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Abstract
Mesoporous titania nanoparticles (MTN) were prepared using different surfactants namely anionic (MTN-A), cationic 
(MTN-C) and nonionic (MTN-NI) surfactants via microwave-assisted method to degrade 2-chlorophenol (2-CP) under vis-
ible light irradiation. The catalysts were characterised by XRD, FTIR, UV-Vis DRS, PL, BET, FESEM, TEM and XPS. The 
mesoporous structures were successfully formed in all catalysts with high surface area. However, the significant difference 
between the prepared catalysts was the formation of mixed-phase in MTN-A which used sodium dodecyl sulfate (SDS) as 
anionic surfactant. MTN-A composed of 20% rutile and 80% anatase phase. MTN-A showed remarkable photoactivity due 
to the abundance of  Ti3+ site defects (TSD) and oxygen vacancies (OV) on its  TiO2 mixed-phase structures. The synergistic 
effect between the TSD, OV and  TiO2 mixed-phase have improved the electronic band structure, aided the charge migration 
and reduced the electron–hole recombination rate, thus increasing its photoactivity. Moreover, MTN-A exhibited the best 
performance with 85% degradation compared to MTN-C, MTN-NI and pretreated commercial  TiO2, Degussa P25 (P25) 
with 77%, 18% and 62% degradation, respectively. MTN-A also displayed as a promising photocatalyst because it could 
degrade other chlorophenol derivatives.

Highlights

• Synthesis of MTN using SDS as surfactant generated 
mixed phase of  TiO2

• Type of surfactant influence the amount of site defects 
formation on surface of MTN

• Mixed phase and site defects of MTN reduced the elec-
tron–hole recombination of MTN

• 2-CP achieved highest degradation with MTN synthe-
sised using anionic surfactant

Keywords Surfactant · Mesoporous titania nanoparticles · Microwave-assisted method · Mixed-phase · Site defects

Introduction

Titania or titanium dioxide is a less toxic, low cost, chemi-
cally and thermally stable catalyst. It is commonly used 
as a photocatalyst during wastewater treatment besides 

functioning as an active ingredient in sunscreen products 
(Reinosa et al. 2018; Marfur et al. 2020a; Marfur and Jaafar 
2021a; Moharana et al. 2021; Ihnatiuk et al. 2022). However, 
 TiO2 efficiency is hindered by fast electron–hole recombi-
nation and only can be excited by UV-light irradiation due 
to its wide band gap (Chakhtouna et al. 2021; Khanmo-
hammadi et al. 2021). Generally,  TiO2 also exists in differ-
ent phases either anatase, rutile, brookite or mixed-phase. 
Based on the previous studies, anatase which has band 
gap of 3.20 eV exhibited high photocatalytic performance 
while rutile which has band gap of 3.02 eV manifested low 
photocatalytic performance (Savaliya et al. 2022; Noman 
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et al. 2019; Marfur et al. 2020c). By modifying the  TiO2 
framework,  Ti3+ site defects (TSD), oxygen vacancies (OV), 
mesopores and mixed-phase structures can be formed, thus 
 TiO2 drawbacks can be overcome (Bagheri and Julkapli 
2016; Jaafar et al. 2019b; Marfur et al. 2020b; Singh et al. 
2021; Wei et al. 2022).

Besides, the electronic band structures of  TiO2 can be 
enhanced by self-doping with the formation of mixed-phase 
in the same catalyst framework. Mixed-phase catalyst also 
can be activated under visible light irradiation due to the 
effective electron transfer (Kumar et al. 2020; Marfur and 
Jaafar 2021b; Jamila et al. 2022). According to the previous 
studies, mixed-phase  TiO2 exhibited a greater photocata-
lytic performance compared to pure anatase  TiO2 because 
there is possible electron transfer from anatase to rutile 
phase. This phenomenon has successfully lowered the rate 
of carrier recombination in anatase, thus promoting effec-
tive electron–hole separation besides contributing to high 
percentage degradation (Zhou et al. 2019; Assayehegn et al. 
2020). Nevertheless, the application of mixed-phase  TiO2 is 
limited because of its less porous structure, low surface area, 
difficult synthesis method and low visible light photoactivity 
(Fu et al. 2018).

Ijadpanah-Saravy et al. (2014) synthesised biphasic  TiO2 
nanoparticles via hydrolysis method and calcined at 673K. 
The proportion of the phases depended on the concentra-
tion of sulfate ions. Sulfate ions could change the rutile 
arrangement to the anatase arrangement by affecting the 
spatial arrangement pattern of the octahedral. The repul-
sion between the octahedra could be reduced, thus the ratio 
of anatase/rutile could be varied. Then, the catalyst was used 
to degrade cyanide under ultraviolet irradiation.  TiO2 nano-
particles with optimum ratio of 20% rutile and 80% anatase 
showed the best photocatalytic performance due to the effi-
cient electron transfer.

According to Dong et  al. (2020a), mixed-phase 
mesoporous  TiO2 which contained an abundance of site 
defects was also proven to perform 4.2 times higher than 
commercial  TiO2 (Degussa P25). This was due to the forma-
tion of mesoporous structure in this catalyst which provided 
sufficient active sites for the adsorption to take place besides 
the rutile phase was highly contributed to electron transfer.

Other than that, photocatalysts with porous structure can 
greatly help in the adsorption of the reactant and enhance the 
photocatalytic performance (Marfur et al. 2019; Diyuk et al. 
2022). According to Jaafar et al. (2015a, b), photocatalytic 
activity of  TiO2 can be enhanced by modifying its porosity 
and structures to generate numerous TSD and OV. Its elec-
tronic band structures also can be enhanced for application 
under visible irradiation.

Fu et al. (2018) synthesised mixed-phase mesoporous  TiO2 
which has a band gap of 3.1 eV via sol–gel method. This cata-
lyst succeeded in degrading several pollutants under visible 

light irradiation. There were several factors that contributed to 
this outstanding photoactivity. Firstly, the formation of mixed-
phase lowered the band gap and activated the catalyst under 
visible light irradiation. The creation of defects at the inter-
face also contributed to narrowing the band gap. Secondly, 
mesoporous structures with high surface area offered better 
pollutant adsorption, aided photogenerated charge transport to 
the surface and reduced electron–hole recombination. Lastly, 
small crystal size resulted in better redox ability due to quan-
tum-size effect.

One of the dominant parameters that affects the catalyst 
structure is the surfactant types which can be further classi-
fied into anionic, cationic and nonionic. Surfactant usually 
introduces during the synthesis method to aid the  TiO2 dis-
persion, help in the structure ordering, prevent agglomeration, 
constrain grain growth, act as pore template, improve crystal-
linity as well as control the particles shape and size during the 
hydrolysis step (Pathak et al. 2013; Wu et al. 2018).

Anionic and cationic surfactants can be differentiated by 
the charges at the hydrophilic parts which are negative and 
positive, respectively (Das et al. 2020; Pato et al. 2021). Dur-
ing the synthesis of mesoporous material, organic surfactant 
molecules will form micelles when they reach above the criti-
cal micelle concentration since they possess both hydrophilic 
and hydrophobic parts. The micelles will eventually become 
less reactive towards other components that exist in the same 
environment, thus function as structure directing agents 
(SDA) to form porous structures within the material. There-
fore, surfactant substantially helps during the preparation of 
the intended material especially for enhancing catalyst mor-
phology since surfactant molecules can assemble and form 
compartments (Li et al. 2012; Rafiee et al. 2018; Arora and 
Gupta 2022).

In contrast, for nonionic surfactants, there are hydrophilic 
parts, but they are not ionised in aqueous solution. While 
preparing for the intended material, they behave as SDA for 
macropores and mesopores. The coexistence of macropores 
and mesopores on the catalyst highly promotes in escalating 
the mass transport ability, minimising the extent of mesopores 
passages as well as enlarging the attainable surface area (Li 
et al. 2014b). In this study, mesoporous titania nanoparticles 
(MTN) were synthesised using different type of surfactants 
which are anionic, cationic and nonionic surfactants via 
microwave-assisted method for photocatalytic degradation of 
2-chlorophenol (2-CP) under visible light irradiation. These 
catalysts were characterised by XRD, FTIR, UV-Vis DRS, PL, 
BET, FESEM, TEM and XPS.
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Experimental

Reagents and material

Titanium (IV) butoxide, commercial  TiO2 (Degussa P25), 
sodium dodecyl sulfate (SDS), N-cetyl-N,N,N-trimethyl-
ammonium bromide (CTAB) and pluronic F127 (F127) 
surfactants were purchased from Sigma-Aldrich. 2-propanol 
and hydrochloric acid (HCl) were bought from MERCK, 
Malaysia. Acetone and methanol were supplied by RPE 
Reagent pure Erba. Sodium hydroxide (NaOH), ammonium 
hydroxide  (NH4OH), potassium iodide (KI), sodium oxa-
late  (Na2C2O4) and potassium peroxodisulfate  (K2S2O8) 
were obtained from QREC™. Phenol, 2-chlorophenol 
(2-CP), 3-chlorophenol (3-CP), 4-chlorophenol (4-CP) 
and 2,4-dichlorophenol (2,4-DCP) were acquired from 
Alfa Aesar, Germany with 99% purity. All these chemicals 
were of analytical grade and were used without any further 
purification.

Preparation of catalyst

Mesoporous titania nanoparticles (MTN) were prepared via 
microwave-assisted method. A 4.68 g of CTAB surfactant 
was dissolved in 720 mL of distilled water, 120 mL of pro-
panol and 29 mL of 28% ammonia solution. The mixture 
was kept stirring for half an hour at 323K in the water bath. 
After 30 min, when the temperature of the water bath had 
already increased up to 353K, 5.7 mL of titanium (IV) 
butoxide was added into the mixture and kept stirring for 
another 2 h in the water bath. The white solution was then 
transferred into a suitable beaker before being placed in the 
microwave. The power density of the microwave was 0.56 
 Wg−1. The heating continued until a sol–gel was formed. 
The obtained product was collected and dried overnight in 
an oven before calcining at 873K for 3 h. The final product 
was then labelled as MTN-C. The experiment was repeated 
using SDS and F127 surfactants and labelled as MTN-A and 
MTN-NI, respectively. For comparison, Degussa P25 was 
calcined for 3 h at 873K and denoted as P25.

Characterisation

The crystalline structures of these catalysts were identified 
using a Bruker Advance D8 X-ray powder diffractometer 
(XRD) with Cu Kα radiation (λ–1.5418 Å) at 2θ angle rang-
ing from 20º to 85º with the step size is 0.0260. The phases 
were determined with the assistance of Joint Committee on 
Power Diffraction Standard (JCPDS) files. The functional 
groups of the catalysts were determined using FTIR spec-
troscopy (Perkin Elmer Spectrum GX FTIR Spectrometer) 

with IR absorbance data obtained from 400 to 4000  cm−1. 
The diffuse reflectance analysis of each catalyst was done 
using UV–Vis DRS (Perkin Elmer Lambda 900) spectro-
photometer at room temperature with wavelength between 
200 to 600 nm. The photochemical properties, optical and 
electronic structure of each catalyst were determined using 
photoluminescence (PL) (JASCO Spectrofluorometer) (FP-
8500) with 150W Xe lamp as the excitation source. The tex-
tural properties of each catalyst were examined via nitrogen 
adsorption–desorption isotherms at liquid nitrogen tempera-
tures using a SA 3100 Surface Analyzer (Beckman Coul-
ter) along with Brunnauer-Emmett-Teller (BET) to meas-
ure surface area of the catalyst. The surface morphology 
for each catalyst was confirmed by field-emission scanning 
electron microscopy (FESEM, JEOLJSM-6701F). The best 
catalyst was further examined using transmission electron 
microscopy (TEM, JEOLJEM-2100F). X-ray photoelectron 
spectroscopy (XPS) was performed on a Kratos Ultra spec-
trometer equipped with an Mg Kα radiation source (10 mA, 
15 kV) to identify the chemical oxidation state of the best 
catalyst. As reported in the previous work, pHZPC of each 
catalyst was determined using powder addition (PA) pro-
cedure (Jusoh et al. 2013). 40 mL of pH solution (pH 3, 
5, 7, 9 and 11) were prepared with the usage of HCl and 
NaOH to adjust the pH. The initial pH (pHi) of each solution 
was measured prior to addition of the catalyst. After stirring 
continuously for 48 h, the final pH (pHf) was taken and the 
graph of pH∆ against pHi was plotted.

Photodegradation of 2‑chlorophenol

The photoactivity of these catalysts were tested upon deg-
radation of 2-CP. The photocatalytic reactions were done 
in a batch reactor with cooling system which connected to 
36 W of fluorescence lamp as a visible light source. The 
average light intensity was 4900 lx. Firstly, 0.375 g  L−1 of 
the catalyst was added into 200 mL of 2-CP solution (pH 
5, 70 mg  L−1) and stirred for 1.5 h in the dark condition to 
achieve adsorption–desorption equilibrium before continued 
for another 6.5 h under visible light irradiation. During the 
reaction, 2 mL of solution were taken out at intervals of 
30 min and centrifuged in microcentrifuge at 15,000 rpm for 
15 min before being analysed by UV-Vis spectrophotometry 
(Shimadzu UV-Vis Spectrometer, UV-2600) for determina-
tion of residual concentration of the solution. Each set of 
experiments was performed for triplicates. The adsorption 
band of 2-CP was measured at 274 nm. The percentage deg-
radation was calculated using the following equation:

(1)Degradation(%) =
C0 − C

t

C0

× 100
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where C0 and Ct are the initial concentration and the concen-
tration at time of 2-CP, respectively.

Results and discussion

Catalysts characterisation

Figure 1A shows the XRD patterns of MTN synthesised 
under different surfactants and compared with the pretreated 
commercial  TiO2, Degussa P25. A series of characteristic 
peaks were observed for MTN and P25 at 25.33°, 37.81°, 
38.62°, 48.07°, 53.94°, 55.16°, 62.70°, 68.79°, 70.29°, 
75.04° and 82.74° which corresponded to (101), (004), 
(112), (200), (105), (211), (204), (116), (220), (215) and 
(224) planes, respectively which consistent with typical 
peaks of  TiO2 anatase (A) (Jaafar et al. 2015a, b; Rahman 
et al. 2019). While a series of XRD peaks for rutile (R) phase 
were observed for MTN-A (Fig. 1A/a) and P25 (Fig. 1A/d) 
at 28.05°, 54.57° and 57.37° which corresponded to (110), 
(211) and (220) planes, respectively. No peak associated 
with  TiO2 brookite was detected (Tzikalos et al. 2012; Sun 
et al. 2014).

Based on the XRD patterns, MTN-A exhibited the sharp-
est peaks compared to other catalysts which confirmed the 
formation of high crystalline structures (Rahman et al. 2019; 
Hernandez et al. 2022). However, there is a slight difference 
between the catalysts in terms of structural arrangement due 
to the dispersion diversity of  TiO2 resulting from the appli-
cation of different surfactants during the synthesis (Casino 
et al. 2014; Pal et al. 2016). Besides, the high degree of 
crystallinity shown by MTN-A benefited from the imple-
mentation of anionic surfactants and good heat distribution 
during the microwave heating with high and instant power 

density. During the microwave heating, the high microwave 
field could speedily increase the temperature when it inter-
acts directly with the molecules of the precursor solution 
(Jaafar et al. 2015a, b).

The XRD results also demonstrated that MTN-C 
(Fig. 1A/b) and MTN-NI (Fig. 1A/c) only consist of anatase 
phase while MTN-A (Fig. 1A/a) and P25 (Fig. 1A/d) were 
mainly composed of anatase and rutile phase. This probably 
since both cationic and nonionic surfactants were good in 
maintaining the anatase phase and stabilised this polymorph 
during the precipitation (Geramipour and Oveisi 2016; Pad-
manabhan et al. 2018). However, the presence of sodium 
counterions in sodium dodecyl sulfate (SDS) during the syn-
thesis of MTN-A (Fig. 1A/a) play an important role to assist 
the phase transition within the catalyst lattice structures 
(Inada et al. 2009; Hanaor and Sorrell 2011; Darkins et al. 
2013; Chaturvedi et al. 2017; Yuenyongsuwana et al. 2018; 
Prathyusha and Sreenivasan 2020). The phase compositions 
of MTN-A and P25 were calculated using this equation:

where IR and IA are the main peaks intensity of anatase 
(101) and rutile (110), respectively (Ibrahim et al. 2017). 
MTN-A structures were consisted of 20% rutile and 80% 
anatase phase while P25 had structures of 21% rutile and 
79% anatase. There was only a small difference in phase 
composition between the mixed-phase catalysts.

In addition, MTN-A (Fig. 1A/a) exhibited the highest 
peak intensity and containing  TiO2 mixed-phase proved that 
MTN-A (Fig. 1A/a) has the highest degree of crystallinity 
compared to other catalysts (Darkins et al. 2013; Chaturvedi 
et al. 2017; Yuenyongsuwana et al. 2018). The crystallite 
size of the catalysts was calculated using Debye–Scherrer 
equation:

where D is the crystallite size, λ is the wavelength of the 
X-ray radiation (Cu  Kα = 0.1542 nm), k is the shape factor 

(2)Anatase(%) =
100

(1 + I
R
∕0.79I

A
)

(3)D =
k�

βcosθ

Fig. 1  A X-ray diffraction patterns and B FTIR spectra of a MTN-A 
b MTN-C c MTN-NI and d P25

Table 1  Crystallite size and band gap of photocatalysts

a Crystallite size calculated by using Debye–Scherrer equation at 
2θ = 25.32º
b Band gap calculated by using Kubelka-Munk (K-M) spectrum

Catalyst aCrystallite size (nm) bBand gap (eV)

MTN-A 8.09 3.20
MTN-C 2.36 3.20
MTN-NI 1.77 3.20
P25 4.72 3.10
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(k = 0.94), β is the line width at half-maximum height, and 
θ is the angular position of the peak maximum, 2θ = 25.32°. 
As shown in Table 1, the application of different surfactants 
during the synthesis affects the crystallite’s size due to dif-
ferent templates that affect the crystal structures. MTN-A 
(Fig. 1A/a) have formed the biggest crystallite size fol-
lowed by P25 (Fig. 1A/d), MTN-C (Fig. 1A/b) and MTN-
NI (Fig. 1A/c). The results illustrated that the catalysts with 
mixed-phase appeared to have relatively bigger crystallite 
size compared to single phase catalysts (Pijarn et al. 2013; 
Li et al. 2015; Faisal et al. 2018).

Basically, electrostatic interaction of the polar groups in 
the surfactant and steric hindrance from the reaction of inter-
facial energy between the particles have inhibited aggrega-
tion, thus maintaining the small crystallite size. Besides, it 
was reported that cationic and nonionic surfactants formed 
relatively smaller nanoparticles compared to anionic sur-
factants. The cations in cationic surfactant attached to the 
negatively charged Ti-O− bonds and highly reduced their 
surface energy which stabilised the nanoparticles in the pre-
cursor solution. Therefore, CTAB is an effective surfactant 
to synthesize uniform spherical  TiO2 nanoparticles with 
small crystallite size. Nonionic surfactant also produced 
catalysts with uniform and small crystallite size due to the 
static repulsion. In contrast, the anions in anionic surfactant 
(SDS) have induced the micelles to assemble, thus forming 
irregular spherical nanoparticles (Wei et al. 2018).

The chemical properties of these catalysts were confirmed 
by FT-IR spectra in the range of 4000–400  cm−1 as shown 
in Fig. 1B. All catalysts showed moderate bands at 3420 and 
1630  cm−1 which were assigned to the O-H stretching and 
OH vibration of the surface-adsorbed water, respectively. 
The presence of surface hydroxyl groups on the catalysts 
surface could help to enhance their photoactivity (Saravanan 
et al. 2013b; Mazinani et al. 2014; Gudimella et al.2022). 
While the band at 460  cm−1 were assigned to Ti-O-Ti vibra-
tion modes (Jaafar et al. 2017).

The optical properties of each catalyst were investigated 
by UV-Vis DRS as shown in Fig. 2A. All catalysts illustrated 
the absorption in the UV region with a band edge around 
350 nm and there is no obvious band shift although all the 
catalysts are particularly different in crystallite. The band 
gap energy of the catalyst was calculated using the follow-
ing equation:

where h is Planck’s constant (6.626 ×  10–3  m2 kg/s), c 
is speed of light (3.000 ×  108 m/s) and λ is the wavelength 
values corresponding to the intersection point of the verti-
cal and horizontal parts of the spectra. As shown in Table 1, 
band gap energy of the MTNs is same value which was 
3.2 eV. According to Ravishankar et al. (2020), addition of 

(4)eV =
hc

λ

surfactant during the  TiO2 nanoparticles synthesis did not 
certainly contribute in lowering the band gap since its only 
acted as template for the pore formation. Literally, the band 
gap could be lowered by the formation of lattice defects on 
the catalyst.

The recombination rate of the photogenerated charge car-
riers for each catalyst was studied by PL. Figure 2B illus-
trated the PL spectra for MTNs under the excitation wave-
length of 328 nm. The band at 420 nm was corresponding 
to the surface recombination transition while the bands at 
460 nm and 540 nm were attributed to the OV (Jaafar et al. 
2015a). Based on the result, MTN-A (Fig. 2B/a and insert 
Fig. 2B/a) showed the lowest overall intensity followed by 
MTN-C (Fig. 2B/b and insert Fig. 2B/b) that indicated the 
catalysts had low recombination rate of the photogenerated 
charge carriers. Most probably due to the abundance of TSD 
and OV which acted as electron traps and helped to boost the 
photoactivity of the catalysts (Pan et al. 2013; Wang et al. 
2015a). This will lead to the amount of positively charged 
holes  (h+) in the valence band were increased and have 
promoted the production of more hydroxyl radicals (•OH) 
(Meksi et al. 2015). In contrast, MTN-NI (Fig. 2B/c) mani-
fested the highest overall intensity which reflected that the 
catalyst had a high recombination rate of the photogenerated 
charge carriers (Su et al. 2011).

Figure 3A exhibits the nitrogen adsorption–desorption 
isotherm of the catalysts. All catalysts showed isotherm 
type V with a H3 hysteresis loop that confirmed the typi-
cal adsorption profile for mesostructured material with slit-
shaped pores that were non-uniform in size (Wang et al. 
2015b, 2016). The hysteresis loop at P/P0 = 0.50–0.99 was 
assigned to the nitrogen condensation within the void of 
adjacent nanoparticles which were formed due to textural 
porosity between the particles (Karim et al. 2014).

Fig. 2  A UV-Vis spectra of a MTN-A b MTN-C c MTN-NI and d 
P25; and B PL spectra of a MTN-A b MTN-C c MTN-NI. Insert fig-
ure shows the PL spectra of a MTN-A and b MTN-C
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Figure 3B demonstrates Barrett-Joyner-Halenda (BJH) 
pore size distribution of the catalysts. It was observed that 
the catalysts manifested pores size distribution with different 
major peaks as shown in Table 2. This result confirmed that 
all catalysts possessed mesopores on their surface because 
the pores were less than 50 nm (Bagheri et al. 2015). This 
probably due to the role of surfactant specifically forming 
the micelles which functioned as soft templates to help in 
forming mesopores to increase the surface area (Ramimo-
ghadam et al. 2012; Smirnova et al. 2017). Different sur-
factants came out with varied micelles size which eventually 
resulted in dissimilar pores size on the catalysts besides the 
pores size also affected by the length of the hydrocarbon 
chains of the surfactant (Hao et al. 2016; Saavedra et al. 
2017). Among them, cationic surfactants possessed the long-
est hydrocarbon chains followed by nonionic and anionic 
surfactants (Pascual et al. 2018). Thus, MTN-C (Fig. 3B/b) 
had the largest pores size compared to MTN-A (Fig. 3B/a) 
and MTN-NI (Fig. 3B/c).

Table 2 reveals the comparison of surface area and pore 
parameters for each catalyst. MTN-A appeared to have the 
lowest surface area, total pore volume, and mesoporous 
volume compared to other catalysts. MTN-A and P25 also 

displayed negligible quantities of micropores while MTN-C 
and MTN-NI do not have any micropores on the catalysts 
surface (Dong et al. 2009; Shouman and Fathy 2018).

The morphologies of the catalysts were further con-
firmed via FESEM and TEM as shown in Fig. 4. Based on 
the FESEM images in Fig. 4A-C, all MTNs seemed to have 
spherical particles with worm hole like surfaces which were 
non-uniform in shape and size. It was also revealed that all 
catalysts possessed numerous mesopores. The amount and 
size of pores in each catalyst were highly dependent on the 
type of surfactant applied during the synthesis. According to 
Sun et al. (2014), anionic surfactant is commonly employed 
to construct nanosized crystal structures that are highly 
porous which could enhance the photocatalytic activities. 
While cationic surfactant normally utilised to form grain 
size particles with pure anatase phase which could greatly 
improve the surface area (Payormhorm et al. 2017). In con-
trast, nonionic surfactant usually used to produce macro-/
mesoporous structures which promoted good mass transport, 

Fig. 3  A Nitrogen adsorption–desorption isotherms and B Pore distri-
bution of a MTN-A b MTN-C c MTN-NI and d P25

Table 2  Textural analysis of 
photocatalysts

a Microporous volume determined by using t-plot method
b Mesoporous volume calculated by using this formula: Total pore volume—Microporous volume

Catalyst Major peak (nm) Surface area 
 (m2  g−1)

aMicroporous volume 
(×  10–3  cm3  g−1)

bMesoporous vol-
ume  (cm3  g−1)

Total pore 
volume  (cm3 
 g−1)

MTN-A 2.55 and 11.06 48.63 2.180 0.114 0.116
MTN-C 12.37 73.55 0.000 0.207 0.207
MTN-NI 6.44 74.98 0.000 0.156 0.156
P25 2.45 and 12.39 42.23 1.264 0.1317 0.133

Fig. 4  FESEM images of A MTN-A B MTN-C C MTN-NI and D 
TEM image of MTN-A
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constricted channels and built more reachable surface area 
within the materials (Samsudin et al. 2015).

Figure  4D presents a TEM image of MTN-A which 
showed the particles were translucent and irregular in shape. 
Some aggregations (square box) also could be spotted on the 
catalyst surface resulting from the pores and small particles 
formed in the catalyst framework. It can also be observed 
there were two single crystal grains overlapped on each 
other along with similar interplanar distance of 0.351 nm 
which was in line with (101) facet in  TiO2 anatase structures. 
Other than that, the interplanar distance of 0.332 nm was 
confirmed which is in line with {110} facet in  TiO2 rutile 
structure. The presence of lattice fringe also proved that high 
crystalline particles were successfully formed in this catalyst 
(Rahman et al. 2019).

The chemical states of MTNs synthesised with various 
surfactants were determined by XPS as illustrated in Fig. 5. 
Figure 5A reveals the XPS spectra of Ti 2p with Gauss-
ian fits for all MTN in the region of 456–468 eV. The Ti 
2p spectrum for MTN-A (Fig. 5A/a) could be fixed into 
four peaks where the peaks at 458.80 (Ti  2p3/2), 462.76 (Ti 

 2p1/2) and 464.40 (Ti  2p1/2) eV were attributed to  Ti3+ site 
defects (TSD), while the peak at 460.00 (Ti  2p3/2) eV was 
assigned to  Ti4+. The MTN-C (Fig. 5A/b) illustrated the 
peaks at 458.80 (Ti  2p3/2) and 464.40 (Ti  2p1/2) eV were 
corresponded to TSD, whereas peaks at 458.40 (Ti  2p3/2), 
460.00 (Ti  2p3/2) and 464.65 (Ti  2p1/2) eV were attributed 
to  Ti4+. While the Ti 2p spectrum of MTN-NI (Fig. 5A/c) 
could be deconvoluted into several peaks where the peak at 
464.35 (Ti  2p1/2) eV was attributed to TSD, while the peaks 
at 458.35 (Ti  2p3/2), 460.00 (Ti  2p1/2) and 464.60 (Ti  2p1/2) 
eV were corresponded to  Ti4+ (Kakavandi et al. 2013; Khan 
et al. 2014; Vasilopoulou 2014).

The total intensities of the deconvoluted peaks in Fig. 5A 
were summaries and compared in Fig. 5B. The results show 
that MTN-A had the highest amount of TSD compared 
to MTN-C and MTN-NI. However, MTN-NI appeared to 
have the highest amount of  Ti4+ compared to other cata-
lysts which revealed that only small amounts of  Ti4+ in  TiO2 
starting material have been successfully converted into TSD 
(Ruzicka et al. 2014; Navarrete et al. 2020).

Figure 5C illustrates the XPS spectra of O 1 s with decon-
voluted peaks for all catalysts in the region of 527 to 535 eV. 
The O 1 s spectrum of MTN-A (Fig. 5C/a) proved the pres-
ence of oxygen vacancy (OV) or  Ti3+-O peaks at 530.00 and 
531.40 eV, while  Ti4+-O and hydroxide or hydroxyl group 
 (OH−) peaks at 529.55 and 531.85 eV, respectively. The 
peaks at 530.80 and 531.70 eV for MTN-C (Fig. 5C/b) were 
attributed to OV, whereas the peaks at 529.90 and 531.90 eV 
were assigned to  Ti4+-O and hydroxide. The O 1 s spectrum 
for MTN-NI (Fig. 5C/c) could be fixed into four peaks where 
the peaks at 530.00 eV was corresponded to OV, 529.20 and 
529.45 eV were assigned to  Ti4+-O, while 531.60 eV was 
attributed to hydroxide (Huang et al. 2010; Vasilopoulou 
2014).

The total intensities of the deconvoluted peaks in Fig. 5C 
were summaries and compared in Fig. 5D. The results dem-
onstrated that MTN-A had the highest amount of OV com-
pared to MTN-C and MTN-NI. In contrast, MTN-NI illus-
trated the highest percentage of  Ti4+-O compared to other 
catalysts which verified the low conversion of lattice oxygen 
 (Ti4+-O) from  TiO2 precursor into OV. All catalysts also 
presented relatively low percentages of hydroxide (Gharago-
zlou and Bayati 2014; Li et al. 2014a). Based on the rela-
tive intensity of deconvoluted XPS peaks, it was proven that 
MTN-A has the highest amount of TSD and OV compared 
to other catalysts.

Basically, different surfactants have different size of 
micelles, rate of hydrolysis for precursor and rate of growth 
for nuclei which depend on their alkyl chains. This phenom-
enon has led to the formation of catalysts with varied crystal-
lite size and pores size. The length and type of alkyl chain 
also could affect the surface charge density of the micelles. 
Therefore, increase in the rate of micellisation as the length 

Fig. 5  A XPS spectra of Ti 2p; B Total intensity of  Ti3+ and  Ti4+; C 
XPS spectra of O 1 s D Total intensity of  Ti3+-O,  Ti4+-O and  OH− of 
a MTN-A b MTN-C and c MTN-NI
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of alkyl chain on the polar head group decreased due to the 
reduction in hydrophobic nature of the molecules (Sheikh-
nejad-Bishe et al. 2014; Islam and Rankin 2016; Yuan et al. 
2016; Shayesteh et al. 2021).

In this study, it was confirmed that counterion of the sur-
factant played a crucial role during the synthesis of MTN 
by promoting good structural arrangement with numerous 
site defects on the catalyst surface. Characterisation results 
revealed that different surfactants have resulted in different 
amounts of site defects and phase purity in the structures of 
the catalysts (Andronic et al. 2011; Hao et al. 2019; Jaafar 
et al. 2019a; Merin et al. 2020). Previous studies have shown 
that the phase of the catalyst could be predetermined by 
altering the pH of the solution (Yuan et al. 2016; Szekely 
et al. 2019). However, by simply adding the surfactant into 
the solution also could perform the same task to predeter-
mine the phase of the catalyst besides significantly improv-
ing other aspects as well.

Figure 6A–C showed the proposed mechanisms for the 
formation of  TiO2 phase and site defects for each cata-
lyst. Three important steps during the synthesis which 
were hydrolysis, microwave heating and calcination really 
affected the MTN properties.  TiO2 dispersion and struc-
ture ordering occurred during hydrolysis process while the 

implementation of microwave heating step could promote 
the formation of mesoporous structures with high number 
of site defects. This was due to the high microwave power 
density allocated to adequate aging, thus assisting the forma-
tion of Ti-O-Ti bonds and hydroxyl groups in the tetrahedral 
structures. High power density also offered effective conden-
sation where it could eliminate surface oxygen to generate 
OV while the electrons would be generated to form TSD 
(Genuino et al. 2012; Jaafar et al. 2015a, 2019a, 2020).

During the calcination process, two important reactions 
took place which were partially transformation from anatase 
to rutile and the continuation of TSD and OV formation 
in the catalysts besides template removal, improved degree 
of crystallisation, controlled grain growth and formation of 
mesopores (Majumder et al. 2018; Al-Hajji et al. 2020; He 
et al. 2020). Commonly, surfactants were fully removed at 
temperature between 373 to 673K while anatase started to 
transform into rutile at temperature between 773 to 873K 
(Cai et al. 2016; Banjuraizah et al. 2018; Ravishankar et al. 
2020).

Figure 6A exhibited the proposed mechanism for the for-
mation of mixed-phase MTN-A, TSD and OV. The sodium 
counterions in SDS promoted the phase transformation 
which led to the formation of mixed-phase in MTN-A. 
Sodium counterions began to form the anatase and rutile 
nucleus during the hydrolysis (Inada et al. 2009; Hanaor and 
Sorrell 2011; Darkins et al. 2013; Chaturvedi et al. 2017; 
Prathyusha and Sreenivasan 2020). The mesoporous struc-
tures, TSD and OV, started to form during the microwave 
heating (Jaafar et al. 2015b). After the calcination, anatase 
and rutile phase were fully formed with the highest amount 
of TSD and OV on the catalyst surface. This phenomenon 
could be occurred due to the dispersion of site defects on the 
rutile surface were better than anatase because the required 
energy for formation of site defects on the rutile surface 
were lower compared to anatase. The withdrawal of first 
and second oxygen atoms from rutile required less energy 
than anatase which resulted in high number of sites defects 
on the rutile surface. Recent studies have verified that lower 
number of site defects were found in anatase compared to 
rutile, besides the site defects were distributed heterogene-
ously in rutile and homogenously in anatase of bulk  TiO2 
(Fronzi et al. 2016; Wei et al. 2017; Elahifard et al. 2020; 
Wang et al. 2021).

Figure 6B presented the proposed mechanism for the 
formation of pure anatase MTN-C, TSD and OV. The bro-
mide counterions in CTAB delayed the phase transition from 
anatase to rutile and stabilised the anatase phase during the 
precipitation. Thus, only anatase nucleus were formed dur-
ing the hydrolysis (Casino et al. 2014). The mesoporous 
structures, TSD and OV were continued to form during 
the microwave heating and calcination steps (Jaafar et al. 
2019a). As confirmed by the XRD and XPS results, pure 

Fig. 6  Proposed mechanism for the formation of  TiO2 phase, TSD 
and OV in A MTN-A B MTN-C and C MTN-NI
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anatase MTN-C had abundant of TSD and OV on the cata-
lyst surface. However, the number of site defects in MTN-C 
was lower than MTN-A. Even though MTN-C produced a 
good amount of TSD and OV, the application of cationic 
surfactant during the synthesis has limited its potential to 
become a mixed-phase catalyst due to its chemical properties 
which inhibited the phase transition of the catalyst (Anaam 
et al. 2019; Dong et al. 2020b).

Figure 6C manifested the proposed mechanism for the 
formation of pure anatase MTN-NI, TSD and OV. F127 was 
not ionise in aqueous solution although they had the hydro-
philic parts yet still produced anatase nucleus during the 
hydrolysis (Mohamed and Zak 2020; Rad et al. 2020; Simon 
et al. 2020). The mesoporous structures, TSD and OV were 
initiated during the microwave heating (Jaafar et al. 2020). 
However, the application of high calcination temperature 
during synthesis of MTN-NI caused the formation of lowest 
amount for TSD and OV because the optimum calcination 
temperature for removal of nonionic surfactant was usually 
around 573K in order to perfectly form mesoporous struc-
tures. The calcination temperature for nonionic surfactants 
were relatively lower compared to other surfactants (Islam 
et al. 2016; Dong et al. 2017; Marco-Brown et al. 2017). 
Nonetheless, it was observed in FESEM image for MTN-NI 
that the pores and crystal structures were fully constructed 
but the intensity of site defects was found to be very low 
which indicated the TSD and OV failed to form during 
synthesis. Previous studies also found that the implementa-
tion of high calcination temperature on nonionic surfactant 
tended to destruct the mesoporous structures progressively 
which eventually obstructed the formation of site defects on 
the catalyst surface (Mahoney and Koodali 2014; Wahyun-
ingsih et al. 2014; Nagpure et al. 2018; Kim et al. 2019). All 
the catalytic properties illustrated the potential of MTN-A to 
be utilised as a photocatalyst.

Photocatalytic performance of the catalyst

A comparison study on photodegradation of 2-CP com-
pounds using various photocatalysts was summarised in 
Table 3. It shows that MTN-A in this study was comparable 

with other photocatalysts from other studies. In addition, the 
synergistic effect between the TSD, OV and mixed-phase 
MTN have enhanced the electronic band structure, assisted 
the electron transfer and lowered the electron–hole recombi-
nation rate besides increased the photoactivity under wider 
light range.

The catalytic performances of MTNs prepared by differ-
ent surfactants were tested on degradation of 2-CP under 
dark and visible light irradiation as shown in Fig. 7. All 
catalysts still showed low percentage degradation under dark 
condition due to the adsorption of 2-CP to the mesopores. It 
was also clearly observed that all the catalysts showed bet-
ter performance under visible light irradiation compared to 
being in dark. Thus, it was confirmed that 2-CP removal was 
due to the photocatalytic degradation rather than adsorption.

Photocatalytic degradation with MTN-A demonstrated 
the highest percentage degradation (85%) followed by 
MTN-C (77%), P25 (62%) and MTN-NI (18%), signify-
ing the importance of mixed-phase of  TiO2 in the system. 

Table 3  Comparison of 
2-chlorophenol degradation 
over various catalysts

Catalyst Initial conc 
(mg  L−1)

Dosage (g  L−1) Degradation (%) Refs.

Iodine doped  TiO2 modi-
fied with  SnO2 (SIT)

30 1.000 88 He et al. 2011

Ga,I-TiO2 32 1.000 90.0 Song et al. 2011
InVo4/TiO2 50 1.000 50.5 Rashid et al. 2014
Ag/TiO2 50 0.375 94.0 Jaafar et al., 2015a
(RGO)-(TIO2-RGO-CoO) 10 2.000 98.2 Sharma and Lee 2016
Fe3O4-TiO2@MWCNT 2 0.400 100.0 Dobaradaran et al. 2018

Fig. 7  Photocatalytic performance of MTN-A, MTN-C, MTN-NI and 
 P25.  (C2-CP = 70 mg  L−1, pH = 5, W = 0.375 g  L−1, t = 8 h, T = 303 K)
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Regardless of all catalysts had the same band gap energy, 
MTN-A still illustrated an excellent performance contributed 
to the numerous amounts of TSD and OV on its surface. 
These site defects created new bands within the electronic 
band structure, thus the photoactivity could be extended 
under visible light irradiation (Wang et al. 2015a; Huang 
et al. 2020). The presence of site defects and the conduc-
tion band  (CB) of rutile in MTN-A could act as electron 
acceptors by reducing the electron–hole recombination, thus 
improved the photocatalytic performance. Moreover, the for-
mation of electron–hole pairs under visible light irradiation 
have escalated due to the excitation of electrons  (e−) from 
 VB and TSD. In contrast, under UV light irradiation, this 
occurrence did not happen because UV possessed very high 
energy besides able to excite electrons directly from  VB to 
 CB. Therefore, the higher the number of TSD and OV on the 
catalyst surface could led to high percentage degradation of 
the pollutant (Pan et al. 2013; Ren et al. 2015).

The pH of solution is an important parameter in photo-
catalytic degradation because it can regulate the interaction 
between the pollutant and catalyst surface besides affected 
the adsorption capacity. It also can control the amount of 
hydroxyl radical produced during the photocatalytic deg-
radation. In order to identify the optimal pH for MTN-A 
in photodegradation of 2-CP, the pH values of the aqueous 
solution were altered from 3 to 11. The selection of pH was 
done based on the optimum condition reported by the previ-
ous studies (Dobaradaran et al. 2018; Barakat et al. 2020).

Figure 8A shows the highest degradation was obtained 
in pH 5 with percentage degradation of 85% while followed 
by pH 3, 7, 9 and 11 with percentage degradation of 45%, 
40%, 20% and 16%, respectively. This phenomenon could 
be clarified by the amphoteric properties of the catalyst in 
term of Point of Zero Charge (PZC) (Karim et al. 2014). The 
PZC value of MTN-A was at pH 6 as illustrated in Fig. 8B 

while the pKa value of 2-CP is 8.52 (Duan et al. 2021). 
Below the  pKa value, 2-CP existed in the neutral form and 
did not exhibit repulsion with the negatively charged MTN-
A. Thus, MTN-A manifested optimum photocatalytic deg-
radation in lower pH condition. While above the  pKa value, 
2-CP became negatively charged ions and repulsed with 
the negatively charged MTN-A. Moreover, high pH values 
favored the formation of carbonate ions which functioned 
as scavenger for hydroxyl radicals. Therefore, decreased in 
percentage degradation was observed at higher pH.

Figure 9A displays the photocatalytic performance of 
MTN-A at various initial concentration of 2-CP. It was 
revealed that MTN-A successfully degraded 70 mg  L−1 of 
2-CP with 85% degradation followed by 100 mg  L−1 (82%), 
50 mg  L−1 (71%), 30 mg  L−1 (66%) and 10 mg  L−1 (50%). 
The trend of this result exhibited that better photoactivity 
were achieved in pollutants with higher initial concentra-
tion whereas lesser photodegradation were obtained in 
pollutants with lower initial concentration. The adsorption 
capacity influenced by the availability of adsorption sites on 
MTN-A. At low initial concentration, the proportion of 2-CP 
molecules to the amount of unoccupied adsorption sites 
was low which signified less competition for the adsorption 
sites. The rate of mass transfer increased and adsorption took 
place progressively. Therefore, the percentage degradation 
increased from 10 to 50 mg  L−1. Then, the initial concen-
tration continued to increase until the maximum adsorption 
capacity was reached at 70 mg  L−1. On the other hand, at 
high initial concentration, the proportion of 2-CP molecules 
to the amount of unoccupied adsorption sites was high which 
indicated high competition for the adsorption sites. Excess 
2-CP molecules were not adsorbed because of the electro-
static repulsion, thus decreased the adsorption capacity. 

Fig. 8  A Effect of pH using MTN-A for degradation of 2-CP and B 
Isoelectric point  (pHPZC) of MTN-A.  (C2-CP = 70 mg  L−1, W = 0.375 g 
 L−1, t = 8 h, T = 303 K)

Fig. 9  A Effect of initial concentration using MTN-A for degrada-
tion of 2-CP and B Photodegradation kinetics of 2-CP using MTN-A 
at different initial concentrations a 10 mg  L−1 b 30 mg  L−1 c 50 mg 
 L−1 d 70  mg  L−1 e 100  mg  L−1. (pH = 5, W = 0.375  g  L−1, t = 8  h, 
T = 303 K)
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Hence, the percentage degradation started to decrease at 
100 mg  L−1 (Salleh et al. 2011; Yagub et al. 2014).

Figure 9B also demonstrates a graph of ln  (Co/Ct) against 
the irradiation time for a sequence of initial concentration 
at 10, 30, 50, 70 and 100 mg  L−1 which followed the Lang-
muir–Hinshelwood model (Sapawe et al. 2013a). The kinetic 
analysis was studied using this model to understand the reac-
tions occurred at solid–liquid interface (Jawad et al. 2016). 
From the graph plotted, it was proposed that the photocata-
lytic degradation of 2-CP followed pseudo-first order kinet-
ics model (Jalil et al. 2013). The kinetic study of MTN-A has 
been studied and the degradation efficiency was summarised 
in Table 4. The increase of kapp values with the increment 
of initial concentration have suggested that the system was 
favored at high concentration (Sapawe et al. 2013b). The val-
ues of kr (reaction rate constant) and KLH (adsorption coeffi-
cient) for MTN-A were found to be 121.9512 mg  L−1  min−1 
and 4.5556 L  mg−1, respectively. Since the value of kr was 
larger than KLH, it was indicated that the adsorption of 2-CP 
was the controlling step in the process (Jaafar et al. 2012; 
Sapawe et al. 2012).

The effect of catalyst dosage was also studied to ana-
lyse the efficacy of MTN-A to adsorb 2-CP with minimum 
mass of catalyst as shown in Fig. 10A. The results show 
that 0.375 g  L−1 gave the best photocatalytic performance 
with percentage degradation of 85% followed by 0.250, 
0.125, 0.500 and 0.625 g  L−1 with percentage degrada-
tion of 79%, 77%, 75% and 74%, respectively. As MTN-A 
dosage increased from 0.250 to 0.375 g  L−1, the trend of 
percentage degradation was increased while the adsorption 
capacity was decreased due to the high amount of avail-
able adsorption sites. However, further increased in catalyst 
dosage more than 0.375 g  L−1 have lowered the number of 
available adsorption sites on the catalyst due to aggregation 
which reduced the photoactivity besides too high catalyst 
dosage could cause turbidity of the suspension in the pollut-
ant which restricted the light penetration toward the catalyst 
surface (Zhou et al. 2014; Shah et al. 2015).

The potential of MTN-A for degradation of chlorophenol 
derivatives namely phenol, 2-CP, 3-CP, 4-CP and 2,4-DCP 

was studied as shown in Fig. 10B. All the phenolic deriva-
tives were combined as one solution and labelled simulated 
phenols. The results demonstrated that the catalyst success-
fully degraded more than 80% of all pollutants with 2-CP 
(85%) maintained as the most degraded pollutant followed 
by 4-CP (84%), 3-CP (83%), phenol (82%) and 2,4-DCP 
(81%). Since 2-CP showed the highest percentage degra-
dation, thus it was chosen for the optimization study. This 
result proved that MTN-A could be greatly suitable for 
industrial treatments which usually contained several chloro-
phenol derivatives in their wastes water (Munoz et al. 2011; 
Castaneda et al. 2016; Guo et al. 2021).

The stability of MTN-A is studied by a series of experi-
ment repetition in the photocatalytic degradation of 2-CP as 
shown in Fig. 11A. MTN-A was collected, washed and cal-
cined at 873K for 3 h for each new cycle. The result shows 
that photocatalytic performance of the catalyst remained 
active with only slight decreased in percentage degradation 
from 85 to 77%. The decreased in degradation probably dur-
ing the drying process for each cycle, the catalyst exposed 
to additional heat which contributed in reducing the surface 
area as well as the catalyst accumulation that led to decrease 
in photocatalytic degradation of pollutant in the next cycles 
(Jaafar et al. 2012). Thus, it was proven that MTN-A had 
great potential to be used at industrial scale since it was very 
stable and cost effective.

In order to study the photocatalytic degradation mecha-
nism of 2-CP using MTN-A, three scavenging agents were 
introduced specifically potassium peroxodisulfate (PP), 
sodium oxalate (SO) and potassium iodide (KI) where PP 
functioned as  e− trapper, SO acted as  h+ trapper and KI 
operated as surface hydroxyl radical •OH trapper (Jusoh 

Table 4  Percentage degradation at different initial concentrations of 
2-CP and pseudo-first order apparent constant values for 2-CP deg-
radation using MTN-A. (pH = 5, W = 0.375 g  L−1, t = 8 h, T = 303K)

Initial 2-CP 
concentration, 
 C0

Degrada-
tion (%)

Reaction rate,  kapp 
(×  10–2  min−1)

Initial reaction rate, 
 r0 (mg  L−1  min−1)

10 50 0.18 0.02
30 66 0.27 0.08
50 71 0.31 0.16
70 85 0.49 0.34

100 82 0.44 0.44

Fig. 10  A Effect of catalyst dosage using MTN-A during degrada-
tion of 2-CP and B Photocatalytic degradation of phenol derivatives. 
 (C2-CP = 70 mg  L−1, pH = 5, W = 0.375 g  L−1, t = 8 h, T = 303 K)
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et al. 2014). Figure 11B exhibits the percentage degrada-
tion of 2-CP after addition of these scavenging agents. The 
result revealed that additional of KI during the reaction 
gave the highest percentage degradation of 70% followed 
by PP and SO with percentage degradation of 67% and 47%, 

respectively. This result also signified the important role of 
 h+ during the photocatalytic degradation followed by  e− and 
•OH.

The proposed mechanism for the degradation of 2-CP 
over MTN-A is proposed as in Fig. 12 according to the char-
acterisations and photoactivities results. Generally, visible 
light irradiation triggered the photogenerated electrons to 
excite from  VB to the  CB that resulted in the production of 
electron–hole pairs on the MTN-A surface as shown in Eq. 5 
(Saravanan et al. 2013a; Nur et al. 2022).

The TSD, OV and  CB of rutile assisted the charge migra-
tion and inhibited the electron–hole recombination of the 
MTN-A (Abdullah et al. 2018). The presence of TSD and 
OV were confirmed with the restricted electrons movement 
during the photocatalytic degradation due to scavenger effect 
on the electrons. Then, the generated  h+ in the  VB reacted 
with the water molecules or hydroxyl groups to generate 
•OH radicals as illustrated in Eq. 6 and Eq. 7.

The photogenerated electrons from different platforms 
have reduced  O2 molecules into superoxide  (O2

•−) and then 

(5)TiO2 + hv → TiO2 + hVB + eCB−

(6)H2O + hVB → OH + H+

(7)OH− + hVB → OH

Fig. 11  A Regeneration of MTN-A on degradation of 2-CP and B 
Photocatalytic degradation of 2-CP in the presence of hole scavenger, 
electron scavenger and •OH scavenger using MTN-A.  (C2-CP = 70 mg 
 L−1, pH = 5, W = 0.375 g  L−1, t = 8 h, T = 303 K)

Fig. 12  Proposed mechanism for the degradation of 2-CP using MTN-A
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reacted with  H+ in the water to produce  HOO• followed by 
the generation of •OH for partial or complete mineralisation 
of 2-CP. The more  O2

•− production during the photocata-
lytic activities which further generated the •OH, the higher 
the percentage degradation of 2-CP. Based on the previous 
study, •OH had electrophilic nature that tended to bombard 
an aromatic structure. This occurrence has led to the genera-
tion of hydroxylated species such as catechol and 2-chloro-
hydroquinone. Besides, 2-CP might go through hemolytic 
cleavage of aryl-Cl bond which then produced radical (R) 
and chloride radical  (Cl•). The dichlorination of 2-CP pos-
sibly occurred via its interaction with trapped electrons on 
the catalyst surface forming R and chlorine ions. After that, 
R might distinguish into [1,1’-biphenyl]-2,2’-diol or reacted 
with formyl radical formed in-situ that generated hydroxy-
benzaldehyde. Persistent oxidation of the aromatic interme-
diates might induce ring opening and producing carboxylic 
acid which caused total mineralisation of 2-CP into  CO2 
and  H2O (Jusoh et al. 2015; Jaafar et al. 2020; Marfur et al. 
2020b). The mechanism was summarized as in Eqs. 8, 9 
and 10.

This study revealed the remarkable functions of TSD, 
OV and  CB of rutile in MTN-A which highly contributed 
to assisting the charge carrier separation and acted as elec-
tron acceptors to inhibit the electron–hole recombination. 
Besides, the optical response was shifted from UV to the 
visible light region (Bielan et al. 2020; Miao et al. 2020; 
Xu et al. 2021).

Conclusion

In this study, MTN-A, MTN-C and MTN-NI were syn-
thesised using anionic, cationic and nonionic surfactants, 
respectively via microwave-assisted method and character-
ised by XRD, FTIR, UV-Vis DRS, PL, BET, FESEM, TEM 
and XPS. Then, the photocatalytic activities of the catalysts 
were tested using degradation of 2-CP under visible light 
irradiation. MTN-A have showed the highest percentage 
degradation with 85% followed by MTN-C, MTN-NI and 
P25 with 77%, 18% and 62%, respectively. Based on the 
characterisation results, it was revealed that introduction of 
different surfactants was found to give different structural 
arrangement and  TiO2 dispersion during the synthesis. All 
catalysts were successfully formed the mesoporous struc-
tures, but this occurrence resulted in different degree of 

(8)O2 + eCB → O2−

(9)⋅O−
2
+ H+

→ HO2 → OH

(10)⋅OH + 2 − CP → degraded 2 − CP + CO2 + H2O

crystallinity, phase composition, pores and particles size of 
the catalysts structures. The significant difference between 
the prepared catalysts was the formation of mixed-phase 
when using SDS as anionic surfactant. MTN-A consisted of 
20% rutile and 80% anatase phase. Mixed-phase MTN-A had 
the highest number of TSD and OV on the catalyst surface 
compared to other catalysts. This was contributed by the 
presence of rutile phase in the framework. The amount of 
site defects on the surface of rutile were higher than anatase 
because the energy needed for formation of site defect on 
rutile were lower compared to anatase. Abundance of TSD 
and OV on the MTN-A surface have resulted in the highest 
degradation. The synergistic effect between the TSD, OV 
and  TiO2 mixed-phase have assisted the charge migration 
and inhibited the electron–hole recombination rate, thus 
increased the photoactivity of MTN-A. MTN-A also exhib-
ited the highest degree of crystallinity compared to other 
catalysts. MTN-A was found to work the best with dosage 
of 0.375 g  L−1 in solution of pH 5 and 70 mg  L−1. The 
kinetic study for MTN-A indicated that the degradation of 
2-CP followed a pseudo-first-order Langmuir–Hinshelwood 
model. Besides, the employment of MTN-A on the degra-
dation of phenol derivatives such as phenol, 2-CP, 3-CP, 
4-CP and 2,4-DCP had also shown significant performance 
of the catalytic system. The regeneration study of the cata-
lyst exhibited that the photocatalytic activity was still stable 
after five cycles with only a slight decrease in the degrada-
tion of 2-CP. Thus, MTN-A is highly potential to be used at 
industrial scale since it was very stable against photo- and 
chemical corrosion even after repeated cycles.
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