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Abstract
Recently, deep learning techniques specifically the Convolutional Neural Networks (CNNs) have reported outstanding results 
from the application for plant water stress detection based on computer vision system compared to other machine learning 
methods. However, the size of the conventional CNN models is generally too large for its deployment on resource-limited 
devices such as mobile smartphone or embedded devices. In this study, a lightweight CNN is proposed by incorporating attention 
mechanism as an augmentation module into the model. The model was trained, validated, and tested using plant images of 
Setaria grass undergone three water stress treatments. Experimental results show that the proposed method improved the 
interclass precision, recall, F1-score, and the overall accuracy by more than 9%. Compared to the established lightweight 
CNN models, the proposed lightweight CNN achieved faster computational time with comparable parameters. In addition, the 
proposed lightweight model is also efficient when trained on small plant dataset with limited overfitting.

Keywords Plant water stress . Computer vision Lightweight convolutional neural network Attention mechanism . Smalldataset

1 Introduction

Water stress is the main factor that limits agricultural produc­
tions worldwide [1]. Climate change, global warming, in­
creasing drought occurrence, and worldwide water shortage 
has instantly put global food security under alarming condi­
tion. The mechanisms of water stress and the effects on plant 
are highly complex and extremely influential on the growth 
and yield [2]. Measuring water stress in plant can not only
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improve the knowledge of the vegetation wellbeing but also 
provide information required for precision irrigation manage­
ment [3]. Numerous methods for plant water stress identifica­
tion have been developed over the years based on the mea­
surement of soil moisture, meteorological variables, and leaf 
water potential. These measurements have been shown to be 
effective indicators of water stress in plant however, the mea­
surement process is slow, destructive, and unsuitable for real­
time water stress detection.

Research on computer vision for rapid and non-destructive 
plant water stress detection have been continuously 
progressing for over two decades now [4- 6]. Traditional ap­
proach for image-based plant water stress detection had been 
based on hand-engineered features such as color, texture, and 
structure-based features. This leads to slow image processing 
limited to expert’s knowledge and requires identifying the 
most relevant features that can give the best water stress inter­
pretation [7]. Along with the development of computer vision 
technology, deep learning as part of machine learning (ML) 
techniques have been widely applied to plant water stress 
detection. [8]. Deep learning (DL) method enables faster wa­
ter stress detection thanks to its ability to automatically extract 
features from the plant images [9]. Several models based on 
deep convolutional neural network (CNN) have been used for 
plant water stress identification with outstanding results. An, 
et al. [10] identified plant water stress in maize using
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pretrained Resnet50 and Resnet120 deep CNN models with 
between 91 and 98% accuracy. Soffer, et al. [11] used pre­
trained VGG16 model with Long-Short-Term-Memory 
(LSTM) concatenation for classification of five water stress 
levels (no stress, low stress, middle stress, high stress, and 
very high stress) of corn. The results showed excellent 92% 
accuracy. Chandel, et al. [12] evaluated three different classi­
cal CNN models; AlexNet, GoogLeNet and Inception V3 for 
plant water stress identification of three different plants. 
GoogLeNet was found to be more superior compared to the 
others with an accuracy of 98.3, 97.5 and 94.1% for maize, 
okra, and soybean respectively. The technology can help 
farmers especially in the rural areas to detect water stress 
levels without the need for expert knowledge and with the 
ease usage of a smartphone [3]. Nevertheless, implementation 
of such CNN models on mobile and embedded devices can be 
challenging. The deep CNN architecture may have contribut­
ed to the higher accuracy but at the same time requires signif­
icant storage space and high processing capability. Cloud 
computing might be a viable option to overcome the storage 
and computation conundrum [13, 14] however, it requires a 
consistent internet connection in which some farming area is 
hardly to come by.

These days, lightweight CNN based solutions have become 
popular with many computer vision deployment in various 
applications including vehicle color monitoring [15], traffic 
sign recognition [16] and remote sensing image classification 
[17]. The MobileNet series [18- 20] designed by the Google’s 
team are examples of publicly available lightweight CNNs 
that can be directly implemented on any low-powered devices. 
The accuracy of these models has been compared to the clas­
sical CNNs such as AlexNet, VGG16 and Inception v3 based 
on the public datasets with good results. Several works have 
been published highlighting the applicability of the light­
weight CNNs in agricultural plant monitoring application. 
Kamal, et al. [21] constructed lightweight model based on 
depthwise separable convolution from the MobileNet archi­
tectures for plant disease classification form leaf images. The 
accuracy of the proposed model were comparable to the con­
ventional CNN with faster convergence time. Khaki, et al. 
[22] used pruned MobileNet as the lightweight base structure 
for the model WheatNet to detect and count wheat heads from 
the input images. The model outperformed state-of-the-art 
lightweight CNN models with the highest accuracy. In the 
most recent study, Kamarudin and Ismail [23] evaluated sev­
eral lightweight CNN models including the MobileNets for 
identifying drought stress plants using visible and near- 
infrared images. The results showed promising utilization of 
lightweight CNN models for plant water stress detection that 
can be applied to mobile terminals.

In this research, a new lightweight CNN model is proposed 
to classify three classes of plant water stress (drought stress, 
mild stress, and no stress). However, small CNN network

usually has weaker performance on few classes’ classification 
due to limited computational ability to extract features more 
extensively. The challenge increase when plants undergone 
water stress condition having similar appearance on different 
stress levels. To improve the water stress detection ability, a 
simple attention mechanism was introduced into the light­
weight model architecture to enhance feature representation 
without increasing the network layers considerably. Several 
other studies have used attention mechanism to boost the rep­
resentation capability of lightweight CNN by giving emphasis 
on the region of interest or important features of object of 
interest. For example, Bao, et al. [24] used convolutional 
block attention module (CBAM) [25] with the proposed light­
weight CNN model called SimpleNet to better differentiate 
between background and the diseased region of the plant. 
Tang, et al. [26] implemented squeeze-and-excitation network 
(SE) [27] blocks in a lightweight ShuffleNet model to increase 
features concentration of the diseased grape leaves. Bhujel, 
et al. [28] integrated CBAM module with lightweight CNN 
to increase network complexity for improved plant disease 
detection.

In addition, the study also evaluates the ability of the 
lightweight CNN to be trained on small dataset. In general, 
deep learning application in agriculture has always been 
constrained by the lim ited dataset availability [29]. 
However, conventional research was mostly using generic 
deep models designed for large number of image classifi­
cation datasets, which is computationally inefficient for a 
small number of many plant datasets [30]. Training a deep 
CNN network with significant parameters over small 
dataset with few classes can make the model easily overfit 
[31]. One of the methods used to overcome the problem of 
model overfitting during training due to small dataset is 
dataset augmentation [32]. In this study, we try to see the 
efficiency of the lightweight CNN model trained on a plant 
dataset without data augmentation. We also provide mech­
anism to reduce the effect of overfitting based on the slight 
modification to the lightweight model structure.

In summary, the contributions of this research are as 
follows:

a) A novel lightweight CNN model designed for plant water 
stress detection, suitable for mobile devices deployment 
with high accuracy compared to other prevailing light­
weight models.

b) Simple attention mechanism that can be implement­
ed into lightweight CNN model to improve the clas­
sification performance without substantially increase 
the size and downgrading the performance of the 
model

c) An efficient lightweight CNN that can be trained on small 
training plant dataset with no data augmentation and less 
overfitting achieved.
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The subsequent of the paper is organized as follows. 
Section 2 presents the dataset and methods adopted in this 
study. Section 3 provides the experimental results and ana­
lysis. Finally, Section 4 summarizes the conclusion and points 
to future directions.

2 Dataset and methods

2.1 Plant water stress dataset

Plant images were obtained from the Donald Danforth Plant 
Science Centre’s publicly available dataset [33]. The dataset 
includes images of plant shoot of ten Setaria grass lines 
(S. viridis (accession A10), S. italica (accession B100), and 
eight randomly selected recombinant inbred line (RIL) popu­
lations derived from a cross of S. viridis and S. italica). Setaria 
grass is a model plant that has been used in many drought- 
related studies to analyse the plant phenotypes [34]. In this 
study, all ten genotype variations were trained together to 
consider the general features of water stress extracted based 
on the different genotypes.

Four water treatments were performed based on the soil 
full-water capacity (FC): 100% FC, 66% FC, 33% FC, and 
0% FC imposed 17 days after planting (DAP) and maintained 
for another 17 days. Images prior to 17 DAP were excluded 
from the sample due to low to none biomass production. 
Plants that received no water after 17 DAP died within 7 days 
thus 0% FC images were also omitted from the sample. 
Because early treatment has no discernible effect on the plants 
due to available soil moisture, the sample images were taken 
after 2 days of treatment, from 21 DAP until 33 DAP. One top 
view and four side view images were taken for each plant. All 
four-sided images were combined, and the top view images 
were omitted from the dataset sample. These images were 
classified into three stress levels of drought stress (33% FC) 
with label 0, mild stress (66% FC) with label 1, and no stress 
(100% FC) with label 2.

The dataset originally contains both Red-Green-Blue visi­
ble light (RGB) and Near Infrared (NIR) images. In this work, 
RGB images were used instead being the fact that RGB cam­
eras are inexpensive and widely available. The objective ofthe 
research was to develop a lightweight CNN model suitable for 
low-cost system that can be used in either consumer grade 
cameras or smart mobile phones. RGB image also contains 
colour information that is one of the main features that is used 
to detect water stress in plant [35]. The original RGB plant 
image resolution is 2454 x 2056 pixels and samples of the 
images are shown in Fig. 1. The number of total images in 
each class are shown in Table 1. Training was done on the 
whole plant shoot as opposed to only leaf as we believe that 
the plant structure would provide morphological information 
that aids in detecting the drought-stressed plants.

Table 1 Number of images in each sample class

Water stress severity Number of images

Total Training Validation Test

Drought stress 2281 1597 616 68
Mild stress 2286 1600 617 69
No stress 2382 1667 643 72

2.2 Proposed lightweight CNN

The proposed structure of a lightweight CNN for plant water 
stress detection is shown in Fig. 2. The model structure pri­
marily consists of basic layers and attention mechanism mod­
ule. Basic CNN was used to extract overall the image features. 
CNNs are by design a very efficient algorithm to be used with 
sparse perception data and still resulted a reasonable perfor­
mance. Several attention-mechanism modules were added in 
between the convolutional layers to enhance the features con­
centration extracted from the plant region.

2.2.1 Basic layers

The structure of the proposed lightweight CNN are based on 
the conventional feed forward network such as the AlexNet 
[36] structure but with reduced layers and size. The basic 
layers used include input layer, convolutional layer, fully con­
nected layer, dropout layer, Rectified Linear Unit (ReLU) ac­
tivation layer and finally output layer. Input layer is taking 
224 x 224 image as the model input. In this study, 5 
convolutional layers were used as the base of the lightweight 
CNN structure. The first four convolutional layers used 3 x 3  
kernel size to obtain the global features from the plant image. 
The fifth convolutional layer used 5 x 5 kernel size to focus 
on the local features of the plant water stress. The filter num­
ber for the first convolutional layer is 32, for the second 
convolutional layer is 48, for the third and fourth 
convolutional layer is 64, and the fifth convolutional layer is 
104. All convolutional layers are using stride 1. Output from 
the fifth convolutional layer were then feed into ReLU activa­
tion layer before goes onto the fully connected layer with 64 
neurons. Dropout layer was placed before the output layer of 
three classes of stress classification with Softmax probability 
function. Table 2 shows the full description of the parameters 
of basic layers used in the proposed lightweight CNN.

2.2.2 Attention mechanism

An attention mechanism based on the spatial attention mod­
ule introduced in CBAM [25] was incorporated into the 
lightweight CNN model. Basically, the spatial attention
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Water stress 
treatment Samples of original RGB plant images

33% FC 
(Drought)

66% FC 
(Mild stress)

100% FC 
(No stress)

Fig. 1 Process flow for plant water stress detection using lightweight CNN

module was simplified to reduce the computational com- enhance the plant water stress’s features representation giv-
plexity of the model appropriate for embedded system in- ing emphasis on the shape and pixel intensities interpreta-
tegration. The simplified attention module was used to tion. The module consists of both average-pooling and

Fig. 2 Proposed lightweight CNN architecture
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Table 2 Basic model parameters

Layers Operation Input shape Output shape Parameters

Input - 224, 224, 3 224, 224, 3 0
Convolution 1 3x3, 32 224, 224, 3 224, 224, 32 896
Convolution 2 3x3, 48 112, 112, 64 112, 112, 48 27,696
Convolution 3 3x3, 64 56, 56, 96 56, 56, 64 55,360
Convolution 4 3x3, 64 28,28, 128 28, 28, 64 73,792
Convolution 5 5x5, 104 14, 14, 128 14, 14, 104 326,502
ReLU - 14, 14, 104 14, 14, 104 0
Fully connected 64 19,992 64 1,279,552
Dropout 0.4 64 64 0
Output 3 64 3 195

maximum-pooling operation taking the feature maps output 
given as F e R x x from the previous convolutional 
layer as an input matrix. The output from the average and 
maximum pooling was then feed into ReLU activation rep­
resented by 0 before concatenated and used as input to the 
next convolutional layer. The attention mechanism compu­
tation is shown in eq. (1).

Attention = [0(AveragePool(F)); 0(MaximumPool(F))]

(1)

In total, four attention modules were utilized in the pro­
posed lightweight CNN model. The visual structure of a single 
attention module is shown in Fig. 3.

2.3 Plant water stress detection method

The specific steps of plant water stress detection using the 
proposed lightweight CNN model are described as follows 
and the process flow of the methods used in this study is 
shown in Fig. 4.

2.3.1 Pre-processing image data

Image pre-processing steps which include cropping, 
resizing, and standardization were performed on the plant 
images. Image cropping was performed to eliminate unnec­
essary noises such as unrelated pixels of boxes and pot from 
the original image to focus only on the plant features. The 
cropping process also reduces the size of the images which 
facilitate in the deep training process. Images for this study 
were taken in a controlled environment setting with a white 
background and adequate lighting. Due to the consistent 
background, the plant can be seen clearly from the image 
thus no plant segmentation is required. Image resizing was 
done to further reduce the size to 224 x 224 pixels to lower 
the computational cost. We also standardized the image to 
improve computation by rescaling the pixel values to the 
[0,1] range.

2.3.2 Image data augmentation

Image data augmentation was executed to increase the volume 
of the training dataset as deep learning requires large varieties 
in samples during training to avoid overfitting. It is also used

A v e ra g e  p o o lin g  A v e ra g e fe a tu re  m aps

Fig. 3 Proposed simple attention mechanism used in the study
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Fig. 4 Confusion matrixes of lightweight CNN models

to increase the generalization ability of the model making 
it more robust to irregularities. In this study, we have 
adopted only horizontal flip as an augmentation technique 
on the sample images to increase the size of the dataset. 
The reason for this is because we considered the plant 
morphology to be one of the important features of water 
stress [37] in addition to the plant’s texture and color. 
Distorting the image heavily for example by rotating or 
vertically flipping will intuitively eliminate the structural 
features from the network learning for water stress repre­
sentation. The augmentation technique was performed on 
the training and validation dataset resulting in double the 
volume of plant image samples. The test dataset however 
was not augmented. We adopted real-time data augmenta­
tion which loops over images in batches.

loss function used was Sparse Categorical Cross Entropy. To 
reduce the risk of model overfitting, callbacks function was 
used to perform early stopping with the patience value set to 5 
as shown in Table 3 in the hyperparameter settings.

2.5 Setup configuration

The control experiment was carried out in a Windows 10 
environment (processor (CPU): Intel core i5 7300HQ; mem­
ory: 16G; NVIDIA Graphic Processing Unit (GPU): GeForce 
GTX 1060). The deep learning framework TensorFlow 2 was 
used in combination with Cuda10.2 for training in python 
language platform.

2.4 Training parameters

In the experiment, 70% of the sample images were used for 
training, and 30% were used for cross-validation. To obtain a 
generalized measure of classification accuracy, 10% of the 
validation dataset were used as unseen test dataset. For train­
ing parameters, Adam optimizer with default learning rate 
(0.0001) was used to optimize the hyperparameters [38]. 
The batch size was set to 16, and the number of epochs was 
set to 50. The epochs number were set up arbitrarily due to the 
small size of the model and the use of aggressive dropout. The

Table 3 Hyperparameter settings 

Hyperparameter

Training and Validation ratio
Batch size
Optimizer
Learning rate
Epochs
Loss function
Early stopping (patience)

Setting

70:30
16
Adam
0.001 (default)
100
Sparse Categorical Cross Entropy
5

Springer
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3 Results and discussion

3.1 Evaluation metrics

To evaluate the proposed lightweight CNN performance for 
plant water stress detection, the identification accuracy, preci­
sion, recall and F1 score were adopted as the evaluation met­
rics. Accuracy is the ratio of the number of samples correctly 
predicted to the total number of test samples and reflects the 
overall performance of the classification. Precision is defined 
as the ratio of accurately predicted positive samples to all 
predicted positive samples. Recall is defined as the ratio of 
accurately predicted positive samples to total positive sam­
ples. The F1 score is a comprehensive precision and recall rate 
index defined by the harmonic mean of precision and recall 
rates. These standard classification metrics were computed 
based on Eqs. (2) to (4) [39]:

Accuracy
TP +  TN

Precision

TP + TN + FP + FN  

TP

Recall

TP + FP 

TP
TP + FN

F 1 score
2TP

2TP +  FP +  FN

(2)

(3) 

(5)

(4)

where TP is the number of true positive samples, TN is the 
number of true negative samples, FP is the number of false 
positive samples, and FN is the number of false negative 
samples.

Additionally, several metrics, including trainable param­
eters, model storage size, training time, floating-point op­
erations (FLOPs), and average forward process time (AFT) 
were measured and compared to analyze the computational 
efficiency of the proposed lightweight model. The trainable 
parameters represent the computational ability of the model 
and is proportional to the storage size of the trained model. 
The training time is referred to the time it takes to train the 
model at a specific number of training steps. FLOPs de­
scribe the amount of calculation used in a model to measure 
the computational complexity and AFT represents the time 
taken to predict a certain number of images on the same 
hardware (CPU or GPU).

3.2 Water stress identification results

The proposed lightweight CNN for plant water stress identifi­
cation was compared with other established lightweight CNN

models, namely, MobileNets (version 1, version 2, version 3 
small, and version 3 large) and NasNet mobile [40] as the 
baselines. The MobileNet V1 uses depthwise separable con­
volution to reduce the size and complexity of the model. 
MobileNet V2 architecture was developed based on inverted 
residual structure and linear bottleneck with lightweight 
depthw ise convolu tion  to increase the efficiency. 
Mobilenet V3 is the improved version from the previous 
M obileNet versions that utilizes the mobile Neural 
Architecture Search optimization for mobile platform ap­
plication. NasNet mobile was also developed using the 
Neural Architecture Search optimization algorithm based 
on small dataset. These models are the best models avail­
able currently for immediate application for mobile and 
embedded applications. All the models were trained on 
the same dataset used in this study with the same training 
hyperparameters. For fair comparison, no pre-training 
strategy was adopted to train all the lightweight CNN 
models.

Table 4 demonstrate the performance comparison of all 
the lightweight CNN models trained from the same plant 
water stress dataset. The results show that the proposed 
lightweight CNN with embedded attention mechanism has 
better identification performance than the established light­
weight CNN models. The test accuracy of the proposed 
model was the highest with 87.02%, more that 9% improve­
m ent than the low est accuracy achieved from the 
MobileNet V3 small model. The accuracy of the proposed 
model is in agreement with the study by [41] in which a 
lightweight CNN was used to detect nitrogen stress of 30 
genetically diverse Sorghum plants with images captured in 
the same setting as the images in this study. It was presented 
that the proposed model achieved 84% accuracy when 
trained on two different views. It can be noted all the light­
weight CNN models were able to detect drought stress plant 
with high precision, recall and F1 score values achieved. 
Nevertheless, the proposed lightweight model achieved the 
best overall classification rate of drought stress, mild stress, 
and no stress plants with the highest values of precision, 
recall and F1 score. The high recall values of the proposed 
model suggested that the attention mechanism can improve 
the performance of the small model substantially.

Figure 5 shows the confusion matrixes for all the light­
weight CNN models. The results verify the effectiveness of 
the proposed lightweight CNN to classify drought stress, 
mild stress, and no stress plants in comparison to other 
models. It was noted that the Mobilenets (V1, V2, V3 small, 
V3large) and NasNet mobile networks misclassified mostly 
the mild stress plants as the no stress plants. The mistake 
may be due to the high similarity in appearance between the 
two stress conditions. This has been the main challenge 
faced for water stress detection in plant. The transpiration 
rate fluctuated between several parts of the Setaria plant

^  Springer
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Table 4 Water stress 
identification results Models Accuracy Labels Precision Recall F1-

score

MobileNet V1 0.7212 Drought 0.8311 0.8913 0.8601
Mild 0.5811 0.6515 0.6143
No stress 0.7583 0.6233 0.6842

MobileNet V2 0.7019 Drought 0.7866 0.9348 0.8543
Mild 0.5484 0.6439 0.5923
No stress 0.8041 0.5342 0.6419

MobileNet V3 small 0.6442 Drought 0.7625 0.8841 0.8188
Mild 0.4874 0.4394 0.4622
No stress 0.6423 0.6027 0.6219

MobileNet V3 large 0.6538 Drought 0.7564 0.8551 0.8027
Mild 0.5258 0.4621 0.4919
No stress 0.6458 0.6370 0.6414

NasNet mobile 0.7115 Drought 0.8333 0.9058 0.8681
Mild 0.5616 0.6212 0.5899
No stress 0.7417 0.6096 0.6692

Proposed model 0.8702 Drought 0.9493 0.9357 0.9424
Mild 0.8189 0.7879 0.8031
No stress 0.8411 0.8819 0.8610

making it difficult to differentiate. By using the attention 
mechanism, the proposed model was able to focus on the 
area of which the plant from the mild and no stress condi­
tion varied.

3.3 Computational performance of lightweight CNN 
models

Table 5 summarized the computational results of the pro­
posed lightweight CNN model in comparison with other 
lightweight CNN models. The FLOPs value of the pro­
posed model is the highest among the counterparts even 
though the parameters is 3 times less than the NasNet mo­
bile which has over 4 M parameters. This shows that the 
proposed model is much more complex compared to the 
other lightweight CNN models. The complexity may have 
been contributed from proposed attention mechanism 
inserted in the model architecture. However, the training 
time or the time it takes for the model to converge is much 
less than the NasNet model which takes almost 5 times 
longer to train. In addition, AFT of the proposed light­
weight models is 3 times better than the smallest model of 
the MobileNet V3 small. This performance demonstrates 
the ability of the proposed model to achieve near-real­
time speed on the embedded devices. In addition, the size 
o f the proposed model is also com parable with the 
MobileNet series which are particularly designed for low- 
powered mobile application. Although the proposed model 
was not the smallest, it still has the best results compared to

the other lightweight models when trained end-to-end on 
the plant dataset.

3.4 Effectiveness of the attention mechanism

An ablation experiment was performed on the component 
of the attention mechanism. The experiment was done ba­
sically by replacing the attention module with only maxi­
mum pooling layer and average pooling layer with ReLU 
activation layer. The used of single type of pooling opera­
tion is o f general practise in most conventional CNN 
models such as in AlexNet that has used maximum pooling 
and shown good performance in extracting important fea­
tures from the spatial information. However, combining 
both features gathered from the maximum and average 
pooling operation has greatly improved the representation 
prowess of the small size model showing the effectiveness 
of the attention mechanism. Table 6 shows the comparison 
performance in detail.

M odel with attention module being im plemented 
achieved higher detection accuracy than model without at­
tention module almost by 10% with better precisions, re­
calls and F 1 scores on each label. The attention mechanism 
which utilized both maximum pooling and average pooling 
operation has proven to be more effective in considering the 
important water stress features in plant than using either 
maximum pooling or average pooling operation alone. 
The lowest performance achieved was from using maxi­
mum pooling with 78.85% accuracy including the lowest

Springer



20836 M. H. Kamarudin et al.

(e) NasNet mobile (f) Proposed model
Fig. 5 Different convolutional feature maps of model with attention module, max pooling and average pooling based on the sample plant image
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Table 5 Computational 
performance of different 
lightweight CNNs

Models Parameters Model size MB BFLOPs Training time (s) AFT (ms)

MobileNet V1 3,231,939 12.33 1.14 1380.92 2568.37
MobileNet V2 2,261,827 8.63 0.59 2448.18 3374.54
MobileNet V3 small 940,851 3.59 0.11 338.88 2772.04
MobileNet V3 large 2,999,235 11.44 0.43 1863.05 3770.62
NasNet mobile 4,272,887 16.30 0.55 5515.56 8271.25
Proposed model 1,795,483 6.85 1.38 1203.57 1849.58

of average precision, recall and F1 score value. The number 
of epochs for model with attention module was also lower 
than the models without the attention module. This shows 
that that the model with attention mechanism converge 
faster than models without the attention module suggesting 
that the attention module can extract the image features 
more efficiently. With attention mechanism applied, the 
number of model parameters increased to 1.79 M which 
was still however in the category of lightweight model suit­
able for mobile application.

Figure 6 shows the visualization of the output feature maps 
of all the convolution layers from the proposed model with 
attention mechanism, average pooling layer and maximum 
pooling layer. The figure shows that all models extracted im­
age feature information, such as plant texture, edge, and color 
in the shallower layer. The visual information of the feature 
maps decreases and abstract information increases after the 
third convolutional layer. As can be seen from the feature 
maps of third and fourth convolutional layers, the model with 
attention mechanism started to less consider the background 
features and giving emphasis on the plant features. Models 
that used maximum pooling and average pooling has more 
emphasis on the background features than the plant. Apart 
from focusing on where to get the features, attention module 
also help enhances the plant features even more based on the 
warm color of the plant area in the features maps.

3.5 Grad-CAM visualization

To better understand the learning capacity of the attention 
mechanism in augmenting the lightweight CNN model, vi­
sualization of activation regions from the convolutional 
feature maps in response to the plant sample images and 
the corresponding stress conditions are shown in Fig. 7. 
The visualization results represented as heat-maps was gen­
erated using ‘G radien t-w eighted  C lass A ctivation 
Mapping’ or Grad-CAM algorithm [42] used to understand 
more clearly on how the model can speculate the plant 
stress conditions with high confidence. It is clear from the 
Grad-CAM images shown that the proposed lightweight 
attention model was able to localize the region of the water 
stress descriptors from the plant itself. This also shows that 
the invariant image background had little influence on the 
identification results as the model was able to focus on the 
plant features even though the plant size can be small. It is 
also worth to note that the features of branches from the 
plant played a vital role in determining the stress conditions 
based on the highlighted region of the images. The results 
were in agreement with the results from Fahlgren, et al. [33] 
that showed the phenotypic characteristic of plant architec­
ture represented as tiller count was able to differentiate be­
tween Setaria plant undergone treatment of 100% FC (no 
stress) and 33% FC (drought stress).

Table 6 Results of attention
mechanism ablation experiment Parameters Accuracy LaM s Predsion RecaU FL  Epochs

score

Attention module 1,795,483 0.8702 Drought 0.9493 0.9357 0.9424 39
Mild 0.8189 0.7879 0.8031
No stress 0.8411 0.8819 0.8610

Maximum Pooling 1,550,747 0.7885 Drought 0.9385 0.8714 0.9037 50
Mild 0.7018 0.6061 0.6504
No stress 0.7326 0.875 0.7975

Average Pooling 1,550,747 0.8173 Drought 0.9178 0.9571 0.9370 57
Mild 0.7479 0.6742 0.7092
No stress 0.7748 0.8125 0.7932
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Conv 1

Conv2

Conv 3

Conv 4

Conv 5

Fig. 6 Gad-CAM visualization of activation maps of the proposed lightweight CNN with attention module based on sample plant images of no stress, 
mild stress, and no stress label
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3.6 Training efficiency on small dataset

To verify the efficacy ofthe proposed lightweight CNN model 
to be trained on limited dataset, the image data augmentation 
part was removed from the process flow. Basically, the dataset 
used in this study was already considered a small volume 
dataset with just over 6 thousand of total images and 3 classes. 
In comparison, standard ImageNet dataset [43] used in most 
pre-trained network is much larger with 1.2 million images 
and 1000 classes. The proposed model performance was com­
pared between training with augmented dataset and training 
without the augmented dataset. The results are shown in 
Table 7.

The experimental results showed that when the model 
trained on dataset without data augmentation, accuracy drop 
by 10% from 0.84 to o.78. From the learning graph shown in 
Fig. 8, we can see that the training was slightly overfitting due 
to reduced number of samples in training dataset. Although, 
the model can still converge at the middle of the epochs and 
stop when accuracy no longer increased by means of callbacks 
function. This indicate that our model is not too complex to 
handle the features from the plant images. Even with small 
dataset the model can still generalized and give good accura­
cy. However, an adjustment to the dropout value can reduced 
the overfitting as shown in Fig. 9. Dropout prevents a layer 
from seeing twice the exact same pattern. These findings show

Drought stress (label: 0)

Mild stress (label: 1)

No stress (label: 2)

Fig. 7 Learning graph of accuracy and loss versus epochs for lightweight CNN with attention module trained on plant water stress dataset. (a) with 
image data augmentation. (b) without image data augmentation
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Table 7 Comparison of model
trained with and without data Accuracy Loss Labels Precision Recall F1-
augmentation scor

With data augmentation 0.8702 0.4060 Drought 0.9493 0.9357 0.9424
Mild 0.8189 0.7879 0.8031
No stress 0.8411 0.8819 0.8610

Without data augmentation 0.7260 0.6407 Drought 0.7447 1.0000 0.8537
Mild 0.6160 0.5833 0.5992
No stress 0.8252 0.5903 0.6883

that it is possible to have a small size CNN model, to be 
trained on small dataset, and to have good performance than 
the deeper structure network. As reported in the study by [44], 
most lightweight CNNs developed in the area of plant disease 
detection have been used for small plant datasets with compa­
rable performance to state-of-the-art deep CNN models. In 
other words, deep learning application with computer vision 
system for water stress detection is still relevant even with 
small plant image data if lightweight model is to be utilized.

4 Conclusion

In the light of recent technologies, detecting water stress in 
plant using smart mobile devices is the rising trend that is 
highly appealing for smart agricultural application. Although

lightweight CNNs have started to get the attention for appli­
cation in other fields, conventional CNNs are still being used 
for most plant water stress detection. In this paper, a new 
lightweight CNN model with the inclusion of simple attention 
mechanism has been proposed for effective plant water stress 
detection. Comparison with other lightweight CNN models 
suggested that the proposed model has faster training and 
processing time than other models even though the complex­
ity is higher. Classification results have shown that the pro­
posed model has the highest accuracy compared to the estab­
lished lightweight CNN models of MobileNets and NasNet 
mobile with parameters comparable MobileNets. The simple 
attention mechanism has been proven to be efficient to im­
prove the performance of the model while maintaining the 
small size. Furthermore, the proposed model can be trained 
on a small plant dataset with limited effect on overfitting.

(a)
Fig. 8 Dropout variation effects on model overfitting

(b)
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Fig. 9 Learning graph (for training and validation) of accuracy and loss versus epochs for the proposed model based on different configurations of the 
dropout value ranging from 0.4 to 0.7 which shows effect on model overfitting

Future work will involve the actual mobile deployment of the 
proposed model to further assess the robustness and effective­
ness of the method for easy and fast plant water stress detec­
tion under field condition.
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