Universiti Teknologi Malaysia Institutional Repository

Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference

Rizvi, Shahriyar Masud and Ab. Rahman, Ab. Al-Hadi and Sheikh, Usman Ullah and Fuad, Kazi Ahmed Asif and Shehzad, Hafiz Muhammad Faisal (2023) Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference. Applied Intelligence, 53 (4). pp. 4499-4523. ISSN 0924-669X

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s10489-022-03756-1

Abstract

Conventional convolutional neural networks (CNNs) present a high computational workload and memory access cost (CMC). Spectral domain CNNs (SpCNNs) offer a computationally efficient approach to compute CNN training and inference. This paper investigates CMC of SpCNNs and its contributing components analytically and then proposes a methodology to optimize CMC, under three strategies, to enhance inference performance. In this methodology, output feature map (OFM) size, OFM depth or both are progressively reduced under an accuracy constraint to compute performance-optimized CNN inference. Before conducting training or testing, it can provide designers guidelines and preliminary insights regarding techniques for optimum performance, least degradation in accuracy and a balanced performance–accuracy trade-off. This methodology was evaluated on MNIST and Fashion MNIST datasets using LeNet-5 and AlexNet architectures. When compared to state-of-the-art SpCNN models, LeNet-5 achieves up to 4.2× (batch inference) and 4.1× (single-image inference) higher throughputs and 10.5× (batch inference) and 4.2× (single-image inference) greater energy efficiency at a maximum loss of 3% in test accuracy. When compared to the baseline model used in this study, AlexNet delivers 11.6× (batch inference) and 5× (single-image inference) increased throughput and 25× (batch inference) and 8.8× (single-image inference) more energy-efficient inference with just 4.4% reduction in accuracy.

Item Type:Article
Uncontrolled Keywords:Computational workload, Convolutional neural network, Energy efficiency, Memory access cost, Spectral domain CNN
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:105057
Deposited By: Widya Wahid
Deposited On:02 Apr 2024 06:44
Last Modified:30 Jun 2024 00:44

Repository Staff Only: item control page