3–7]. Considering all the unwanted results of blasting operations, flyrock is reported
as the main hazardous consequence of blasting, which causes fatal and non-fatal events
in open pit mines [8]. The exact definition of flyrock could be considered as boosting the
broken rock particles after blasting operations far from the free face, which could lead to
undesirable results [9]. All influencing parameters on flyrock are considered in two cate-
gories: controllable and uncontrollable factors, and in order to achieve a reliable attitude,
both factors should be assumed [10–12]. Inexact drilling, inappropriate blasthole diameter,
incorrect powder factor, insufficient stemming, unsuitable delay time, and inadequate
burden are the main controllable sources of flyrock [13,14]. Uncontrollable parameters, on
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the other hand, such as inappropriate geological features of the rock mass and placing the
loosing rock at the top of the free face, may result in flyrock [15].

In terms of the prediction of flyrock, there are three main groups of methods, i.e.,
empirical, risk-based/statistical and artificial intelligence (AI). One of the most significant
empirical formulations for estimating flyrock was presented by Lundborg et al. [16] on
the basis of hole diameter. In another study, Olofsson [17] proposed a practical relation-
ship using stemming to burden ratio for estimating flyrock. In the study conducted by
Trivedi et al. [18], rock quality designation (RQD) and stemming-to-burden ratio factors
were employed for developing an empirical formulation of flyrock. Inadequate empirical
equations result due to practical method limitations, a diversity of influencing factors in the
flyrock phenomenon, inherent uncertainty, and a complicated blasting operation [19,20].

As another group of methods in estimating flyrock, the statistical/risk-based approach
has been adopted by several scholars. Raina et al. [21] presented a risk-based model
for flyrock assessment. In their study, the three main parameters of a factor of safety,
threat levels, and flyrock risk were regarded as explaining risk classes for diverse mining
situations. According to the presented dynamic danger zone, all factors of safety necessities
and production demands are regarded, which makes blasting operations more flexible.
Armaghani et al. [22] developed a multiple regression (MR) for flyrock prediction and then
simulated this phenomenon using Monte Carlo (MC). The simulated MC results were very
close to the measured flyrock. In another investigation, Monjezi et al. [23] presented a
statistical model for the assessment of flyrock by utilizing the MR approach. They selected
burden, hole spacing, length of stemming, and powder factor as input parameters and
obtained acceptable accuracy (i.e., a coefficient of determination, R2, of 0.86). A non-
linear MR equation with R2 values of 0.777 and 0.819 for the training and testing phases,
respectively, was introduced by Faradonbeh et al. [24]. Risk-based models, probabilistic
models, or statistical models are not able to achieve a high level of accuracy in different
case studies, as stated by several researchers [24,25].

Considering the limitations of the presented methods, implementing novel approaches
such as AI and soft computing (SC) techniques for estimating flyrock seems essential and
has been considered by several researchers. Rezaei et al. [14] presented a fuzzy interface
system (FIS) model for forecasting flyrock phenomena in the Gol-E-Gohar iron mine, Iran.
A Mamdani fuzzy model was implemented in this model considering a database with
490 datasets, and this model was able to receive a high level of accuracy for flyrock es-
timation. A backpropagation neural network model was proposed by Yari et al. [26] for
forecasting flyrock, considering controllable factors of blasting as model inputs. According
to Yari et al. [26], the powder factor has the greatest impact on the flyrock. In another study,
Ghasemi et al. [27] showed adequate proficiency of both the FIS and neural network in pre-
dicting flyrock induced by blasting. Two intelligent flyrock equations, i.e., gene expression
programming (GEP) and genetic programming, were proposed by Faradonbeh et al. [28]
with a high degree of accuracy. A regression-based technique (i.e., support vector ma-
chine) was introduced by Khandelwal and Monjezi [29] to predict flyrock. They reported a
close value between the predicted and measured flyrock (R2 = 0.948). Hybrid AI and SC
techniques which are a combination of metaheuristic algorithms and other base models,
such as neural networks and extreme learning machines, were also developed for flyrock
prediction [4,30–34]. It is obvious that AI and SC techniques are the best categories for
flyrock forecasting among the available methodologies in terms of accuracy. It is also
important to note that these techniques have been widely employed and suggested in the
literature for solving engineering problems [35–55].

Tree-based techniques are one type of hierarchical model that, by regularly separating
datasets, provides a technique for assessment and prediction purposes [56]. Diverse
classification, variable relationship recognition, and regression problems could be solved
by utilizing tree-based models [56]. Compatibility with different assumptions, diverse data
distributions, and simple construction make these models one of the applicable methods
in geotechnics [57–59]. Pham et al. [60] presented a new model for the classification of
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soils using Adaboost and enhanced tree methods. For this purpose, they gathered 440 data
samples of soil features and achieved acceptable results. A regression tree technique was
used for rock strength assessment in the study conducted by Liang et al. [61]. In another
application of tree-based models, the gradient-boosted tree (GBT) technique was used by
Huat et al. [62] to forecast pile friction-bearing capacity. The testing phase showed enough
efficiency for the GBT model to provide predictions of pile friction-bearing capacity. These
techniques were also successful in slope stability classification in an interesting investigation
by Asteris et al. [63]. They suggested the AdaBoost approach with an accuracy of 0.93 for
slope stability classification.

In light of the above discussion, several tree-based techniques, i.e., DT, RF, XGBoost,
and AdaBoost, are used by the authors of this study to evaluate their powers in predict-
ing flyrock induced by blasting. The best model will be chosen after comparing their
performance predictions. Below is a plan for the rest of this paper:

The background of tree-based techniques will be described in Section 2. In Section 3, a
description of Sungun Copper Mine as the case study will be given. In addition, a statistical
overview of the dataset will be proposed in the same section. The modelling procedure will
be described in detail in Section 4 with four sub-sections. In Section 5, the performance of
tree-based models is assessed and discussed. Finally, Section 6 will discuss the concluding
remarks of this study.

2. Model’s Background
2.1. DT Model

Supervised-learning DT approaches are powerful tools for performing classification
and prediction modelling in machine learning and data mining. Although there are
several subsets for DT, e.g., chi-squared automatic interaction detection (CHAID), quick,
unbiased, efficient, and statistical trees, C5, and classification and regression trees (CART),
out of these algorithms, only CART and CHAID are suitable for predicting continuous
variables. Because of its white-box nature and simple interpretability, the CART algorithm
makes it easy to understand the relationship between input and output parameters and
is outstanding compared to other DT algorithms. Moreover, large-scale datasets do not
affect CART results, and this algorithm shows its superiority when dealing with complex
samples and a high number of variables [64].

To identify the most influential input parameters, CART inherently employs principal
component analysis and eliminates non-significant ones [65]. CART DT can be developed as
a classification tree (CT) or regression tree (RT). The performance of a CART can be affected
by choosing the right partition for a database based on its main indices. There are three main
indices for a CT: the Gini criterion, entropy, and the Twoing criterion. Moreover, due to the
non-parametric temperament of CART, the assumption of a distribution for variables is not
required. Generally, each CART consists of four parts, including the root, branch, node, and
leaf. Each tree starts from the root node (i.e., the first node), which is located at the upper level
of each tree and is divided into branches on the left and right sides.

To prevent a CART training algorithm from developing a complicated tree, there are
three prevention criteria: (1) a minimum number of observations, (2) maximum tree depth,
and (3) reaching the least error value for the estimation of a dependent parameter. The
verification dataset will prune the developed tree and allow it to reach the optimal subtree.
The pruning procedure also reduces the occurrence of overtraining. As shown in Figure 1,
a DT consists of a root node, decision (interior) nodes, and terminal (leaf) nodes. Each
sample in a dataset is classified from the root node until it can no longer be divided into
decision nodes and reaches a terminal node.
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Figure 1. A DT structure consists of root nodes, decision nodes, and terminal nodes.

2.2. RF Model

RF was developed based on the CART DT algorithm by Breiman [66]. This algo-
rithm combines a large number of DTs and can be used as a classification or regression
method without making any prior assumptions about their association with the response
variable [67]. At the beginning of the RF algorithm, samples are created using a bootstrap
sample selection of the dataset, and each of these bootstrap-created samples constructs one
RF tree. In addition, the unused samples from the bootstrap selection procedure, called
the Out Of Bag (OOB) samples, are used in the validation process. Figure 2 shows the
flowchart of the RF algorithm.
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In classification problems, the mode of voting of trees, and regression problems,
the average value would be selected as the predicted value of RF [66]. The structure of
each tree in RF can be controlled by (i) minimum node size, (ii) the number of trees, and
(iii) the level of randomness [68]. In comparison with other machine learning techniques, RF
has some advantages, e.g., (a) developed trees can be saved and used for future references,
(b) is not susceptible to overfitting problems, (c) lower training time and faster predic-
tion, and (d) embedded feature selection makes it easy for RF to rank parameters by
importance [69].

Meanwhile, one of the essential features of RF that influences its final performance
is its splitting feature. In the most developed and published models using RF, the Gini-
index splitting feature was used [70]; however, due to the use of the Scikit-Learn Python
library [71] in this study, two splitting features were available, including Gini-index and
Entropy. The GINI index uses the impurity of nodes to measure the minimum expected
error rate for the set. The entropy criterion measures the information in a data group and
splits the tree so that it gives more information at each split. The more extensive the entropy,
the better the homogeneity of the subsets [72].

2.3. XGboost Model

XGBoost was developed by Chen and Guestrin [73] as a scalable machine-learning
method for tree boosting. This algorithm has shown outstanding performance in different
engineering problems compared to other machine learning algorithms due to its effective
tree pruning, regularization, and parallel processing [74,75]. The general idea behind
the development of boosting algorithms is that weak learners, such as DT, use a random
guessing procedure and cannot use errors to improve the final model. However, XGBoost
combines weak-based learners with stronger learners, and residuals in each iteration are
used to correct the previous predictors, as shown in Figure 3.
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The main advantages of XGBoost are [76]:
XGBoost is ten times faster than other popular algorithms, and this speed enables

it to solve the issues of time consumption in big data and problems where less run time
is demanded.

• Parallel processing of XGBoost causes the high scalability and generation of billions of
examples using the lowest resource consumption, which allows it to be effective in
classification and high-level pre-processing data problems.

• XGBoost can be programmed using a broad scope of languages, e.g., Java, Python, R,
and C++.

• XGBoost is less likely to overtrain because it makes strong learners by combining weak
learners. This makes XGBoost more accurate at making predictions.

• XGBoost can effectively handle the missing data.
• Cross-validation can be done using the training data, and there is no need for extra

cross-validation packages.
• To reach the highest performance of XGBoost, several model choices are needed. To

avoid overfitting or to develop too complex models, XGBoost must tune the parame-
ters. XGBoost is susceptible to learning noises or random fluctuations, and overfitting
happens when these types of data are considered meaningful to XGBoost.

• Some internal parameters of XGBoost that should be regulated to avoid overfitting
include iteration number, which is the number of trees that were fitted in the model;
the maximum depth, which shows the maximum number of splits; an increase in this
parameter increases the overfitting probability; subsample that shows the percentage
of the dataset which are selected for training; learning rate which modifies the weights
and impact of each tree to improve the performance of model; colsample_bytree is
the ratio of subsample columns in tree construction; lambda and alpha that make
regularization on weights and increase in these parameters make the model more
conservative [73].

2.4. AdaBoost Model

In the 1990s, researchers wondered whether a strong learner could be obtained if
multiple weak learners were combined. Schapire (1990) proposed a solution to this premise
1990 and provided the initial theories for the boosting algorithm. Boosting takes advantage
of numerous relatively weak and inaccurate predictors to produce an extremely accurate
prediction learner using machine learning concepts. AdaBoost is a boosting algorithm that
was introduced by Freund and Schapire [77].

At first, AdaBoost assigns the same weight to every dataset. Then, it repeatedly
measures classification errors in iterations and updates the weights of samples. The weights
of misclassified samples gradually increase, and the weights of correctly classified samples
decrease. Therefore, the subsequent classifier focuses on correctly classifying the previously
misclassified sample. Using the new weights in the data set, the lower classifier is trained.
Lastly, the final decision classifier is derived by combining the training results of each
training session (Figure 4). The general operation flow of the AdaBoost algorithm is listed
in Table 1.
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Table 1. General outline of AdaBoost algorithm operation [77].

1. Assessing weight coefficient
{

Wn = 1
n

}
to each dataset.

2. Choosing weak learner Y (it can be CART, RF, etc) and start to train the weak learner with weight coefficient

3.

For m = 1, . . . , m: (m = number of trials) while fm 6= 0
Accompanied with minimizing the weight of errors, try to fit hm(x) with training data and redistribute the

weights using the below equation:
Dm(i) = (1− Dm(i))Zm

where Zm is a normalizing coefficient

Compute probability values:
P+1

m (x) = PDm (y = +1∩ hm(x))
P+1

m (x) = PDm
(y = +1∩ hm(x))

P−1
m (x) = PDm (y = −1∩ hm(x))

P−1
m (x) = PDm

(y = −1∩ hm(x))
the sign of hm(x) gives the classification, and |hm(x)| a measure of classification “confidence”.

Calculate
fm(x) =

(
P+1

m

(
1− P+1

m

)
− P−1

m

(
1− P−1

m

))
(x)

Update the distribution
Dm+1(i) =

Dm(i) exp(−yi fm(xi))
Zm

4.
Generate new classifier:

F(x) = sign
[

m
∑

m=1
fm(hm(x))

]
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Furthermore, some unnecessary training data, such as outlier features, would be
eliminated by implementing the AdaBoost classifier. Hence, as a result of continuous
training, the classification ability would improve by reducing both bias and variance
errors. In comparison with XGBoost and RF, AdaBoost has certain benefits and drawbacks.
Hyperparameters of AdaBoost are less than XGBoost; therefore, the required time for
tuning AdaBoost is less than XGBoost. However, AdaBoost is sensitive to noisy data, which
results in poor performance and huge time consumption in irrelevant feature learning in
extreme cases, especially in time series analysis [78].

2.5. Performance Indices

This paper develops four models, i.e., DT, RF, XGBoost, and AdaBoost, to forecast
flyrock induced by blasting. To conduct the modelling, flyrock datasets were randomly
divided into training (75% of the datasets) and testing (25% of the datasets). Several
renowned indices were used to analyze the performance of each model, including R2, root
means square error (RMSE), variance adjustment factor (VAF), and the A-10 index. These
indices, which were used by other researchers [79–84], are presented as follows:

R2 = 1−
∑
(

yact − ypre

)2

∑
(

yact −
¯
yact

)2 (1)

RMSE =

√√√√∑n
i=1

(
ypre − yact

)2

n
(2)

VAF =

1−
var
(

yact − ypre

)
var
(
yact

)
 (3)

a10− index =
m10

N
(4)

where yact and ypre are measured and predicted values, respectively. N is the total number
of datasets, and m10 is the number of samples with values of the rate measured/predicted
value (range between 0.9–1.1).

3. Case Study
3.1. Mine Description

One of the largest porphyry copper mines in Iran is the Sungun Copper Mine, which is
located in the northwest, about 125 km northeast of Tabriz, in East Azarbaijan province. The
exact location of this mine is shown in Figure 5, which is at 46′43◦ E longitude and 38′ 42◦ N
latitude. The mine’s location is 2000 m above sea level.

The main geological event in this area is a hydrothermal intrusion, and the mineraliza-
tion of Sungun Copper Mine refers to the Cenozoic Sahand–Bazman orogenic belt hosted
by altered quartz–monzonite rocks. Chalcopyrite, pyrite, chalcocite, cuprite, and malachite
are the primary minerals that make copper the main product of the Sungun Copper Mine.
In addition, the grade trend in this deposit has a direct increasing relationship with depth,
especially in the hypo-gene zone. Additionally, gold, silver, and molybdenite are all ex-
tractible from this mine. The geological and geometrical features of this mine are indicated
in Table 2.
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Table 2. Geological and geometrical features of Sungun Copper Mine [85,86].

Geological/Geometrical Properties Value

Geological reserve of the deposit 796 MT
Proved reserve 410 MT
Average grade 0.67%

Height of the working benches 12.5 m
Slope of the working benches 68′

Angle of the overall pit slope 37′

Width of the ramp 30 m
Slope of the ramp 5′

Age of the mine about 32 years
Overall stripping ratio (W/O) 1.7

In the Sungun Copper Mine, the extraction process uses bench blasting with one
free face. ANFO was used as the main explosive material in blastholes, and drill-cutting
particles were used for stemming holes. The initial system of blasting operations was the
detonating cord. The main blasting pattern was triangular (staggered), and the ratio of
burden to spacing depended on the properties of the blasting block in diverse parts of
the mine. The blasting sequence is a flat face method, in which, in this sequence pattern,
zero considers as an inter-hole delay time, and a delay event occurs between blasting
rows [87]. One of the most undesirable results of the blasting operations in this mine
is flyrock. Therefore, this study was planned to be investigated to develop a model for
estimating flyrock distance.

3.2. Collected Dataset

To provide a dataset to construct predictive tree-based models, 234 blasting events were
considered, and all features, including hole length, spacing, burden, powder factor, specific
drilling, and flyrock, were recorded for these events. Figure 6 shows the relationships
between the parameters of the database. The upper part of this figure shows the R2 between
the dataset parameters, and the lower part shows the trend between every two parameters
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of the dataset. As shown in Figure 6, flyrock shows an inverse relationship with hole
depth, spacing, burden, and stemming; however, its relationship with the powder factor
is direct. It is important to note that the powder factor has the highest correlation with
flyrock, among others. Considering the upper part of Figure 6, it can be observed that the
powder factor does not have an appropriate R2 with other influential parameters on flyrock.
This low R2 value may indicate an inefficient blasting design. Hence, it would be better to
study the design procedure for blasting in future studies to reach efficient models from an
economic point of view because of blasting powder’s high price.

Appl. Sci. 2023, 13, 1345 10 of 23 
 

One of the most undesirable results of the blasting operations in this mine is flyrock. 

Therefore, this study was planned to be investigated to develop a model for estimating 

flyrock distance. 

3.2. Collected Dataset 

To provide a dataset to construct predictive tree-based models, 234 blasting events 

were considered, and all features, including hole length, spacing, burden, powder factor, 

specific drilling, and flyrock, were recorded for these events. Figure 6 shows the relation-

ships between the parameters of the database. The upper part of this figure shows the R2 

between the dataset parameters, and the lower part shows the trend between every two 

parameters of the dataset. As shown in Figure 6, flyrock shows an inverse relationship 

with hole depth, spacing, burden, and stemming; however, its relationship with the pow-

der factor is direct. It is important to note that the powder factor has the highest correlation 

with flyrock, among others. Considering the upper part of Figure 6, it can be observed 

that the powder factor does not have an appropriate R2 with other influential parameters 

on flyrock. This low R2 value may indicate an inefficient blasting design. Hence, it would 

be better to study the design procedure for blasting in future studies to reach efficient 

models from an economic point of view because of blasting powder’s high price. 

 

Figure 6. Scatterplot matrix of flyrock parameters’ dataset with determination coefficient. 

Table 3 presents the basic descriptive statistics of all parameters (input and output). 

These statistical indices show an acceptable range and distribution for each of the param-

eters, which are also observable in the histograms of Figure 6. Meanwhile, one parameter 

that was mentioned as an important parameter in the prediction of flyrock is the ratio of 

Stemming over Burden [88,89]. However, the R2 between this parameter and flyrock in 

these datasets was calculated as 0.005, which does not show any meaningful relationship 

between this parameter and flyrock. To have a better overview of the used data, a number 

of ten data samples that were randomly selected are presented in Table 4. 

Table 3. Statistical description of parameters used in this study. 

Category  Parameter Unit Min  Max  Avg  Median  St Deviation 

Input  Hole Depth m 10 14 12.31 12.5 1.18 
 Spacing m 2 6.5 4.53 4.50 0.90 

 Burden m 2 5 3.69 4 0.82 

 Stemming m 1.8 4.5 3.66 4 0.76 

Figure 6. Scatterplot matrix of flyrock parameters’ dataset with determination coefficient.

Table 3 presents the basic descriptive statistics of all parameters (input and output).
These statistical indices show an acceptable range and distribution for each of the parame-
ters, which are also observable in the histograms of Figure 6. Meanwhile, one parameter
that was mentioned as an important parameter in the prediction of flyrock is the ratio of
Stemming over Burden [88,89]. However, the R2 between this parameter and flyrock in
these datasets was calculated as 0.005, which does not show any meaningful relationship
between this parameter and flyrock. To have a better overview of the used data, a number
of ten data samples that were randomly selected are presented in Table 4.

Table 3. Statistical description of parameters used in this study.

Category Parameter Unit Min Max Avg Median St Deviation

Input Hole Depth m 10 14 12.31 12.5 1.18
Spacing m 2 6.5 4.53 4.50 0.90
Burden m 2 5 3.69 4 0.82

Stemming m 1.8 4.5 3.66 4 0.76
Powder Factor kg/m3 0.2 0.93 0.46 0.4 0.20

Output Flyrock m 10 100 68.68 73.5 17.42
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Table 4. The 10 randomly selected data samples out of the whole database were used in this study.

Number Hole Depth
(m) Spacing (m) Burden (m) Stemming (m) Powder Factor

(kg/m3) Flyrock (m)

1 13.5 5.5 5 4.5 0.23 15
2 13 5 4 4.1 0.33 36
3 12 4 3 3.6 0.24 48
4 10 3 2.5 2.3 0.20 59
5 13.4 5.5 4 4.3 0.31 65
6 14 6.5 5 4.5 0.90 70
7 11.5 4 3 3 0.34 73
8 12.1 4.5 3.5 3.8 0.40 75
9 11 3 2.5 2.4 0.82 87

10 10 3.5 2.5 2.4 0.93 95

4. Modeling Procedure

In this section, the modelling procedure for each algorithm in estimating flyrock will be
discussed. Each sub-section will be elaborated on the relative parameters, optimal values of the
effective parameters, and their importance in reaching the highest performance predictions.

4.1. DT

The learning results with the DT algorithm depend on the algorithm’s parameters
chosen to optimize the learning process. DT was developed using the SciKit library in
Python, and the Graphviz library was used for visualization. There were three splitting
criteria available to measure the quality of splits (i) mean square error (MSE), which is the
same as variance reduction as a criterion for feature selection, (ii) Friedman-MSE, to assess
potential splits, Friedman’s improvement score is used with the mean squared error [90,91],
and (iii) Poisson, a process that finds splits by reducing Poisson deviance [92]. Because
there is no specific rule to choose between the splitting criteria, a trial and error procedure
is needed for every problem to select the best one. Hence, after a trial and error process, the
MSE criterion was chosen as the best splitting criterion.

In terms of splitting internal nodes, the minimum sample split represents the minimum
number of samples required to break an internal node. Because of the importance of this
parameter, we specified it as equal to two and allowed the tree to grow and reach the
highest accuracy. There must be a minimum number of samples at the terminal node, as
specified in the minimum sample leaf. To allow the tree to grow as accurately as possible,
this parameter was set to one. To prevent a tree from overgrowing and overtraining, tree
depth (TD) plays an important role. In most studies, this parameter is chosen as one of
the main parameters to select the best tree among developed trees [93]. By increasing the
TD, the danger of the algorithm’s memorization of data will increase; therefore, it would
be better to use a lower depth. Using the mentioned parameters, a DT was developed
for flyrock prediction. The optimal values of DT parameters for the generation of flyrock
induced by blasting are shown in Table 5. In addition, Figure 7 shows the visualization of
the trained DT for flyrock prediction.

Table 5. The optimal values of DT parameters for generation flyrock.

Parameter Range Value

criterion [MSE, friedman_mse, poisson] MSE
Minimum sample split [2, 3, 4, 5, 6] 2

max depth [2, 3, 4, 5, 6, 7, 8, 9, 10] 4
Minimum samples leaf [1–∞] 1
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Using an ad-hoc ranking, DT can evaluate the input variables based on their impor-
tance. Using this ranking system, more important variables become closer to the root node
and play an important role in tree splitting and predicting target values.

4.2. RF

To develop an RF model for flyrock prediction, the Bootstrap sampling system was
first performed on the training data samples. As mentioned before, the RF algorithm
generates a wide scope of DT for prediction and then, using an averaging system, tries
to reach the best prediction for an observation. To assess the performance of the trained
model, the OOB evaluation of training datasets was set to be true in the Python SciKit
package code to use the samples that were not included in the bootstrapping process to
construct the trees as evaluation samples.

The number of estimators represents the number of DTs generated during the RF run.
The more estimators, the more variable importance evaluations there are. Although higher
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estimator numbers increase the algorithm’s run time, they lead to more stable results [94].
The number of estimators is chosen to be equal to 200. A comprehensive trial-and-error
process was performed to reach a number for TD. Although deeper trees result in better
performance, they can cause overfitting of the model. For information gain, the entropy
criterion displayed better results than Gini. Other influential features and their optimum
values are presented in Table 6.

Table 6. RF Hyperparameters for estimating flyrock.

Parameter Range Value

Criterion [Entropy, Gini] Entropy
Estimators number [50, 100, 200, 300] 200

Bootstrap [True, False] True
Max depth [3, 4, 5, 6, 7] 4

Max features [sqrt, log2] Sqrt
OOB score [True, False] True

4.3. XGBoost

Although RF is renowned as a powerful prediction tool, it has some drawbacks. The
main defect of RF is that if it initially makes a mistake in all trees, the algorithm will repeat
this mistake in its next iterations. To this end, ensemble methods such as XGBoost and
AdaBoost are developed to address the problems by their nature and to learn from the
mistakes of trees to overcome the shortcomings and improve the results considerably.

In this section, the XGBoost model was developed in order to determine flyrock
distance. For learning a full tree, Scikit-learn and XGBoost Python packages were used. To
develop an XGBoost model, hyperparameters should be considered as the main factors
during model development. These parameters are the number of features, the number of
trees, the maximum depth of trees, whether to bootstrap, how many samples should be left
in a node before the split, and how many samples should remain in the leaf node at the
end. Generally, to reduce the probability of overfitting, it is necessary to avoid complexity
by increasing the values of hyperparameters. Moreover, accompanied by performance
maximization, it is important to consider parameter tuning to prevent overtraining and
generating too complex models. After a trial and error procedure, the optimal values for
XGBoost were acquired. Table 7 displays the optimum XGBoost parameters for predicting
flyrock caused by mine blasting.

Table 7. Optimum XGBoost algorithm parameters for flyrock prediction.

Parameter Range Value

learning rate (eta) [0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 3] 0.3
number of estimators [50, 100, 200, 300] 100

max depth [2, 3, 4, 5, 6] 3
gamma [0.0001, 0.001, 0.01, 0.1,0.5, 1] 0.001

min child weight [0.2, 0.5, 0.8, 0.9, 1, 1.5, 2] 0.9
max delta step [0.2, 0.5, 0.8, 0.9, 1, 1.5, 2] 0.9

booster [gbtree, gblinear, DART] DART

One of the drawbacks of XGBoost is the inconsistency between the speed of trees’
generation and the learning from them. This inconsistency causes newly generated trees
to receive less importance than older ones. To overcome this drawback, Vinayak and
Gilad-Bachrach [95] introduced the DART booster for XGBoost. In this study, the DART
booster was applied, and it was found that, compared to other boosting algorithms, its
performance is better. Figure 8 shows some of the estimators that were developed by
XGBoost for flyrock prediction.
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4.4. AdaBoost

To develop an AdaBoost model, several features were regulated using a trial and
error procedure. First, both CART and RF learners were examined using the AdaBoost
algorithm, and it was found that the RF classifier is able to provide more accurate results
than the CART model. As previously mentioned, among the two splitting criteria, i.e.,
entropy and Gini-index, entropy gives more precise results than Gini-index on this database;
hence, the entropy criterion is selected for splitting purposes. Another parametric study
was performed to acquire the appropriate TD. The lower the TD, the simpler the model;
therefore, between sets of [2, 3, 4, 5] TD, it tried to, by modifying other features, reach the
lowest TD number. Finally, TD = 3 was selected for model development. Table 8 includes a
list of other factors that influenced the development of the AdaBoost model.

One crucial factor in the configuration of an AdaBoost model is the type of algorithm.
There are two types of algorithms available for AdaBoost development, namely SAMME
and SAMME.R. These two algorithms were introduced by Hastie et al. [96] to overcome
the deficiencies of AdaBoost in modelling multi-class problems. They tested these two
algorithms using CART weak learners and concluded that the final results were similar.
However, as this study used an RF-weak learner, the efficiency of each algorithm was
investigated using flyrock datasets. Finally, as shown in Figure 9, the SAMME algorithm
gives more accurate models in the boosting process than SAMME.R; therefore, SAMME
was selected as the main algorithm in this research.



Appl. Sci. 2023, 13, 1345 16 of 23

Table 8. The best AdaBoost model’s features in predicting flyrock.

Feature Range Value

Weak learner algorithm Random Forest, Decision Tree Random Forest Classifier
Tree depth [2, 3, 4, 5, 6] 3
Algorithm SAMME, SAMME.R SAMME
criterion Entropy, Gini Entropy

Number of estimators [50, 100, 200, 300] 100
Learning rate [0.5, 1, 1.5, 2] 1.0

Appl. Sci. 2023, 13, 1345 16 of 23 
 

One crucial factor in the configuration of an AdaBoost model is the type of algorithm. 

There are two types of algorithms available for AdaBoost development, namely SAMME 

and SAMME.R. These two algorithms were introduced by Hastie et al. [96] to overcome 

the deficiencies of AdaBoost in modelling multi-class problems. They tested these two 

algorithms using CART weak learners and concluded that the final results were similar. 

However, as this study used an RF-weak learner, the efficiency of each algorithm was 

investigated using flyrock datasets. Finally, as shown in Figure 9, the SAMME algorithm 

gives more accurate models in the boosting process than SAMME.R; therefore, SAMME 

was selected as the main algorithm in this research. 

 

Figure 9. Performance of SAMME and SAMME.R algorithms in AdaBoost model. 

5. Results and Discussion 

Four tree-based methods were developed in this study, i.e., DT, RF, XGBoost, and 

AdaBoost, to predict flyrock due to blasting operations. The performance of each model 

was evaluated by four popular performance indices (i.e., R2, RMSE, VAF, and the A-10 

index). Table 9 shows the results of these tree-based models based on the training and 

testing phases. The accuracy of the developed models was compared using a ranking sys-

tem introduced by Zorlu et al. [97]. It is observed from Table 9 that although RF and DT 

achieved acceptable prediction accuracy, the AdaBoost model, which used the RF classi-

fier in its core algorithm, yielded the best results, with a final rank of 32. Furthermore, 

XGBoost performed better in prediction than RF and DT; however, its performance com-

pared to the AdaBoost model is poor. 

Table 9. Performance indices of the developed models for flyrock prediction. 

  R2 RMSE VAF A10 Final Rank 

Model Name   Train Test Train Test Train Test Train Test  

AdaBoost  0.99 0.98 1.47 2.66 99.56 98.87 0.98 0.98  

 Rank score 4 4 4 4 4 4 4 4 32 

XGBoost  0.97 0.92 2.91 4.85 97.33 91.99 0.97 0.94  

 Rank score 3 3 3 3 3 3 3 3 24 

RF  0.93 0.91 4.32 4.86 92.96 92.12 0.96 0.91  

 Rank score 2 2 2 2 2 2 2 2 16 

DT  0.89 0.84 5.72 6.58 89.39 84.81 0.89 0.84  

 Rank score 1 1 1 1 1 1 1 1 8 

Figure 9. Performance of SAMME and SAMME.R algorithms in AdaBoost model.

5. Results and Discussion

Four tree-based methods were developed in this study, i.e., DT, RF, XGBoost, and
AdaBoost, to predict flyrock due to blasting operations. The performance of each model
was evaluated by four popular performance indices (i.e., R2, RMSE, VAF, and the A-10
index). Table 9 shows the results of these tree-based models based on the training and
testing phases. The accuracy of the developed models was compared using a ranking
system introduced by Zorlu et al. [97]. It is observed from Table 9 that although RF and DT
achieved acceptable prediction accuracy, the AdaBoost model, which used the RF classifier
in its core algorithm, yielded the best results, with a final rank of 32. Furthermore, XGBoost
performed better in prediction than RF and DT; however, its performance compared to the
AdaBoost model is poor.

Table 9. Performance indices of the developed models for flyrock prediction.

R2 RMSE VAF A10 Final Rank

Model Name Train Test Train Test Train Test Train Test

AdaBoost 0.99 0.98 1.47 2.66 99.56 98.87 0.98 0.98
Rank score 4 4 4 4 4 4 4 4 32

XGBoost 0.97 0.92 2.91 4.85 97.33 91.99 0.97 0.94
Rank score 3 3 3 3 3 3 3 3 24

RF 0.93 0.91 4.32 4.86 92.96 92.12 0.96 0.91
Rank score 2 2 2 2 2 2 2 2 16

DT 0.89 0.84 5.72 6.58 89.39 84.81 0.89 0.84
Rank score 1 1 1 1 1 1 1 1 8

Although the datasets used in the current study have not been used in any other
studies, the authors tried to compare the results with similar studies in the literature.
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Monjezi et al. [23] modelled flyrock by GEP using the same input parameters used in the
current study. The final results for the best GEP model were R2train = 0.83 and R2test = 0.91.
Dehghani and Pourzafar [98] developed another GEP model for flyrock prediction using the
same inputs. They received R2train = 0.91 and R2test = 0.84 for their GEP model. In another
study, Jamei et al. [99] developed a boosted regression tree (BRT) for flyrock estimation.
The highest results for BRT are R2train = 0.96 and R2test = 0.84. In addition, by probing into
some other studies that have been conducted in recent years [100–106]. It can be seen that
the results of the AdaBoost and XGBoost models developed in the current study to predict
flyrock distance are more accurate compared to similar investigations in the literature.

Figure 10 presents the correlation between predicted and measured flyrock for the
AdaBoost model’s training and testing sets. A coloured shadow was applied to the plots to
understand data concentration and distribution better. It is clear that AdaBoost is a powerful
technique that is able to predict flyrock values that are very close to the measured ones.
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(R2 = 0.97) datasets.

Figure 11 shows the model variables’ importance results of four tree-based techniques,
i.e., AdaBoost, XGBoost, RF, and DT. It can be seen that it is critical to determine the
powder factor for all tree-based models. However, different results were obtained for the
rest of the parameters using the linear regression analysis (see Figure 6). In this analysis,
stemming, hole length, spacing, and burden showed the highest to lowest importance
in model development, respectively. As shown in Figure 11d, spacing and burden are
detected as the least important parameters by the DT technique. It is essential to note that
these two parameters were repeated only once in the tree structure by DT (see Figure 7).
Accordingly, powder factor, stemming, and hole depth have the highest repetition rate in
the tree structure, respectively. Burden received an average level of importance considering
all tree-based models. However, the lowest importance was reported by the DT model.
Since DT is considered a base tree model (benchmark tree-based model), it was not able to
receive a high-performance prediction during the training and testing phases. Therefore,
the importance of input parameters seems to be different from the other three techniques.
The results obtained from this part can be further supported by previous studies in the
field [11,107].
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6. Conclusions

This study aimed to develop tree-based predictive models for flyrock due to mine
blasting. Four models, i.e., DT, RF, XGBoost, and AdaBoost, was developed to predict
flyrock considering several parametric studies. These parametric studies were carried out to
determine the best hyperparameters for each tree-based model. It was found that although
DT and RF are among the most powerful and popular predictive models, the final results of
booster algorithms (i.e., XGBoost and AdaBoost) are far better than theirs. Their robustness
is because of their nature to learn from previous mistakes compared to the semi-stochastic
nature of DT and RF. However, when considering results obtained by the AdaBoost and
XGBoost models, the AdaBoost model with R2train = 0.99 and R2test = 0.98 showed better
performance. In addition, the overall performance of each model was examined using
three other performance indices (RMSE, VAF, and A10-index). As a result, the AdaBoost
model’s high accuracy in prediction is proved using the other indices. XGBoost used
DT as a weak learner in an incremental learning process. There are similarities between
these trees and DT; however, XGBoost combined the errors of the trees and attempted
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to reduce the overall error. This procedure allows XGBoost to grow the tree and learn
from the previous iterations without increasing the error rate. Finally, by looking at the
previously developed model using AdaBoost and XGBoost, it was concluded that AdaBoost
models perform better in low-noise datasets. This technique could be chosen when it is not
important whether the results are timely or computationally complex and knowledgeable
users and enough time for tuning the hyperparameters are not available. However, the
lack of visualization, tuning multiple hyperparameters, and sensitivity to noisy data and
outliers make XGBoost and AdaBoost complex models.

It is crucial to note that the models developed in this study are based on the blasting
operations collected from one case study with limited geological conditions. Therefore, the
results are only valid for further prediction if the geological conditions, blasting pattern
parameters, and other important parameters are the same or very similar to those presented
in this study. In addition, if inputs beyond the ranges mentioned in this research are avail-
able, the results will have larger errors. To improve performance prediction, theory-guided
machine learning, which uses theories and empirical equations in the data preparation
stage, can be used. These techniques may include a better understanding of the use of
machine learning in mining environmental issues for a mining or civil engineer. Of course,
these models can help with model generalization, which is one of the drawbacks of AI
models, at least in engineering fields.
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