

85:3 (2023) 175–182|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18744|

Jurnal

Teknologi

Full Paper

KEYWORD SPOTTING SYSTEM WITH NANO 33 BLE

SENSE USING EMBEDDED MACHINE LEARNING

APPROACH

Nurul Atikah Abbas, Mohd Ridzuan Ahmad*

Department of Control and Mechatronics Engineering, Faculty of

Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM

Johor Bahru, Johor, Malaysia

Article history

Received

15 June 2022

Received in revised form

28 January 2023

Accepted

29 January 2023

Published Online

19 April 2023

*Corresponding author

mdridzuan@utm.my

Abstract

Due to the obvious advancement of artificial intelligence, keyword spotting has become a fast-growing technology that was

first launched a few years ago by hidden Markov models. Keyword spotting is the technique of finding terms that have been

pre-programmed into a machine learning model. However, because the keyword spotting system model will be installed on a

small and resource-constrained device, it must be minimal in size. It is difficult to maintain accuracy and performance when

minimizing the model size. We suggested in this paper to develop a TinyML model that responds to voice commands by

detecting words that are utilized in a cascade architecture to start or control a program. The keyword detection machine

learning model was built, trained, and tested using the edge impulse development platform. The technique follows the model-

building workflow, which includes data collection, preprocessing, training, testing, and deployment. 'On,' 'Off,' noise, and

unknown databases were obtained from the Google speech command database V1 and applied for training and testing.

The MFCC was used to extract features and CNN was used to generate the model, which was then optimized and deployed

on the microcontroller. The model's evaluation represents an accuracy of 84.51% based on the datasets. Finally, the KWS was

successfully implemented and assessed on Arduino Nano 33 BLE Sense for two studies in terms of accuracy at three different

times and by six different persons.

Keywords: Edge impulse, Keyword spotting, TinyML, MFCC, CNN

Abstrak

Disebabkan kemajuan yang jelas dalam kecerdasan buatan, pengesanan kata kunci telah menjadi teknologi yang

berkembang pesat yang mula-mula dilancarkan beberapa tahun lalu oleh model Markov tersembunyi. Pengesanan kata

kunci ialah teknik mencari istilah yang telah dipraprogramkan ke dalam model pembelajaran mesin. Walau bagaimanapun,

kerana model sistem pengesanan kata kunci akan dipasang pada peranti yang kecil dan terhad sumber, ia mestilah bersaiz

minimum. Sukar untuk mengekalkan ketepatan dan prestasi apabila meminimumkan saiz model. Kami mencadangkan

dalam kertas ini untuk membangunkan model TinyML yang bertindak balas kepada arahan suara dengan mengesan

perkataan yang digunakan dalam seni bina lata untuk memulakan atau mengawal program. Model pembelajaran mesin

pengesanan kata kunci telah dibina, dilatih dan diuji menggunakan platform pembangunan dorongan tepi. Teknik ini

mengikut aliran kerja pembinaan model, yang merangkumi pengumpulan data, prapemprosesan, latihan, ujian dan

penggunaan. 'Hidup,' 'Mati,' hingar dan pangkalan data yang tidak diketahui diperoleh daripada pangkalan data arahan

pertuturan Google V1 dan digunakan untuk latihan dan ujian. MFCC digunakan untuk mengekstrak ciri dan CNN digunakan

untuk menjana model, yang kemudiannya dioptimumkan dan digunakan pada mikropengawal. Penilaian model mewakili

ketepatan 84.51% berdasarkan set data. Akhirnya, KWS telah berjaya dilaksanakan dan dinilai pada Arduino Nano 33 BLE

Sense untuk dua kajian dari segi ketepatan pada tiga masa berbeza dan oleh enam orang berbeza.

Kata kunci: Edge impulse, Kata kunci, Pembelajaran mesin kecil, MFCC, CNN

© 2023 Penerbit UTM Press. All rights reserved

176 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

1.0 INTRODUCTION

Machine learning is an intriguing branch of Artificial

Intelligence (AI) that employs a variety of techniques

to intelligently manage large and complex amounts

of data. It is based on institutions from a variety of

fields, including statistics, knowledge creation, power,

database, causal inference, computer systems,

machine vision, and natural language processing.

Machine learning may also be trained to accomplish

activities that would normally need human intellect.

The advancement of AI techniques such as

machine learning has accelerated the creation of

intelligent systems [1]. Machine learning inference is

commonly offloaded to the cloud, where computer

resources are more abundant. Offloading, on the

other side, raises the cost of latency, energy, and

privacy. It also requires on-going communication

connectivity, such as Wi-Fi.

The concept of AI is continually expanding, and it

has entered our sights as a new choice in life. One of

the most prominent advancements in machine

learning has been audio or voice recognition

systems. However, it is a cloud-based solution for

work completion. This technique is impractical to

deploy because of the demand for continual

internet connectivity and privacy concerns.

Tiny machine learning was proposed for the

improvement of machine learning on a small and

resource-constrained device by including extremely

resource-constrained hardware, software, machine

learning algorithms, compilers, and tools to squeeze

a machine learning model into a few kilobytes of

memory [2]. TinyML is a relatively young area that

combines machine learning with embedded

devices. An embedded system is a tiny computing

device that consumes relatively little electricity.

TinyML is the greatest answer since it is a self-

contained system that does machine learning

directly on the IoT device. TinyML may solve the

shortcoming of dependent machine learning models

since it is not dependent on the internet or high-end

computational resources.

TinyML analyses data and does inference on its

own instead of transmitting it to the cloud. As a result,

the data will be saved on the device, lowering the

danger of data privacy. It would also save storage

and infrastructure expenses by not having to transfer

data to the cloud on a continuous basis; only

relevant data would be kept after inference [3]. The

model's delay or latency issue will be removed

because the entire operation is completed on the

device. TinyML is commonly used for keyword

recognition, visual wake words, and anomaly

detection [4]. The practice of finding terms that are

utilized in a cascade architecture to start or run a

system, such as a mobile phone that reacts to voice

instructions, is known as keyword spotting or hot word

detection [5],[6].

Alexa and Siri are two examples of voice-

recognition-based products that are now being

marketed. As the activation or wake word for a

system, this gadget will detect a keyword. People are

becoming increasingly interested in adopting smart

technology as a result of the increasing need for

technology, and there are several approaches to

make the gadget smarter. These technologies have

helped to feed the "Internet of Things" notion of

intelligent settings such as smart buildings and smart

homes [7]. Smart switches, plugs [8], light bulbs, fans,

heating systems, and even blinds [9] might all be

utilized to integrate smart home systems. Smart

gadgets, which are usually paired with a personal

assistant, enable users to do a wide range of tasks

with little effort, generally from a distance via spoken

commands such as Alexa turning on the lights or

even through rudimentary automation systems that

do not require user input [9]. However these products

have limitations in terms of privacy issues, internet

dependent, cloud-based dependent, big memory

size and latency.

The keyword spotting system (KWS) is a system

that accepts an input signal and generates a

particular action after detecting a term. KWS's

conventional method is based on Hidden Markov

Models (HMM). However, in order to perform the

machine learning, this model demands a huge

memory, a vast vocabulary, and a high

computation. Deep learning algorithms have been

shown in recent years to give an efficient solution

because of their minimal memory footprint and

efficient performance. As described in [10], the Deep

Neural Network (DNN) model is built on a

microcontroller using optimization approaches aimed

at addressing power, memory, and real-time

restrictions at the edge. In this technique, the 16-bit

integers model reduces inferencing time and

memory footprint while maintaining accuracy.

Furthermore, the inferencing time and memory

footprint produce an additional improvement while

contributing to a minor loss in accuracy.

Recently, more sophisticated neural network

models were developed to improve the current KWS

model. Convolutional neural networks (CNN) have

risen in popularity in recent years as image

recognition algorithms have improved, and they are

widely used for KWS in embedded systems [11]. Mel-

Frequency Cepstrum Coefficients (MFCC) are used

as a preprocessing step before feeding the neural

network to remove unwanted noise [12]. The benefit

of this data structure is that it can extract features

that reflect both short-term and long-term

relationships using 1D convolutional operators.

In 2018, an attention-based neural network for a

small-footprint keyword spotting was proposed using

a convolutional recurrent neural network (CRNN). The

CRNN-based attention model achieves 1.02% false

rejection rate (FRR) at 1.0 false alarm (FA) per hour

with only 84K parameters [13]. A low-power

accelerator called MAX78000 was utilized to deploy

the KWS system with the suggested CNN

architecture. This model modifies according to the

restrictions of the hardware and uses a neural

architecture search (NAS) technique [12]. However,

177 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

a system with MFCC consumes high energy more

than three times with the proposed KWS system and

caused high latency [12].

To provide an economical alternative and

increase performance [6], the unique depthwise

separable convolutional neural network (DS-CNN)

[6],[11],[14],[15] was introduced for the embedded

KWS. CNN is altered on each layer of convolution,

beginning with the second layer, which includes

depthwise and pointwise convolutions, as well as a

batch normalization layer with ReLU activation.

Transform a rectangle with a variety of grid shapes to

allow the model to focus more on regions with more

information. Deformable Convolution Network (DCN)

is the name given to this model.

The Recurrent Neural Network (RNN) is another

common way of developing a smart audio

processing system. RNN and MFCC are employed in

the construction of the voice recognition system [16].

Because they outperform older methods such as

hidden Markov models (HMMs), convolutional neural

networks (CNNs), deep neural networks (DNNs),

recurrent neural networks (RNNs), deformable

convolutional networks (DCNs), and depthwise

separable convolutional neural networks (DS-CNNs)

have been used to replace them [17].

The Google Speech Commands Dataset is a

standard dataset used for keyword spotting systems

in audio recognition. Google Speech Command

Dataset v1 was made up of 65000 single-speaker,

single-word recordings of 30 distinct terms, with a

total of 1881 speakers contributing to the dataset,

guaranteeing a high level of speaker variety [18]. It

has 35 words contributed by thousands of different

individuals for v2. Based on recent research for KWS

applications [6],[18],[19],[20],[21], the dataset is

relabeled to form 12 classes: "Yes", "No", "Up", "Down",

"Left", "Right", "On", "Off", "Stop", "Go" as well as

"Silence" which contains no speech utterances and

"Unknown" which contains data from the remaining

20 and 25 keywords in the original dataset based on

v1 and v2 [18]. The dataset is divided into three sets:

training, validation, and test, with a ratio of 80:10:10

[12].

To strengthen the system's resilience, an

augmentation procedure is used where this is the

technique of introducing real-world background

noise to be trained using audio recordings in order to

improve performance [11],[12].

In this study, we focus on constructing a keyword

detection system for a minimal memory-footprint

model utilizing convolutional neural networks, or

CNN. This project’s scope is to develop a keyword

spotting machine learning model for a

microcontroller. It also implements optimization

methods to optimize the model to a smaller memory

size.

Edge impulse is employed in the development of

an algorithm that decreases the energy consumption

of the system in order to generate a system that suits

the resource-constrained device. Edge Impulse is a

development platform used to create a machine

learning model for the targeted edge devices [22].

There are a few main parts: data collection, design

model, training, testing, and deployment phase. The

development of the model starts with data collection

and design. The machine learning models provides a

high accuracy if the system has a lot of training data

and testing data. The model's input is an MFCC

feature extracted from the Google Speech

Command Dataset v1 sets. During the model's

construction, the training data was supplemented

with noise on each audio file to improve

performance in the presence of noise. Then, training

is done on the cloud and the trained model can be

deployed on the edge device. The impulse can be

directly run on a mobile phone or computer or it can

be exported to a library or built firmware. Finally, the

KWS system revealed that our suggested technique is

effective independent of time or individuals

preferences.

2.0 METHODOLOGY

2.1 Keyword Spotting System

Building a KWS using an Edge Impulse platform

requires a few crucial steps. This system workflow

started with data collection by building a dataset of

voice recordings of different genders. Then, the data

were labeled with the correct classes before being

trained. A feature extraction, MFCC, and NN Keras

Classifier were implemented in the model training

and testing involving uploading files to Edge Impulse.

Finally, the trained model was deployed on Arduino

Nano 33 BLE Sense. The general flow involving

software and hardware is summarized in Figure 1.

Figure 1 Project workflow

2.2 Data Collection

The data collection aimed at developing audio

datasets of certain keywords. A Google Speech

Commands v1 was the ideal dataset to be used in

this system. ‘On’, ‘Off’, noise, and unknown are the

keywords used for the dataset. 1858 audio files were

uploaded and labeled ‘On’ in the Edge Impulse.

Moreover, the ‘Off’ keyword consists of 1860 files with

audio of various people. As many as 1123 u2nknown

words were added in the dataset containing other

words than ‘On’ and ‘Off’. 1131 noise including noise

from dish wash, cat meowing, exercise bike, air

conditioner, airport announcement, babble, copy

machine, munching, shutting the door, typing,

vacuum cleaner, bus, cafe, car, field, hallway,

kitchen, living room, metro, park, restaurant, chair,

178 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

tap, station, and traffic were successfully uploaded

and labeled as noise.

Each audio file was ensured to be at least 1

second in length before proceeding to the training

process. The dataset was automatically divided into

training and testing sets with a ratio of 80:20

respectively. Therefore, a total of 1858,1860,1131 and

1123 audio files labeled ‘On’, ‘Off’, noise and

unknown for training and 454 ‘On’, 469 ‘Off’, 263

noise and 267 unknown files for testing purposes.

2.3 Training

Training and building models are based on Edge

Impulse. 80% of the data was used for training to

produce 4 output features, which are On, Off, Noise,

and Unknown. All audios were set to a 1 second

window size with a 16 kHz before being fed to the

feature extraction part. Then, it uses signal processing

to extract features and a learning block to classify

new data.

Due to many unrelated disturbances, the raw

data signal for KWS and speech or voice recognition

will not be used as input for the neural network. As a

result, before feeding the data to the neural network,

the signal's characteristics must be removed. For

signal processing, the Mel-Frequency Cepstral

Coefficient was deployed. Mel-frequency cepstral

coefficients were the most common feature

extraction method (MFCCs). The raw data was

processed by MFCC to extract features, where a

discrete cosine transform is applied to each filter

bank. The data becomes easier to analyze with the

classifier.

The MFCC features are the input of the learning

block called as NN Keras Classifier. During this

process, the data were classified based on the

percentage of the identified outputs. Two

hyperparameters were fixed from the training settings

which are the training cycles of 100, a learning rate

of 0.005 and 20 validation set size. Therefore, there

are 100 epochs to train the neural network and the

learning rate shows how fast the network learns. If

overfitting happens, the learning rate needs to be

lowered.

Figure 2 shows the neural network architecture

used in the development of this model. Neural

network architecture consists of an input layer and 3

1D convolutional layers with 8, 16, and 32 neurons or

filters respectively with 3 kernel sizes and 1 layer. 3

layer was fixed to be used in the model because

using a lower layer and a higher layer caused the

degradation of the classification accuracy. Use a

dropout rate of 20%–50% of neurons on average, with

20% serving as a suitable starting point. A probability

that is too low has little impact, whereas a probability

that is too high prevents the network from learning

enough. Each convolutional layer or conv layer is

followed by a dropout layer with a rate of 0.25 as it

gives high performance. Dropout can reduce the risk

of a model overfitting the dataset by randomly

cutting a fraction of network connections during

training. The last layer is the flatten layer. It flattens

the multi-dimensional data into a single dimension

and provides an output for the classification.

The training process is done with data

augmentation. The function of this is to increase

accuracy by randomly transforming data during

training. Therefore, it allows the model to run more

cycles without overfitting. Adding a low random

noise to each spectrogram is one of the methods.

The presence of noise on the spectrogram was used

to evaluate the network performance.

The model trained has 4 output classes:

a. On

b. Off

c. Noise

d. Unknown

The tiny machine learning model training is to verify

whether it can distinguish the keywords and classify

them according to the expected results.

Figure 2 Neural network architecture

2.4 Testing

The testing process followed the same steps in

training but with a different audio file. For each class,

a model was trained and tested before deployment.

The main purpose of model testing is the same as

training which is to classify the specific word

detected by comparing it to the existing dataset and

training model. 20% of the datasets are tested to see

the accuracy and performance of the model for all

keywords in the dataset.

2.5 Deployment

A low-end embedded device which is Arduino Nano

33 BLE Sense was used for the inferencing of the

machine learning model. This selection is due to the

fact that this device has a built-in microphone for the

179 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

purpose of collecting data. Arduino Nano 33 BLE

Sense meets the characteristic of tiny- embedded

device with a 1MB on-board flash memory and 256KB

SRAM. For deployment on Arduino Nano 33 BLE

Sense, the keyword spotting model is converted to

Arduino library to make the model can run without

an internet connection, low latency, and low power

consumption. During the conversion, the model

undergoes optimization methods using quantization.

The EON compiler was turned on to quantize the

model to an 8-bit network for increasing the on-

device performance. After quantization, the

accuracy may increase a little compared to

unoptimized models. However, the optimization may

reduce the accuracy of the training model.

Arduino IDE was used to upload the library. Some

changes have been made to the code for

analyzation of the model. The built-in microphone

and LED on Arduino Nano 33 BLE Sense were utilized

in completing the system. The microphone was used

to collect the input data which is the audio that may

consist of keywords. For built-in LED, Arduino has three

colors: Red, Green, and Blue. Red is used to indicate

the ‘Off ‘keyword while green turn on when the

system detects the ‘On’ keyword. The evaluation was

made based on the detection of the ‘On’ and the

‘Off’ keywords. The system was tested on the

microcontroller based on three different times and six

different people. The system performance was tested

at three different times is to prove the system able to

response and operate well at any time. Six different

people will contribute different voice tones of the

input, which is the keyword of the system, and we will

analyze the response of the system toward the voice.

A system with high performance should be able to

detect the keywords at any time and voice tone.

3.0 RESULTS AND DISCUSSION

The keyword spotting system runs the training and

testing based on the dataset. The main focus of the

study is to classify the voice as belonging to ‘On’ or

‘Off’. The amount of time and number of samples

used for model training and testing for all the classes

are listed in Table 1. Each sample data has a

sampling rate of 16 Hz.

This tiny machine learning model's training data

was specifically for keyword categorization. 'On' and

'Off' keywords were learned using 80% of the total

data obtained, including noise and unknown terms.

Table 2 depicts the training model performance

outcomes for both keywords. The results show the

classification accuracy and loss during training. The

training models had an accuracy of 88% and a loss

of 0.36. The picture also depicts the confusion matrix

with F1 Score for each class. This result indicates that

the model did well in the training dataset.

According to the results, noise, 'Off,' and 'On' had

greater accuracy than unknown. Noise accuracy

was 98.2 percent, 93%, and 93.9%, respectively.

Unknown receives just 60% accuracy due to a higher

confusion categorization than other classes. 12.4% of

unknown terms were identified as 'Off.' This is

because the unknown words sound close to 'Off,'

and the model misidentified the unknown. 21.8%

were incorrectly categorized as 'On' rather than

unknown. Due to the close term to 'On,' such as

‘One’, the model identifies the categorization of 'On'

higher than unknown. As a result, the accuracy for

unknown is lower than for others.

Table 1 Training and testing datasets

 On Off Noise Unknown Total

Trai-

ning

data

30m22s

1858

samples

30m35s

1860

samples

18m51s

1131

samples

18m43s

1123

samples

1h38m3

1s

5972

samples

Test

data

7m27s

454

samples

7m42s

469

samples

4m23s

263

samples

4m27s

267

samples

24m

1453

samples

Total 37m49s

2312

samples

38m17s

2329

samples

23m14s

1394

samples

23m10s

1390

samples

2h26m3

1s

7425

samples

Table 2 Training result

The testing models went through the same

process as the training model. The goal of the testing

is to categorize the terms 'On' and 'Off.' 20% of the

data collected was used for testing.

Table 3 depicts the model's performance against

the test set data. The model is 91.6% accurate for

noise, 90.6% accurate for 'Off,' 90.3% accurate for

'On,' and 55.4% accurate for unknown. The

degradation of each class's accuracy is due to

incorrect detection and uncertainty. When the

model detects two classes at the same time, the

situation becomes uncertain. For example, the

actual word is 'House,' but the model detects it as

unknown and 'Off' with nearly identical values, so the

model outputs uncertain rather than a class with

higher values. The accuracy of the testing model is

82.4%, which is slightly lower than that of the training

model.

The model was then deployed on an Arduino

Nano 33 BLE sense using an optimization model.

180 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

Table 4 depicts the quantized model running on the

microcontroller. When compared to the unoptimized

model, the optimized model with 8 bits has a higher

accuracy. The model, which had an accuracy of

84.51 percent and a latency of 26ms, was converted

to the Arduino library for deployment. Following that,

some coding changes were made to ensure that the

model includes led lights to indicate classification.

The coding was compiled and run on the

microcontroller using the Arduino IDE, where the

model is modified. Following the completion of the

uploading process, the model was tested on the

microcontroller itself.

Two experiments are carried out to evaluate the

model's functionality and performance on the

microcontroller. The first is to test the machine

learning model's performance three times. The model

should perform the same regardless of time. The

model will detect the keywords without issue in the

morning, day, and night. This is because each time

has a different external noise from the environment.

The model's performance is then tested using

different people's voice commands. Different people

have different voice tones that can cause the model

to misclassify the keywords. Any voice command

containing the keywords was expected to trigger a

response from the model.

Table 3 Testing result

Then, the results were calculated based on the

student’s t-test method to know the confidence

interval of the data. In the student’s t-test, the t-

distribution table was used, which shows the critical

values of the t-distribution. In this case, a one-tailed

test was chosen to find the average range of the

data with the upper level and lower level. The

confidence interval was calculated using a 95%

confidence level. A 95% confidence level shows the

estimated data would match the results from the

population if it was repeated and it can almost be

positive that the results are the same as the samples.

Therefore, without repeating the same experiments

we can know the estimated mean for the result. A

confidence interval for the mean is a method of

estimating the true population mean with a margin

of error by using this equation

𝑥 ± 𝑡

𝜎

 𝑛

 (1)

According to the results, noise, 'Off,' and 'On' had

greater accuracy than unknown. Noise accuracy

was 98.2 percent, 93%, and 93.9%, respectively.

Unknown receives just 60% accuracy due to a higher

confusion categorization than other classes. 12.4% of

unknown terms were identified as 'Off.' This is

because the unknown words sound close to 'Off,'

and the model misidentified the unknown. 21.8%

were incorrectly categorized as 'On' rather than

unknown. Due to the close term to 'On,' such as one,

the model identifies the categorization of 'On' higher

than unknown. As a result, the accuracy for unknown

is lower than for others.

3.1 Different Times

The model was tested at various times of day and

night to see how it performed at different times. 'On'

and 'Off' were tested at 9 a.m., 3 p.m., and 9 p.m. An

accurate result from a total of 200 'On' and 'Off'

cycles achieved by a single person is illustrated in

Table 5.

Table 4 Optimization model

During the morning, 200 times repeated keywords

for each class were tested, generating positive results

of 174 and 176 for 'On' and 'Off,' respectively. This

achieves an accuracy of 87% for 'On' and 88% for

'Off.'

We tested again, but this time around 3 p.m., to

ensure that the model fits every time. Out of 200

times, only 23 were misclassified for 'On' and 14 were

misclassified for 'Off'. For 'On' and 'Off,' the accuracy

was 88.5% and 93%, respectively. The accuracy has a

small increasing value. This is due to the experiment

at this time being done with less external noise in the

environment.

Next, the performance on the night was positive,

with 173 correct out of 200 for 'On' classifications and

only 25 'Off' classifications misclassified. In summary,

the classification accuracy for the night test is 86.5%

for 'On' and 87.5% for 'Off’. Based on the data, at 3

pm the accuracy is the highest but there is not much

significant difference with other times. Therefore, we

can conclude that the systems are able to operate

and react correctly to the keywords regardless of the

181 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

time. Figure 3 depicts the accuracy of the

experiment at various times.

According to the results of the experiments, the

mean of the samples for 'On' is 174.67 with a

standard deviation of 2.082, while the mean for 'Off' is

179 with a standard deviation of 6.083. This yields a

mean accuracy of 87.33% for 'On' and 89.5% for 'Off'.

The samples were subjected to a student's t-test with

a 95% confidence level. Using the one-tail t-

distribution table, a t value of 4.303 was obtained

with two degrees of freedom. The value of the results

ranges from 174.67±5.172 with 179.84 as the upper

level and 169.50 as a lower level values for ‘On’. By

the range from 179±15.11, the upper level for ‘Off’ is

184.11 and lower level is 173.88.

Table 5 Accurate inferencing data for different times

 On Offf

9am 174 176

3pm 177 186

9pm 173 175

Figure 3 Accuracy for 3 different times

3.2 Different Persons

The model was evaluated using voice commands

from people of various genders and ages. It was

tested with six different people during the day. Two

females and four males ranging in age from 16 to 52

years. Each person repeated the 'On' and 'Off'

keywords 50 times. The model was tested because it

should have high accuracy and good performance

for any keyword spoken by anyone. The model was

expected to detect the keyword regardless of the

person's gender or age.

As shown in Table 6, the outcome of the

experiment does not differ significantly between

individuals. Persons 2 and 4 have the highest

accuracy for 'On' classification with 94 %, while

Persons 1 and 3 have the highest accuracy for ‘Off’

classification with 94 %. The system's lowest accuracy

was 88 % for Person for ‘Off' classification due to an

uncertain class, as in Figure 4. The mean for 'On' and

'Off' is calculated to be 46.33 and 45.67, respectively.

On this data, a student's t-test was also performed

after first calculating the standard deviation. The

standard deviations for each class, 'On' and 'Off,' are

0.5164 and 1.2111, respectively. Using the one-tail t-

distribution table, a t value of 2.571 was obtained

with a 95 % confidence level and 6 samples. The

value of the results ranges from 46.33±0.542 with 46.87

upper level and 45.79 lower level values for ‘On’. By

the range from 45.67±1.271, the upper level is 46.94

and lower level is 44.4 for ‘Off’.

Table 6 Accurate inferencing data for different persons

 On Off

Person 1 46 47

Person 2 47 45

Person 3 46 47

Person 4 47 46

Person 5 46 45

Person 6 46 44

Figure 4 Result of different person's accuracy

4.0 CONCLUSION

Finally, the development of the Keyword Spotting

System was completed successfully, and the system's

accuracy was validated using Edge Impulse and the

Arduino Nano 33 BLE Sense board. The MFCC and

CNN were implemented on the model system that

utilizes augmented data on Edge Impulse for the

training and testing phases. After being quantized to

an 8-bit integer for live validation accuracy, the

model was deployed on the Arduino Nano 33 BLE

Sense. According to the data, training, and testing

resulted in 88% and 84.24 % accuracy, respectively.

The model can acknowledge the keywords and

perform successfully at any time and with every

voice command according to the training and

testing of the dataset using the Edge Impulse. The

mean accuracy for the 'On' and 'Off' classes is 87.33

% and 89.5 % for various times, while it is 92.67 % and

91.33 % for different people respectively. This

technique highlights how important data collecting

was before building the model. Because of the use of

an existing dataset, the model's performance is quite

accurate.

Conflicts of Interest

The author(s) declare(s) that there is no conflict of

interest regarding the publication of this paper.

182 Abbas et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 175–182

Acknowledgement

This work has been supported by Universiti Teknologi

Malaysia and the Ministry of Higher Education

through Hi-Tech (F4) Q.J130000.4623.00Q15 and

FRGS/1/2020/TK0/UTM/02/43 grants, respectively.

References

[1] B. Qolomany et al. 2019. Leveraging Machine Learning

and Big Data for Smart Buildings: A Comprehensive

Survey. IEEE Access. 7: 90316-90356. Doi:

10.1109/ACCESS.2019.2926642.

[2] C. Banbury et al. 2020. MicroNets: Neural Network

Architectures for Deploying TinyML Applications on

Commodity Microcontrollers. [Online]. Available:

http://arxiv.org/abs/2010.11267.

[3] A. D. I. A. Kadir, A. Al-Haiqi, and N. M. Din. 2021. A Dataset

and TinyML Model for Coarse Age Classification Based on

Voice Commands. 15th IEEE Malaysia Int. Conf. Commun.

Emerg. Technol. IoT 5G, MICC 2021 - Proc. 75-80. Doi:

10.1109/MICC53484.2021.9642091.

[4] V. Janapa Reddi et al. 2022. Widening Access to Applied

Machine Learning with TinyML. Harvard Data Sci. Rev. 1-

20. Doi: 10.1162/99608f92.762d171a.

[5] S. Choi et al. 2019. Temporal Convolution for Real-time

Keyword Spotting on Mobile Devices.Proc. Annu. Conf. Int.

Speech Commun. Assoc. INTERSPEECH. 3372-3376. Doi:

10.21437/Interspeech.2019-1363.

[6] Y. Zhang, N. Suda, L. Lai, and V. Chandra. 2017. Hello

Edge: Keyword Spotting on Microcontrollers. 1-14.

[Online]. Available: http://arxiv.org/abs/1711.07128.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari,

and M. Ayyash. 2015. Internet of Things: A Survey on

Enabling Technologies, Protocols, and Applications. IEEE

Commun. Surv. Tutorials. 17(4): 2347-2376. Doi:

10.1109/COMST.2015.2444095.

[8] F. García-Vázquez, H. A. Guerrero-Osuna, G. Ornelas-

Vargas, R. Carrasco-Navarro, L. F. Luque-Vega, and E.

Lopez-Neri. 2021. Design and Implementation of the e-

switch for a Smart Home. Sensors. 21(11): 1-17. Doi:

10.3390/s21113811.

[9] L. Filipe, R. S. Peres, and R. M. Tavares. 2021. Voice-

Activated Smart Home Controller Using Machine Learning.

IEEE Access. 9(May): 66852-66863. Doi:

10.1109/ACCESS.2021.3076750.

[10] P. E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond,

and V. Gripon. 2021. Quantization and Deployment of

Deep Neural Networks On Microcontrollers. Sensors. 21(9):

1-32. Doi: 10.3390/s21092984.

[11] P. M. Sørensen, B. Epp, and T. May. 2020. A Depthwise

Separable Convolutional Neural Network for Keyword

Spotting on an Embedded System. Eurasip J. Audio,

Speech, Music Process. 2020(1). Doi: 10.1186/s13636-020-

00176-2.

[12] M. G. Ulkar and O. E. Okman. 2021. Ultra-Low Power

Keyword Spotting at the Edge. [Online]. Available:

http://arxiv.org/abs/2111.04988.

[13] C. Shan, J. Zhang, Y. Wang, and L. Xie. 2018. Attention-

based End-to-end Models for Small-footprint Keyword

Spotting.Proc. Annu. Conf. Int. Speech Commun. Assoc.

INTERSPEECH. 2018: 2037-2041. Doi:

10.21437/Interspeech.2018-1777.

[14] C. De la Parra, A. Guntoro, and A. Kumar. 2020. Improving

Approximate Neural Networks for perception Tasks

Through Specialized Optimization. Futur. Gener. Comput.

Syst. 113: 597-606. Doi: 10.1016/j.future.2020.07.031.

[15] Y. Wei, Z. Gong, S. Yang, K. Ye, and Y. Wen. 2022.

EdgeCRNN: An Edge-computing Oriented Model of

Acoustic Feature Enhancement for Keyword Spotting. J.

Ambient Intell. Humaniz. Comput. 13(3): 1525-1535. Doi:

10.1007/s12652-021-03022-1.

[16] S. Yang, Z. Gong, K. Ye, Y. Wei, Z. Huang, and Z. Huang.

2020. EdgeRNN: A Compact Speech Recognition Network

with Spatio-Temporal Features for Edge Computing. IEEE

Access. 8: 81468-81478. Doi:

10.1109/ACCESS.2020.2990974.

[17] J. S. P. Giraldo, V. Jain, and M. Verhelst. 2021. Efficient

Execution of Temporal Convolutional Networks for

Embedded Keyword Spotting. IEEE Trans. Very Large Scale

Integr. Syst. 29(12): 2220-2228. Doi:

10.1109/TVLSI.2021.3120189.

[18] P. Warden. 2018. Speech Commands: A Dataset for

Limited-Vocabulary Speech Recognition. [Online].

Available: http://arxiv.org/abs/1804.03209.

[19] R. Tang and J. Lin. 2018. Deep Residual Learning for Small-

Footprint Keyword Spotting Raphael Tang David R.

Cheriton School of Computer Science University of

Waterloo. 2018 IEEE Int. Conf. Acoust. Speech Signal

Process. 5484-5488,

[20] R. Tang and J. Lin. 2017. Honk: A PyTorch

Reimplementation of Convolutional Neural Networks for

Keyword Spotting. 1-3. [Online]. Available:

http://arxiv.org/abs/1710.06554.

[21] T. Mo, Y. Yu, M. Salameh, D. Niu, and S. Jui. 2020. Neural

Architecture Search for Keyword Spotting. Proc. Annu.

Conf. Int. Speech Commun. Assoc. INTERSPEECH. 1982-

1986. Doi: 10.21437/Interspeech.2020-3132.

[22] P. P. Ray. 2022. A Review on TinyML: State-of-the-art and

prospects. J. King Saud Univ. - Comput. Inf. Sci. 34(4): 1595-

1623. Doi: 10.1016/j.jksuci.2021.11.019.

