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A B S T R A C T   

Missing values in rainfall records might result in erroneous predictions and inefficient management practices 
with significant economic, environmental, and social consequences. This is particularly important for rainfall 
datasets in Peninsular Malaysia (PM) due to the high level of missingness that can affect the inherent pattern in 
the highly variable time series. In this work, 21 target rainfall stations in the Johor River Basin (JRB) with daily 
data between 1970 and 2015 were used to examine 19 different multiple imputation methods that were carried 
out using the Multivariate Imputation by Chained Equations (MICE) package in R. For each station, artificial 
missing data were added at rates of up to 5%, 10%, 20%, and 30% for different types of missingness, namely, 
Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR), 
leaving the original missing data intact. The imputation quality was evaluated based on several statistical per-
formance metrics, namely mean absolute error (MAE), root mean square error (RMSE), normalized root mean 
square error (NRMSE), Nash-Sutcliffe efficiency (NSE), modified degree of agreement (MD), coefficient of 
determination (R2), Kling-Gupta efficiency (KGE), and volumetric efficiency (VE), which were later ranked and 
aggregated by using the compromise programming index (CPI) to select the best method. The results showed that 
linear regression predicted values (norm.predict) consistently ranked the highest under all types and levels of 
missingness. For example, under MAR, MNAR, and MCAR, this method showed the lowest MAE values, ranging 
between 0.78 and 2.25, 0.93–2.57, and 0.87–2.43, respectively. It also consistently shows higher NSE and R2 
values of 0.71–0.92, 0.6–0.92, and 0.66–0.91, and 0.77–0.92, 0.71–0.93, and 0.75–0.92 under MAR, MCAR, and 
MNAR, respectively. The methods of mean, rf, and cart also appear to be efficient. The incorporation of the 
compromise programming index (CPI) as a decision-support tool has enabled an objective assessment of the 
output from the multiple performance metrics for the ranking and selection of the top-performing method. 
During validation, the Probability Density Function (PDF) demonstrated that even with up to 30% missingness, 
the shape of the distribution was retained after imputation compared to the actual data. The methodology 
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proposed in this study can help in choosing suitable imputation methods for other tropical rainfall datasets, 
leading to improved accuracy in rainfall estimation and prediction.   

1. Introduction 

Accurate daily rainfall data is crucial for hydro-meteorological 
analysis in climate research, and its absence can have a negative 
impact on hydro-climatological management, flood forecasting, irriga-
tion scheduling, and water resource administration. The analysis of 
long-term series data allows researchers to identify patterns, trends, and 
anomalies that may not be apparent in shorter-term datasets. Therefore, 
long-term data completeness is crucial for obtaining high-quality anal-
ysis of rainfall, particularly in developing countries like Malaysia, which 
frequently have the issue of missing values (Kamaruzaman et al., 2017). 
Missing rainfall data is an unavoidable and persistent issue, resulting 
from various factors like extreme weather, environmental changes, 
observation errors, procedural modifications, station reorganization, 
instrument malfunctions, and human error (Burhanuddin et al., 2021). 
Missing data, whether sporadic or systematic, can lead to bias in esti-
mation and predictions, leading to inconsistencies in rainfall records 
(Burhanuddin et al., 2021; Chiu et al., 2019b). 

Excluding missing values in rainfall datasets during data pre- 
processing is a common approach but not recommended due to the 
potential discontinuity and significant loss of important information 
(Nor et al., 2020). The importance of imputing incomplete data using 
appropriate methods to ensure accurate analysis remains a central tenet 
of time series analysis. Understanding the reasons that cause missing 
data is crucial for effective imputation, as it helps establish connections 
to the primary causes and relationships between measured variables and 
data incompleteness (Chiu et al., 2019a). The rainfall records that are 
missing are usually categorized as Missing Completely At Random 
(MCAR). This is because the probability of any specific data being 
missing is unrelated to both observed and unobserved data, as well as 
any variables within the dataset (Burhanuddin et al., 2021; Hamzah 
et al., 2021; Nor et al., 2020). According to Kalteh and Hjorth (2009), 
MCAR assume that the occurrence of missing values is unrelated to any 
unobserved data. This implies that the probability of data being missing 
is independent of any observation in the dataset. For model-based 
methods, this presumption is necessary, and it is plausible to presume 
that missing rainfall data adheres to the MCAR process. According to 
Hanaish et al. (2013), missing values in Malaysian rainfall data are 
MCAR, which denotes that the cause for the missingness is either un-
related to the values that are missing or unrelated to the observed data. 
But it is important to take into account several types of missingness, such 
as Missing At Random (MAR) and Missing Not At Random (MNAR), 
throughout the imputation process. Given the constraints and un-
certainties related to missing data that cannot be completely clarified by 
observed variables alone, the imputation method that takes into account 
all types of missingness may offer more accurate estimates and forecasts 
of rainfall. 

The imputation of missing data at a target station from a nearby 
station is a common practice in the domains of hydro-climatology and 
related disciplines (Shaharudin et al., 2020). These missing values are 
approximated using a variety of methods, including function-fitting, 
statistical, and empirical techniques (Chiu et al., 2021; Miró et al., 
2017; Nor et al., 2020), or more straightforward methods, including 
substituting missing numbers with the mean or median (Al-Khwarizmi 
et al., 2016; Nor et al., 2020). Other methods, like spatial interpolation 
techniques like inverse distance weighting average, normal ratio, simple 
arithmetic average, kriging, and co-kriging, are also widely used in a 
variety of geographical contexts (Martínez et al., 2019; Pinthong et al., 
2022). Additionally, statistical techniques like multiple linear regression 
and correlation coefficient weighting offer effective substitutes for 
estimating missing values at the target station (Latrubesse et al., 2022; 

Pinthong et al., 2022). 
The optimal method for imputing rainfall data must maintain the 

essential characteristics of the datasets and follow the unique rainfall 
patterns of specific locations, as stated by Nor et al. (2020). Multiple 
imputations have gained popularity as an effective technique for 
handling missing data in recent years, surpassing alternative methods in 
predicting missing rainfall values, as evidenced by the studies of Sattari 
et al. (2017), Miró et al. (2017), Jakhar et al. (2018), and Milo et al. 
(2019a). Multiple imputations, accounting for uncertainty and vari-
ability during the process, may yield more accurate and reliable esti-
mation results compared to single imputations, enabling robust 
statistical inference (Burhanuddin et al., 2021; Enders, 2010). The R 
programming language offers various packages for multiple imputation 
approaches to handle missing data problems, including “mi”, “Hmisc”, 
“MICE”, “missForest”, and the “Amelia II package”. In addition to 
multiple imputation, various machine learning-based imputation 
methods have been introduced, such as artificial neural networks 
(Canchala-Nastar et al., 2019; Norazizi and Deni, 2019a), random for-
ests (Addi et al., 2022; Appiah-Badu et al., 2022; Chivers et al., 2020), 
gradient boosting (Chivers et al., 2020; Gorshenin and Martynov, 2019), 
bootstrapping (Addi et al., 2022; Chen et al., 2019), and bayesian (de 
Carvalho et al., 2017; Lai and Kuok, 2019), among others. Other 
imputation methods that have received traction in recent years are 
satellite retrieval, which uses satellite-based products such as 
IMERG-GPM for direct imputation (Latrubesse et al., 2022). 

Even though various comparative studies have been done between 
these imputation methods over the years, mixed results on the perfor-
mance of the methods were found depending on the performance metric 
used and the geographical and climate context (Addi et al., 2022). For 
example, a study by Norazizi and Deni (2019a) concluded that the 
artificial neural network was the best imputation method, followed by 
MICE, and bootstrapping and expectation maximization algorithm 
method. Carvalho et al. (2017) found that multiple imputation performs 
better than geo-statistical techniques such as ordinary kriging and 
co-kriging. Another study by Balcha et al. (2023) found that the majority 
of stations demonstrated good performance through multiple linear 
regression and multiple imputation. 

The variability in results observed among different imputation 
methods can be attributed to the distinct assumptions and algorithms 
that may not always hold true for the specific dataset or context in which 
they are applied. Besides, the climate pattern and distribution of missing 
data within the dataset can greatly influence the performance of 
imputation methods. Certain methods may excel when handling data 
MCAR, while others may perform better when data is MAR or MNAR. 
The choice of imputation model or technique may interact differently 
with the underlying data characteristics, such as the presence of outliers, 
the degree of multicollinearity, or the complexity of relationships be-
tween variables. Additionally, the quality and quantity of available 
auxiliary information for imputation can vary, impacting the accuracy of 
the imputed values. 

In the case of multiple imputation using the MICE R package, it was 
also notable that most of the comparative performance studies were 
limited to employing the default method (predictive mean matching) 
being provided, such as the studies by Milo et al. (2019b), Norazizi and 
Deni (2019a), de Carvalho et al. (2017), Addi et al. (2022), and Tasho 
and Zeqo (2022). Other works employed one of the selected MICE 
methods as part of their research work, but no comprehensive assess-
ment was made to compare the different methods provided by the 
packages, such as the studies by Dewan et al. (2022), Tefera et al. 
(2023), Zvarevashe et al. (2019), and Worku et al. (2019). To ensure a 
fair and more comprehensive comparative assessment of the different 
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imputation approaches (single imputation, multiple imputation, ma-
chine learning-based imputation, etc.), the top-performing methods for 
each approach should initially be determined. Therefore, this study’s 
aim is to evaluate different multiple imputation methods available 
within the MICE R package and ascertain how well they work under high 
rainfall variability. To do so, this research evaluates the effectiveness of 
multiple imputation techniques, employing daily rainfall stations with 
extensive records across JRB, to fill missing data (MCR, MAR, and 
MNAR) at varying levels (5%, 10%, 20%, and 30%) in the highly vari-
able tropical climate. 

In addition, the study introduced methodological novelty through a 
multi-step approach involving an initial step of performance assessment 
of the imputation methods, including mean absolute error (MAE), root 
mean square error (RMSE), normalized root mean square error 
(NRMSE), Nash-Sutcliffe efficiency (NSE), modified degree of agreement 
(MD), coefficient of determination (R2), Kling-Gupta efficiency (KGE), 
and volumetric efficiency (VE). This is followed by the ranking of the 
imputation methods using CPI to aggregate the ranked performance 
based on the statistical metrics used in determining the top-performing 
methods. Previous works have relied on the subjective evaluation of the 
selected metrics in determining the top-performing imputation methods 
(Addi et al., 2022; Balcha et al., 2023; Norazizi and Deni, 2019b). 
Subjectivity may introduce bias into the decision-making process, as 
individual preferences may influence the selection of metrics or the 
weighing of their importance. Additionally, it may lack transparency 
and reproducibility, making it challenging for others to understand or 
replicate the decision-making process. The omission of some metrics or 
the unequal weighting of others can lead to an incomplete or biased 
assessment of imputation methods. Furthermore, subjective evaluation 
does not account for the complex interplay between various perfor-
mance criteria, often resulting in suboptimal or inefficient decisions. In 
this study, by providing a systematic and objective approach to 

decision-making, the CPI reduces subjectivity and bias, making it a 
valuable tool for making informed decisions when selecting the 
top-performing method. In order to examine the performance between 
the actual and imputed datasets, data completeness assessment using the 
best-performed method was carried out based on Probability Density 
Function (PDF) evaluation. In terms of novelty, the study’s findings aid 
in identifying the optimal strategy for reconstructing complete rainfall 
datasets by imputing missing data under basin-scale high rainfall vari-
ability, with potential applications of the imputation methodological 
procedure in other river basins to enhance rainfall estimation and 
forecasting accuracy for datasets with similar characteristics. 

2. Study area 

The Johor River, shown in Fig. 1, originates at Mount Gemuruh in 
Malaysia’s Johor State and flows south, covering a distance of about 
122.7 km and draining an area of about 2636 km2, before curving 
southwest and finally discharge into the Strait of Johor. The JRB plays a 
crucial role in providing water to Johor and Singapore, supporting the 
state’s growth by supplying vital water resources for domestic, indus-
trial, and agricultural purposes. Frequent flood events in the JRB have 
caused extensive infrastructure damage, economic disruptions, loss of 
lives, and environmental degradation, prompting numerous hydrologi-
cal studies, especially on rainfall patterns and variability (Pak et al., 
2021; Saudi et al., 2015; Tan et al., 2014, 2015). 

According to Peel et al. (2007), the JRB and most of PM fall under the 
Köppen and Geiger climatic classification of Tropical Wet (Af), charac-
terized by relatively uniform temperatures, high humidity, and regular 
rainfall, while the JRB’s extensive spatial coverage and complex terrain 
contribute to significant spatial-scale variability in rainfall. The average 
annual rainfall in the region stands at 2340 mm, yet historical rainfall 
patterns exhibit considerable variability due to large-scale climate 

Fig. 1. The location of 32 rainfall stations (including 21 target stations) for the period of 1970–2015 in JRB used for this study.  
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events such as La Niña (3104 mm in 1995) and El Niño (1826 mm in 
2015). The North East and South West monsoons (NEM and SWM) have 
a considerable impact on the seasonal patterns of weather in JRB (Wong 
et al., 2009). Therefore, when working with rainfall datasets in JRB, it is 
important to take seasonal factors into consideration and maintain the 
time series’ original structure, conserving all relevant data, including 
extreme rainfall, to enable proper analysis (Burhanuddin et al., 2021). 

3. Data and sources 

As recommended by the World Meteorological Organization, at least 
30 years of long-term climate data are recommended for climate 
assessment (Arguez and Vose, 2011). The daily rainfall was data pro-
vided by the Department of Irrigation and Drainage Malaysia (DID), 
which was obtained from rainfall stations situated within and nearby 
JRB for the 46-year period between 1970 and 2015. However, the 
northern mountainous region lacked available rainfall datasets, and 
certain stations were excluded from the analysis due to insufficient 
long-term data as the station’s installation and operational dates only 
commerce in the early 2000s, inconsistent start and end years, and 
persistently missing data for extended periods. Only 21 out of the 32 
identified rainfall stations (Fig. 1) were selected for the imputation 
process due to having a maximum of 20% missing data, with neigh-
boring stations within a 20 km radius considered appropriate for PM 
regions based on a moderate effect size (Kamaruzaman et al., 2017). A 
20 km radius of moderate effect size is considered suitable for selecting 
neighboring stations due to the prevalence of convective weather events 
within a ≤10 km scale (Suhaila et al., 2008), providing a balance be-
tween having a sufficient number of stations for accurate estimation 
results and avoiding increased computation time associated with a 
larger radius (Erdal and Karakurt, 2013). For each target station, at least 
3 neighboring stations were available for the imputation process. The 
target and neighboring stations’ locations are shown in Fig. 1, while 
Table 1 provides descriptions of the stations. 

4. Methods 

4.1. Procedure 

The manuscript outlines the following procedure for the study. 

1. The data quality assessment for target stations was initially per-
formed, including missing data percentage, mean, maximum, vari-
ance, standard deviation, coefficient of variation, skewness, 
percentage of zero rainfall, and outlier ratio, while the Welch Two- 
Sample t-test was utilized to detect homogeneity or inhomogeneity 
in the daily rainfall data series. To further confirm if the inhomo-
geneous trend was caused by natural climate variability, the station 
with the irregular pattern was compared with nearby stations. 

2. Then artificial missingness (MCAR, MAR, and MNAR) was intro-
duced in increasing increments of 5%, 10%, 20%, and 30% to assess 
the effectiveness of each imputation method while retaining the 
original missing data.  

3. Selected imputation methods from the MICE package were applied to 
the target stations with additional artificial missingness, and the 
imputation quality was evaluated by comparing the imputed data to 
the observed data using statistical assessments, namely, MAE, RMSE, 
NRMSE, NSE, MD, R2, KGE, and VE.  

4. The statistical analysis from step 3 for each of the 21 target stations 
was ranked based on CPI to determine the highest-ranked imputation 
method. The details of the methodology for CPI can be found in 
Muhammad et al. (2019).  

5. The imputed dataset’s ability to capture extreme values under 
different missingness types and levels was then assessed by con-
structing the PDF for the best-performing method. 

4.2. Missing data generation 

Missing data was generated by assuming three distinct mechanisms, 
namely, MCAR, MAR, and MNAR, and the missingness level was 
generated up to 5%, 10%, 20%, and 30% without eliminating the 
original set of missing data (Wissler et al., 2022). A detailed description 
of the type of missingness can be found in Salgado et al. (2016). The 
number of stations available for comparison varied at each missingness 
level, resulting in 12, 14, 21, and 21 stations, respectively, as listed in 
Table 2. Generating missing data based on these three mechanisms al-
lows a comprehensive assessment of multiple imputation methods for 
dealing with various types of missing data, demonstrating their reli-
ability (Tong et al., 2020). 

4.3. Imputation methods 

The MICE R package has been successfully used in the past to fill in 
Table 1 
Data for the selected 21 rainfall target stations situated within and near the JRB 
from 1970 to 2015. NA (%) denotes the percentage of missing data, whereas 
Neighbr. St. denotes the number of nearbouring stations.  

No Target St. St. Name Lat Lon Neighbr. St 
1 1933151 Ldg. Lambak 1.97 103.33 4 
2 1933121 Ldg. Getah See Sun 1.90 103.4 5 
3 1836001 Rancangan Ulu Seboi 1.88 103.64 5 
4 1835001 Ldg. Pekan Layang Layang 1.86 103.59 6 
5 1834122 Ldg. Rengam 1.89 103.42 5 
6 1833123 Ldg. Benut 1.84 103.35 7 
7 1833092 Ldg. Simpang Rengam 1.86 103.34 7 
8 1740001 Felda Bkt. Wah Ha 1.77 104.03 3 
9 1739003 Ldg. Permatang 1.78 103.93 4 
10 1738131 Ldg. Getah Malaya 1.70 103.89 7 
11 1737001 Sek. Men. Bkt. Besar 1.76 103.72 6 
12 1735125 Ldg. Sedenak 1.71 103.53 4 
13 1734001 Loji Pembersih Bkt. Batu 1.73 103.44 5 
14 1640141 Felda Air tawar 1 1.62 104.04 8 
15 1635102 Ldg. Kulai Young 1.63 103.53 7 
16 1541137 Ldg. Sg. Papan 1.50 104.11 3 
17 1540135 Ldg. Telok Sengat 1.57 104.04 6 
18 1539136 Ldg. Lim Lim Bhd. 1.52 103.99 5 
19 1539134 Ldg. Sg. Tiram 1.59 103.92 3 
20 1538117 Ldg. Sg. Plentong 1.53 103.84 4 
21 1536110 Ldg. Senai 1.58 103.65 5  

Table 2 
List of generated missing data (5%, 10%, 20%, 30%) for MCAR, MAR and 
MNAR, respectively used for comparison.  

St. No. NA (%) NA (5%) NA (10%) NA (20%) NA (30%) 
1536110 16.1   ✓ ✓ 

1538117 0.7 ✓ ✓ ✓ ✓ 

1539134 1.6 ✓ ✓ ✓ ✓ 

1539136 0.6 ✓ ✓ ✓ ✓ 

1540135 0.5 ✓ ✓ ✓ ✓ 

1541137 4.9 ✓ ✓ ✓ ✓ 

1635102 11.7   ✓ ✓ 

1640141 9.9  ✓ ✓ ✓ 

1734001 9.1  ✓ ✓ ✓ 

1735125 3.6 ✓ ✓ ✓ ✓ 

1737001 14.2   ✓ ✓ 

1738131 0.2 ✓ ✓ ✓ ✓ 

1739003 13.1   ✓ ✓ 

1740001 19.2   ✓ ✓ 

1833092 1.5 ✓ ✓ ✓ ✓ 

1833123 1.3 ✓ ✓ ✓ ✓ 

1834122 1.8 ✓ ✓ ✓ ✓ 

1835001 17.2   ✓ ✓ 

1836001 18.2   ✓ ✓ 

1933121 1.9 ✓ ✓ ✓ ✓ 

1933151 2 ✓ ✓ ✓ ✓  
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the gaps in hydro-climatological data (Farzandi and Rezaee-Pazhand, 
2021; Milo et al., 2019b; Norazizi and Deni, 2019a). This research uti-
lized the MICE R package (van Buuren and Groothuis-Oudshoorn, 2011; 
White et al., 2011) for multiple imputations, which creates several im-
putations to handle missing data ambiguity, providing a successful and 
flexible approach for dealing with missing data in a multivariable 
setting. Numerous studies have demonstrated the effectiveness of MICE 
to impute missing rainfall data (Norazizi and Deni, 2019a; Poyatos et al., 
2018). Table 3 lists the imputation methods used in this study using the 
MICE package. Various types of imputation methods, including numeric, 
binary, ordered, unordered, and any type of data, were selected to allow 
for a comprehensive evaluation of their effectiveness. Among the 23 
imputation methods in the MICE package, four (norm.boot, norm, norm. 
nob, and ri) were excluded due to generating negative values, which are 
not valid for rainfall data. 

4.4. Data completeness assessment 

When utilising the best-performing approach to assess the accuracy 
of imputed rainfall data, evaluating data completeness is a crucial step 
because missing data might introduce bias and jeopardise the validity of 
the results. In this study, PDFs were generated for the actual and 
imputed data to facilitate comparison and assess the quality of the 
imputed data, ensuring reasonability and compatibility with the actual 
data distribution. 

5. Results and discussion 

5.1. Data quality assessment 

Before imputation, data exploration was carried out on target sta-
tions, analyzing statistics including missing data parentage, mean, 
maximum values, standard deviation, variance, coefficient of variation, 
skewness, percentage of zero rainfall, and outlier ratio to identify po-
tential data quality issues (Table 4). Figs. 2 and 3 show the target sta-
tions’ missing data’s histogram percentage, distribution, and number of 
intersections. The analysis showed missing values ranging from 0.2% to 
19.2% for all stations. The highest daily rainfall ranged from 178 to 
457.5 mm, and the mean daily rainfall varied from 5.61 to 8.00 mm, 
indicating the occurrence of extreme rainfall events, especially during 
the NEM. High variability in daily rainfall was observed, with variance, 
standard deviation, and coefficient of variation ranging from 12.5 to 
18.3 mm2, 156–334 mm, and 200–269%, respectively, typical of a 
tropical rainforest climate region, while the low percentage of zero 
rainfall (≤0.68) suggests a high occurrence of rainy days across the 
basin. 

The outlier ratio ranged from 8.3% to 19.3%, signifying a substantial 
proportion of outliers, and positive skewness (3.5–7.3) indicated a right- 
skewed distribution due to frequent extremely heavy downpours, 
especially around the NEM’s peak. The Welch Two-Sample t-test eval-
uated homogeneity and identified potential shifting time series points at 
each station, with Table 2 showing the t-statistic and p-value results; 7 
stations were found to be inhomogeneous (p < 0.05). The remaining 
stations, however, were revealed to be homogeneous. Sun et al. (2018) 
emphasize the importance of considering natural variability in accu-
rately calculating long-term rainfall change, which may contribute to 
data inhomogeneity, as stated by Hyndman and Hyndman (2016). 
Consistent with Nashwan et al. (2019) findings of non-stationarity in 
rainfall intensities in stations over Johor’s southern state, this study 
revealed 5 of the 7 inhomogeneous stations located in the basin’s 
southern region, suggesting a geographic concentration that could imply 
higher vulnerability to large-scale climate events in this area. Suhaila 
and Yusop (2018) also noted that there were instances of breaks or 
discontinuities in temperature time series that could be caused by 
large-scale climate events such as El Niño and La Niña, while Che Ros 
et al. (2016) found that the El Niño-Southern Oscillation (ENSO) has a 
significant impact on the sudden increase in rainfall and long-term 
variability in the basin of the Kelantan River. A comparable pattern 
was observed in all inhomogeneous sites near the break point in the time 
series, with variable magnitudes of rainfall variability. It is important to 
note that the ENSO event and the time series’ breakpoint were observed 
to coincided, indicating that inhomogeneity may have been cause by 
natural variability. The correlation bears similarities to Suhaila and 
Yusop (2018) previous research. Therefore, all stations in the study are 
suitable for further analysis without anthropogenic influence on the 
rainfall series. 

5.2. Selection of imputation methods based on comparative assessment 

Each imputation method’s effectiveness was evaluated for each 
imputed station by initially examining it with the actual data using a 
variety of statistical performance metrics, namely, MAE, RMSE, NRMSE, 
NSE, MD, R2, KGE, and VE. By taking into account a variety of metrics, 
the study offers a complete evaluation of the efficacy of the imputation 
approach, encapsulating accuracy, precision, and goodness of fit, which 
enables a detailed understanding of method performance. Then, for each 
metric, an evaluation was made for every rainfall station and for each 
imputation method under different types of missingness (MCAR, MAR, 
and MNAR) and different levels of missingness (5%, 10%, 20%, and 
30%). Therefore, there will be a large pool of output with 5% level of 
missingness (12 stations × 3 type of missingness × 19 imputation 
methods × 8 statistical metrics), 10% level of missingness (14 stations ×

Table 3 
List of the selected imputation methods from mice package. Generated Value of 
(+) and (−) means the numerical positive or negative outcome, respectively, 
produced by the chosen imputation method.   

Name Type Symbol Generated 
Value 

A Bayesian linear regression numeric norm – 

B Imputation of quadratic terms numeric quadratic +

C Level-1 normal 
heteroscedastic 

numeric 2l.norm +

D Level-1 normal 
homoscedastic, lmer 

numeric 2l.lmer +

E Level-1 normal 
homoscedastic, pan 

numeric 2l.pan +

F Level-2 class mean numeric 2lonly. 
mean 

+

G Level-2 class normal numeric 2lonly. 
norm 

+

H Linear regression ignoring 
model error 

numeric norm.nob – 

I Linear regression using 
bootstrap 

numeric norm.boot – 

J Linear regression, predicted 
values 

numeric norm. 
predict 

+

K Random indicator for 
nonignorable data 

numeric ri – 

L Unconditional mean 
imputation 

numeric mean +

M Level-1 logistic, glmer binary 2l.bin +

N Logistic regression binary logreg +

O Logistic regression with 
bootstrap 

binary logreg.boot +

P Proportional odds model ordered polr +

Q Linear discriminant analysis unordered lda +

R Polytomous logistic regression unordered polyreg +

S Classification and regression 
trees 

any cart +

T Predictive mean matching any pmm +

U Random forest imputations any rf +

V Random sample from observed 
values 

any sample +

W Weighted predictive mean 
matching 

any midastouch +
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3 type of missingness × 19 imputation methods × 8 statistical metrics), 
20% level of missingness (21 stations × 3 type of missingness × 19 
imputation methods × 8 statistical metrics), and 30% level of missing-
ness (21 stations × 3 type of missingness × 19 imputation methods × 8 
statistical metrics). The heat map, presented in Fig. 4, using MNAR with 
a 30% missingness level as an example, demonstrated how each method 
performed across the metrics. The analysis did not include the quadratic 
method because of its poor performance. 

Table 5 shows the range of the performance of the employed rainfall 

station for each of the imputation methods based on the type of miss-
ingness under the highest 30% missingness level. The 30% missingness 
level was used to discuss the effectiveness of the imputation methods in 
handling higher degrees of missing data. Generally, the imputation 
methods perform well under MCAR, where data is missing randomly 
without any systematic pattern. This is followed by MAR, suggesting its 
effectiveness in imputing data when missingness is random. Conversely, 
MNAR shows the lowest performance, where the mechanism causing 
data to be missing depends on unobserved data, which poses greater 

Table 4 
Data quality information for 21 target stations. Bold St. No., means inhomogeneous station based on the Welch Two-Sample t-test; NA means missing value; Std. Dev. 
means standard deviation; Var. means variance; CV means coefficient of variation.  

St. No. NA (%) Mean Max Std. Dev. Var. CV Skewness Zero (%) Outliers ratio t-statistic p-value 
1536110 16.1 6.40 178 12.8 163 200 3.5 0.50 8.3 −6.1 1.5E-09 
1538117 0.7 6.88 257 16.3 266 237 4.2 0.63 16.5 −3.3 8.2E-04 
1539134 1.6 6.17 245.5 14.2 201 230 4.3 0.64 15.2 0.1 9.3E-01 
1539136 0.6 5.88 274 15.8 250 269 5.2 0.68 19.3 −0.7 4.9E-01 
1540135 0.5 6.51 282 15.4 236 237 4.9 0.62 14.2 −1.4 1.6E-01 
1541137 4.9 6.62 375 16.6 277 251 6.5 0.61 14.8 −1.3 1.8E-01 
1635102 11.7 8.00 230 16.7 278 209 3.6 0.54 10.8 −4.9 1.1E-06 
1640141 9.9 6.56 244.5 14.3 203 218 4.4 0.54 12.0 −0.4 7.0E-01 
1734001 9.1 6.39 180 13.6 185 213 3.7 0.50 12.8 −0.4 6.8E-01 
1735125 3.6 6.54 250 14.3 204 218 4.5 0.55 13.1 −0.1 8.9E-01 
1737001 14.2 5.61 290 13.7 188 244 5.4 0.46 12.8 0.9 3.4E-01 
1738131 0.2 6.85 305 16.5 273 241 5.1 0.59 15.6 −2.0 4.2E-02 
1739003 13.1 6.73 235 15.5 240 230 4.8 0.45 12.0 5.9 3.8E-09 
1740001 19.2 7.09 457.5 18.3 334 258 7.3 0.50 11.4 −1.0 3.1E-01 
1833092 1.5 5.97 270 13.3 176 223 4.2 0.58 14.3 −0.7 5.0E-01 
1833123 1.3 5.88 210 13.1 171 223 4.0 0.61 15.5 −1.1 2.9E-01 
1834122 1.8 5.67 307 12.5 156 220 4.3 0.59 14.7 0.4 6.9E-01 
1835001 17.2 6.88 372 17.2 296 250 6.2 0.49 11.7 −3.7 1.9E-04 
1836001 18.2 6.50 315 14.9 223 229 5.4 0.48 11.4 −0.9 3.7E-01 
1933121 1.9 6.23 225 14.7 215 236 4.1 0.66 16.4 1.7 8.1E-02 
1933151 2.0 5.74 308 14.1 200 245 5.7 0.58 13.9 −2.4 1.8E-02  

Fig. 2. Pareto chart of rainfall stations with the frequency, percentage, and cumulative information of missing data for 21 target stations from 1970 to 2015 in JRB.  
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Fig. 3. Visualization of the distribution of missing data and the number of intersections of missing data for 21 target stations from 1970 to 2015 in JRB. The x-axis 
displays 21 selected stations, with bars atop the plot indicating the counts of missing values. The y-axis illustrates the combinations of rainfall stations and their 
corresponding frequencies, providing insight into the patterns of missing data from 1970 to 2015. 

Fig. 4. A heat map of the statistical performance metrics of the imputation methods (MAE, RMSE, NRMSE, NSE, MD, R2, KGE, and VE) based on the example using 
the imputation of MNAR (30% missingness). 
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challenges for imputation methods. Based on MAE, under MAR and 
MNAR, methods like norm. predict, rf, pmm, and midastouch maintain 
lower MAE values, ranging between 0.78 and 2.25, 0.92–2.64, 
0.93–2.81, 0.87–2.67, and 0.81–2.17, 0.93–2.57, 0.99–3.05, 0.9–2.64, 
respectively. This indicates their reliability in imputing missing data 
when it follows a random pattern. Conversely, under MCAR, where data 
is missing randomly without any systematic pattern, norm. predict 
(0.87–2.43) stands out with consistently lower MAE values, highlighting 
the advantage of imputing data when it is missing randomly. 

Under MAR and MCAR, most imputation methods show consistent 
RMSE values. The range of RMSE values across methods is relatively 
narrow, indicating stable performance. Notably, the norm. predict 
method exhibits lower RMSE values of 4.54–7.69, and 4.87–8.69 under 
MAR and MCAR, respectively, suggesting its effectiveness in imputing 
data when missingness is random. Under MNAR, norm. predict 
(4.45–7.62) and mean (4.77–8.53) demonstrate relatively lower RMSE 
values. A similar performance was observed under NRMSE with the 
norm. predict method, which exhibits lower NRMSE values of 29–54.2, 
and 27.5–63 under MAR and MCAR, respectively. Under MNAR, norm. 

predict (29.6–58.3) and mean (33.8–64) demonstrate relatively lower 
NRMSE values. 

Under all types of missingness, most imputation methods exhibit a 
consistent range of values, indicating reliable performance. Notably, the 
norm. predict method consistently shows higher NSE values of 0.71–0.92, 
0.6–0.92, and 0.66–0.91, under MAR, MCAR, and MNAR, respectively. 
Similarly, the norm. predict method consistently shows the highest MD 
values of 0.88–0.96, 0.86–0.95, and 0.89–0.96, under MAR, MCAR, and 
MNAR, respectively. Most imputation methods show a relatively high 
range of R2 values, indicating a high degree of explanatory power. The 
norm. predict method consistently shows the highest R2 values of 
0.77–0.92, 0.71–0.93, and 0.75–0.92, under MAR, MCAR, and MNAR, 
respectively. Based on KGE, most imputation methods demonstrate a 
good level of efficiency. The norm. predict method consistently out-
performs other methods, showing the highest KGE values of 0.81–0.95, 
0.76–0.95, and 0.79–0.94 under MAR, MCAR, and MNAR, respectively 
suggesting its effectiveness in capturing the statistical characteristics of 
the observed data in the presence of random missingness. Based on VE, 
the norm. predict method stands out as the most effective method, 

Table 5 
Results for the range of the statistical performance metrics (MAE, RMSE, NRMSE, NSE, MD, R2, KGE, and VE) for each of the imputation methods based on MAR, 
MCAR, and MNAR under 30% missingness level. The alphabet corresponds to the imputation method given in Table 3.  

Methods Type B C D E F G J L M N 
MAE MAR 1.24–581.75 1.34–4.03 1.06–3.28 1.06–3.28 1.04–3.11 1.04–3.11 0.78–2.25 0.87–2.68 1.04–3.11 1.34–4.03 

MNAR 1.2–2702.71 1.35–3.98 1.05–2.97 1.05–2.97 1.01–3.06 1.01–3.06 0.81–2.17 0.87–2.57 1.01–3.06 1.35–3.98 
MCAR 1.69–332.61 1.65–3.41 1.24–3.41 1.24–3.41 1.3–3.42 1.3–3.42 0.87–2.43 1.06–2.98 1.30–3.42 1.65–4.41 

RMSE MAR 6.25–1160.71 5.67–10.52 6.50–12.18 6.50–12.18 6.30–11.98 6.30–11.98 4.54–7.69 4.75–8.72 6.30–11.98 5.67–10.52 
MNAR 6.52–5409.88 5.76–10.57 6.38–11.68 6.38–11.68 6.40–11.83 6.40–11.83 4.45–7.62 4.77–8.53 6.40–11.83 5.76–10.57 
MCAR 7.43–627.01 6.30–11.20 6.97–12.94 6.97–12.94 7.30–12.69 7.30–12.69 4.87–8.69 5.36–9.45 7.30–12.69 6.30–11.20 

NRMSE MAR 48.1–116.6 38.5–66.0 45.2–74.9 45.2–74.9 42.6–74.8 42.6–74.8 29.0–54.2 33.6–63.8 42.6–74.8 38.5–66.0 
MNAR 46.5–116.4 38.3–66.1 45.0–75.2 45.0–75.2 43.2–74.3 43.2–74.3 29.6–58.3 33.8–64.0 43.2–74.3 38.3–66.1 
MCAR 58.8–118.0 38.7–72.9 47.2–83.0 47.2–83.0 45.6–83.0 45.6–83.0 27.5–63.0 33.1–73.7 45.6–83.0 38.7–72.9 

NSE MAR −0.36-0.77 0.57–0.85 0.44–0.80 0.44–0.80 0.44–0.82 0.44–0.82 0.71–0.92 0.59–0.89 0.44–0.82 0.57–0.85 
MNAR −0.36-0.78 0.56–0.85 0.43–0.80 0.43–0.80 0.45–0.81 0.45–0.81 0.66–0.91 0.59–0.89 0.45–0.81 0.56–0.85 
MCAR −0.39-0.65 0.47–0.85 0.31–0.78 0.31–0.78 0.31–0.79 0.31–0.79 0.6–0.92 0.46–0.89 0.31–0.79 0.47–0.85 

MD MAR 0.59–0.93 0.80–0.93 0.83–0.94 0.83–0.94 0.84–0.94 0.84–0.94 0.88–0.96 0.84–0.95 0.84–0.94 0.80–0.93 
MNAR 0.59–0.93 0.80–0.93 0.84–0.94 0.84–0.94 0.84–0.94 0.84–0.94 0.89–0.96 0.85–0.95 0.84–0.94 0.80–0.93 
MCAR 0.59–0.90 0.77–0.92 0.82–0.93 0.82–0.93 0.81–0.93 0.81–0.93 0.86–0.95 0.82–0.94 0.81–0.93 0.77–0.92 

R2 MAR 0.00–0.78 0.62–0.86 0.52–0.81 0.52–0.81 0.52–0.83 0.52–0.83 0.77–0.92 0.71–0.9 0.52–0.83 0.62–0.86 
MNAR 0.00–0.79 0.63–0.86 0.53–0.81 0.53–0.81 0.52–0.83 0.52–0.83 0.75–0.92 0.71–0.9 0.52–0.83 0.63–0.86 
MCAR 0.00–0.69 0.56–0.85 0.44–0.79 0.44–0.79 0.45–0.80 0.45–0.80 0.71–0.93 0.65–0.9 0.45–0.80 0.56–0.85 

KGE MAR −0.71-0.88 0.77–0.92 0.72–0.90 0.72–0.90 0.72–0.91 0.72–0.91 0.81–0.95 0.74–0.92 0.72–0.91 0.77–0.92 
MNAR −1.76-0.89 0.78–0.93 0.72–0.90 0.72–0.90 0.72–0.91 0.72–0.91 0.79–0.94 0.75–0.92 0.72–0.91 0.78–0.93 
MCAR −0.70-0.83 0.74–0.92 0.66–0.89 0.66–0.89 0.67–0.89 0.67–0.89 0.76–0.95 0.69–0.93 0.67–0.89 0.74–0.92 

VE MAR 0.01–0.82 0.37–0.79 0.51–0.84 0.51–0.84 0.53–0.84 0.53–0.84 0.68–0.88 0.6–0.87 0.53–0.84 0.37–0.79 
MNAR 0.00–3.67 0.36–0.79 0.56–0.84 0.56–0.84 0.56–0.84 0.56–0.84 0.69–0.88 0.62–0.87 0.56–0.84 0.36–0.79 
MCAR 0.02–0.74 0.28–0.76 0.46–0.82 0.46–0.82 0.46–0.82 0.46–0.82 0.62–0.88 0.54–0.85 0.46–0.82 0.28–0.76   

O P Q R S T U V W  
MAE MAR 1.34–4.03 1.34–4.03 1.34–4.03 1.34–4.03 0.91–2.79 0.93–2.81 0.92–2.64 1.07–3.20 0.87–2.67  

MNAR 1.35–3.98 1.35–3.98 1.35–3.98 1.35–3.98 0.86–2.64 0.99–3.05 0.93–2.57 1.09–3.07 0.90–2.64  
MCAR 1.65–4.41 1.65–4.41 1.65–4.41 1.65–4.41 1.05–2.96 1.16–3.18 1.04–2.80 1.26–3.40 1.10–2.93  

RMSE MAR 5.67–10.52 5.67–10.52 5.67–10.52 5.67–10.52 6.01–10.75 5.7–10.98 5.94–10.63 6.74–12.50 5.95–10.66  
MNAR 5.76–10.57 5.76–10.57 5.76–10.57 5.76–10.57 5.67–10.74 5.69–11.39 5.63–10.72 6.37–12.29 6.02–10.71  
MCAR 6.30–11.20 6.30–11.20 6.30–11.20 6.30–11.20 6.07–11.39 6.59–11.32 6.02–11.25 7.45–12.69 6.31–11.74  

NRMSE MAR 38.5–66.0 38.5–66.0 38.5–66.0 38.5–66.0 40.2–64.3 38.0–67.0 37.7–65.3 45.4–76.3 38.8–66.9  
MNAR 38.3–66.1 38.3–66.1 38.3–66.1 38.3–66.1 37.7–65.5 40.5–67.7 37.7–66.1 44.6–75.0 40.3–65.0  
MCAR 38.7–72.9 38.7–72.9 38.7–72.9 38.7–72.9 37.5–73.5 38.7–73.5 39.2–74.3 47.9–81.6 36.7–72.7  

NSE MAR 0.57–0.85 0.57–0.85 0.57–0.85 0.57–0.85 0.59–0.84 0.55–0.86 0.57–0.86 0.42–0.79 0.55–0.85  
MNAR 0.56–0.85 0.56–0.85 0.56–0.85 0.56–0.85 0.57–0.86 0.54–0.84 0.56–0.86 0.44–0.80 0.58–0.84  
MCAR 0.47–0.85 0.47–0.85 0.47–0.85 0.47–0.85 0.46–0.86 0.46–0.85 0.45–0.85 0.33–0.77 0.47–0.87  

MD MAR 0.80–0.93 0.80–0.93 0.80–0.93 0.80–0.93 0.86–0.95 0.86–0.95 0.86–0.95 0.83–0.94 0.86–0.95  
MNAR 0.80–0.93 0.80–0.93 0.80–0.93 0.80–0.93 0.87–0.95 0.85–0.94 0.87–0.95 0.84–0.94 0.87–0.95  
MCAR 0.77–0.92 0.77–0.92 0.77–0.92 0.77–0.92 0.85–0.95 0.84–0.94 0.85–0.95 0.82–0.93 0.85–0.94  

R2 MAR 0.62–0.86 0.62–0.86 0.62–0.86 0.62–0.86 0.62–0.84 0.6–0.86 0.62–0.86 0.50–0.8 0.61–0.86  
MNAR 0.63–0.86 0.63–0.86 0.63–0.86 0.63–0.86 0.62–0.86 0.58–0.84 0.61–0.86 0.52–0.81 0.62–0.84  
MCAR 0.56–0.85 0.56–0.85 0.56–0.85 0.56–0.85 0.54–0.80 0.54–0.86 0.54–0.85 0.47–0.78 0.57–0.87  

KGE MAR 0.77–0.92 0.77–0.92 0.77–0.92 0.77–0.92 0.79–0.91 0.77–0.93 0.78–0.93 0.71–0.90 0.78–0.92  
MNAR 0.78–0.93 0.78–0.93 0.78–0.93 0.78–0.93 0.78–0.93 0.75–0.91 0.78–0.93 0.72–0.90 0.79–0.92  
MCAR 0.74–0.92 0.74–0.92 0.74–0.92 0.74–0.92 0.74–0.93 0.74–0.92 0.73–0.92 0.68–0.88 0.74–0.93  

VE MAR 0.37–0.79 0.37–0.79 0.37–0.79 0.37–0.79 0.60–0.86 0.59–0.86 0.60–0.86 0.52–0.83 0.60–0.86  
MNAR 0.36–0.79 0.36–0.79 0.36–0.79 0.36–0.79 0.62–0.87 0.59–0.85 0.62–0.86 0.55–0.83 0.62–0.86  
MCAR 0.28–0.76 0.28–0.76 0.28–0.76 0.28–0.76 0.54–0.85 0.53–0.84 0.54–0.85 0.47–0.81 0.55–0.85   

Z. Sa’adi et al.                                                                                                                                                                                                                                   



Applied Computing and Geosciences 20 (2023) 100145

9

consistently achieving higher values of 0.68–0.88, 0.62–0.88, and 
0.69–0.88 under MAR, MCAR, and MNAR, respectively. This indicates 
that this method can replicate the volumetric properties of the observed 
data even when dealing with randomly missing values. 

In comparison to the norm. predict method, the mean, rf, and cart 
methods also consistently display competitive performance across 
various metrics and types of missingness. These methods exhibit 
competitive performance in terms of MAE, RMSE, NRMSE, NSE, MD, R2, 
KGE, and VE, making them one of the higher-performing methods across 
the board. On the other hand, for MAR and MNAR, in many cases, the 
quadratic method showed lower performance across multiple metrics. 
The sample method also tends to have lower performance, with lower 
scores in multiple metrics. For MCAR, the quadratic and sample methods 
continue to have lower scores in various metrics, whereas the polyreg 
and logreg. boot also tend to have lower scores. 

For objective evaluation and to cater for the large output from the 
statistical metrics, the CPI was used as a way to determine a compromise 
solution or ranking that optimally balances trade-offs between the 
different performances of the imputation methods under different met-
rics, different missingness types, and different levels of missingness. By 
incorporating CPI as a decision-supportive tool, the trade-offs between 
several statistical performance metrics are taken into account through 
the use of aggregated ranking. Therefore, CPI enhances the quality of 
decision in selecting the top-performing imputation methods, which was 
lacking in previous work that relied on subjective evaluation of each 
individual statistical metric (Fakhruddin Kamaruzaman et al., 2017; 
Jahan et al., 2019). Table 6 presents the final rank for each imputation 
method, obtained by re-aggregation using CPI in the performance study 
under various missingness types and levels, with norm. predict consis-
tently ranking first, mean method second, and quadratic approach 
consistently last. The ranking of methods third and below varied based 
on missingness type and level, but overall, a consistent ranking pattern 
was observed, indicating that different imputation methods had a stable 
position regardless of missingness level. Given that norm. predict 
consistently ranked the highest, this method was selected for subsequent 
analysis. 

5.3. Validation of the imputation method 

5.3.1. Performance analysis 
Figs. 5–8 illustrate a statistical performance analysis comparing 

norm. predict ability to impute missing values under various types (MAR, 
MNAR, and MCAR) and levels of missingness (5%, 10%, 20%, 30%). The 

norm. predict performance decreased with higher levels of missingness, 
as evident from comparing the percentage of change between the 10% 
and 30% imputed datasets to the 5% imputed dataset, where a higher 
percentage of error was observed with increased missingness. 

Under increasing levels of missingness (5%–30%), the MAE showed a 
slight increase, ranging from 48 to 98%, 49–98%, and 49–99% for MAR, 
MNAR, and MCAR, respectively, indicating decreased imputation ac-
curacy with larger errors in predictions, possibly due to the method’s 
limited ability to capture underlying patterns or relationships in rainfall 
data. Similar percentage increases in error were observed for RMSE and 
NRMSE, ranging from 19 to 83% and 20–85% for RMSE, and 26–88% 
and 27–89% for NRMSE, respectively, under MAR, MNAR, and MCAR, 
suggesting higher deviations between imputed and actual values and 
decreased imputation accuracy with higher errors, indicating poorer 
performance of the imputation method. The imputation method showed 
lower increments in error for NSE (2–37%, 1–45%, and 3–55%), MD 
(1–11%, 1–11%, and 2–14%), R2 (2–24%, 1–32%, and 3–28%), KGE 
(0–20%, 1–23%, and 2–25%), and VE (3–40%, 3–39%, and 4–52%) 
under MAR, MNAR, and MCAR, respectively, indicating its effectiveness 
in reproducing observed data and achieving strong concurrence and 
similarity between imputed and actual values, as well as a good fit of the 
regression model. Additionally, in terms of KGE and VE, the imputation 
method accurately reproduces the imputed data in terms of both mean 
and variability, as well as the correlation between actual and imputed 
values, indicating reliable and comparable imputed values to the actual 
values. 

Increased missingness in rainfall data reduces the imputation 
method’s performance due to information loss and reduced sample size, 
leading to fewer accurate estimates and broader confidence ranges, 
potentially impacting the reliability and accuracy of the findings. There 
is a greater loss of information and potential underperformance of the 
imputation method as the percentage of missing data rises from 10% to 
30%, resulting in more missing data points. Additionally, the potential 
for bias estimation may increase, which reduces the accuracy and reli-
ability of the subsequent analysis. Higher missingness introduces more 
variability into the time series, leading to increased uncertainty in the 
calculation of imputed values and decreased reliability and performance 
of the imputation method. 

5.3.2. Probability Density Function (PDF) 
Fig. 9 illustrates the performance of imputed stations (upstream, 

1538117; middle, 1738131; and downstream, 1933151) compared with 
actual data based on monthly rainfall PDF under varying levels of 

Table 6 
Rank of the statistical performance assessment for each imputation method for each type of missingness, namely, MCAR, MAR, and MNAR, under 5%, 10%, 20%, and 
30%, respectively, based on CPI. The alphabet corresponds to the imputation method given in Table 3.   

MCAR MAR MNAR Final 
Rank 5% 10% 20% 30% 5% 10% 20% 30% 5% 10% 20% 30% 
1 J J J J J J J J J J J J J 
2 L L L L L L L L L L L L L 
3 T U U S U T U S U U T U U 
4 U W S U S W S U P P U S S 
5 S T W W T U W W C C S W W 
6 W S T T P S T T Q Q W T T 
7 M M P P C P P P O O P P D 
8 V D C C Q C C C N N C C M 
9 D V Q Q O Q Q Q R R Q Q V 
10 P P O O N O O O S T O O P 
11 C C N N R N N N T S N N C 
12 Q Q R R W R R R W W R R Q 
13 O O D D D V D M D V M M O 
14 N N E E E M E F E D F F N 
15 R R V M M F V G V E G G R 
16 E E M F F G M D M M V D E 
17 F F F G G D F E F F D E F 
18 G G G V V E G V G G E V G 
19 B B B B B B B B B B B B B  
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missingness. The PDFs demonstrated that even with up to 30% miss-
ingness, the rainfall characteristics and the shape of the distribution 
were retained, as evidenced by improved symmetry and bell-shaped 
curves in the imputed datasets compared to the actual data (Kamar-
uzaman et al., 2017). The similarity in central tendency (median) and 
data distribution between actual and imputed datasets confirms the 
successful estimation of missing data and the accurate representation of 
data variability by the imputation method. The imputed datasets dis-
played higher kurtosis, indicating increased variability and extreme 
values in the imputed rainfall compared to the actual data with missing 
values, highlighting the importance of obtaining a reliable estimate of 
extreme rainfall events. Additionally, a trend of higher peaks with an 
increasing level of missingness was observed in most cases, indicating 
that the imputation method tends to overestimate the probability of high 
extreme values as the level of missingness increases in the actual data. 

6. Conclusions 

Numerous studies have focused on finding the best method for filling 

in missing rainfall data, and in this study, 19 methods in the MICE R 
package were used to identify the most suitable methods for imputation 
of daily rainfall in JRB. Across different missingness types and levels (up 
to 30%), the norm. predict method outperformed others, making it the 
most appropriate choice for this dataset. The mean, rf, and cart methods 
are another one that seems to work rather well for different types of 
missingness. These methods are among the best overall since they 
perform competitively in terms of MAE, RMSE, NRMSE, NSE, MD, R2, 
KGE, and VE. In particular, the application of the CPI has been instru-
mental in establishing a well-balanced compromise ranking among 
imputation methods, effectively addressing the trade-offs inherent in 
their performance across diverse statistical metrics. The incorporation of 
CPI as a decision-support tool has enabled an objective and holistic 
consideration of multiple performance metrics, marking a significant 
departure from prior research that relied on subjective evaluation based 
on individual metrics. 

Nonetheless, the norm. predict method comes with certain limitations 
that need to be considered, such as its reliance on the assumption of 
normality, which may not hold in many real-world datasets. Deviations 

Fig. 5. Results for the statistical performance of the norm. predict imputation methods based on MAR, MCAR, and MNAR under 5% missingness based on MAE, RMSE, 
NRMSE, NSE, MD, R2, KGE, and VE. 
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from normality can result in imputed values that do not accurately 
reflect the underlying data distribution. Additionally, it can be limited 
by the subjective selection of the neighboring stations, which may 
introduce bias and affect the uncertainty of imputed values and accu-
racy. This is due to individual judgement and assumptions in selecting 
the neighboring stations, which may lead to inconsistent results between 
studies and hamper the ability to replicate findings. It is also sensitive to 
the missing data mechanism, performing better in situations where data 
is MAR or MCAR but less so when data is MNAR. On the other hand, even 
though the CPI-based ranking methodology has proven to be valuable in 
this analysis, the choice of performance metrics to be included in the 
assessment and their relative weights can still introduce subjectivity into 
the decision-making process. Future research could explore ways to 
standardize this aspect further. The study also focused specifically on 
daily rainfall imputation in the JRB region, which may vary in other 
geographic areas or for different types of climate data. While this study 
focused on imputation at the daily level, temporal resolutions (e.g., 

hourly or monthly) and spatial resolutions (e.g., regional or local) may 
necessitate different imputation strategies. In conclusion, while this 
research offers valuable insights into missing rainfall data imputation 
and introduces a robust ranking methodology, it is essential to consider 
these limitations. 

Therefore, it is crucial for researchers to establish objective and 
standardized criteria for station selection, such as geographic proximity 
or similarity in climatic conditions, which can minimize the impact of 
subjective influences. Other approaches for objective selection of the 
imputation methods under multiple statistical performance metrics can 
be explore, such as multi-criteria decision making (Dayal et al., 2023), 
cluster analysis (Zhang et al., 2016) and metric weighting (Chhin and 
Yoden, 2018). In addition, future comparative assessments between 
multiple imputation methods and machine learning-based imputation, 
or other methodologies, should be conducted to examine how each 
approach performs under high rainfall variability in the tropics. This 
investigation on missing rainfall data in JRB highlights the importance 

Fig. 6. Results for the statistical performance of the norm. predict imputation methods based on MAR, MCAR, and MNAR under 10% missingness based on MAE, 
RMSE, NRMSE, NSE, MD, R2, KGE, and VE. 
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of choosing appropriate imputation methods that align with the area’s 
significant seasonal and spatial rainfall variability. This study highlights 
the significance of handling missing data to ensure accurate trend 
analysis, capturing trend direction and amplitude while accounting for 
high variability patterns absent in actual data, guiding the selection of 
appropriate imputation techniques for rainfall datasets of similar size, 
and enhancing rainfall estimation and forecast precision in JRB and 
other tropical basins in PM and Southeast Asia. 

Declaration 

Ethical approval 

Not applicable. 

Consent to participate 

Not applicable. 

Consent to publish 

We, (Zulfaqar Sa’adi Zulkifli Yusop, Nor Eliza Alias, Ming Fai Chow, 
Mohd Khairul Idlan Muhammad, Muhammad Wafiy Adli Ramli, Zafar 
Iqbal, Mohammed Sanusi Shiru, Faizal Immaddudin Wira Rohmat, Nur 
Athirah Mohamad, Mohamad Faizal Ahmad) hereby declare that We 
participated in the study in the development of the manuscript titled 
(Evaluating Imputation Methods for Spatiotemporal Rainfall Data Under 
High Variability in Johor River Basin, Malaysia). We have read the final 
version and give our consent for the article to be published in the journal 
of Applied Computing and Geosciences. 

Fig. 7. Results for the statistical performance of the norm. predict imputation methods based on MAR, MCAR, and MNAR under 20% missingness based on MAE, 
RMSE, NRMSE, NSE, MD, R2, KGE, and VE. 

Z. Sa’adi et al.                                                                                                                                                                                                                                   



Applied Computing and Geosciences 20 (2023) 100145

13

Authors contributions statement 

All authors contributed to the study’s conception and design. Mate-
rial preparation, data collection, and analysis were performed by Zul-
faqar Sa’adi Zulkifli Yusop, Nor Eliza Alias, Ming Fai Chow, Mohd 
Khairul Idlan Muhammad, Muhammad Wafiy Adli Ramli, Zafar Iqbal, 
Mohammed Sanusi Shiru, Faizal Immaddudin Wira Rohmat, Nur 
Athirah Mohamad, Mohamad Faizal Ahmad. Zulfaqar Sa’adi wrote the 
first draft of the manuscript. All authors commented on previous ver-
sions of the manuscript. All authors read and approved the final 
manuscript. 

Funding 

This work was supported by the Water Security and Sustainable 
Development Hub funded by the UK Research and Innovation’s Global 

Challenges Research Fund (GCRF) [grant number: ES/S008179/1]. 

CRediT authorship contribution statement 

Zulfaqar Sa’adi: Writing - review & editing, Writing - original draft, 
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Zulkifli 
Yusop: Writing - review & editing, Supervision, Resources, Project 
administration, Methodology, Investigation, Funding acquisition, 
Conceptualization. Nor Eliza Alias: Writing - review & editing, Super-
vision, Resources, Project administration, Investigation, Conceptuali-
zation. Ming Fai Chow: Writing - review & editing, Methodology, 
Formal analysis, Data curation, Conceptualization. Mohd Khairul Idlan 
Muhammad: Writing - review & editing, Visualization, Methodology, 
Formal analysis, Data curation. Muhammad Wafiy Adli Ramli: Writing 
- review & editing, Visualization, Validation, Software, Methodology, 

Fig. 8. Results for the statistical performance of the norm. predict imputation methods based on MAR, MCAR, and MNAR under 30% missingness based on MAE, 
RMSE, NRMSE, NSE, MD, R2, KGE, and VE. 

Z. Sa’adi et al.                                                                                                                                                                                                                                   



Applied Computing and Geosciences 20 (2023) 100145

14

Formal analysis, Data curation. Zafar Iqbal: Writing - review & editing, 
Software, Methodology, Formal analysis, Data curation. Mohammed 
Sanusi Shiru: Writing - review & editing, Software, Formal analysis, 
Data curation. Faizal Immaddudin Wira Rohmat: Writing - review & 
editing, Formal analysis, Data curation. Nur Athirah Mohamad: 
Writing - review & editing, Formal analysis, Data curation. Mohamad 
Faizal Ahmad: Writing - review & editing, Formal analysis, Data 
curation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 
Addi, M., Gyasi-Agyei, Y., Obuobie, E., Amekudzi, L.K., 2022. Evaluation of imputation 

techniques for infilling missing daily rainfall records on river basins in Ghana. 
Hydrol. Sci. J. 67, 613–627. https://doi.org/10.1080/02626667.2022.2030868. 

Al-Khwarizmi, P., Tunggal, I., Data, M., Lenyap, H., Terbaik, Y., Abdulraqeb, G., 
Saeed, A., Chuan, Z.L., Zakaria, R., Syahidah, W.N., Yusoff, W., Mohd, Salleh, Z., 
2016. Determination of the best single imputation algorithm for missing rainfall data 
treatment. J. Qual. Meas. Anal. JQMA 12, 79–87. 

Appiah-Badu, N.K.A., Missah, Y.M., Amekudzi, L.K., Ussiph, N., Frimpong, T., Ahene, E., 
2022. Rainfall prediction using machine learning algorithms for the various 
ecological zones of Ghana. IEEE Access 10, 5069–5082. https://doi.org/10.1109/ 
ACCESS.2021.3139312. 

Fig. 9. Comparative assessment based on PDF for monthly rainfall for the selected imputed dataset for St. 1538117, St. 1738131, and St. 1933151 under all 
missingness. 

Z. Sa’adi et al.                                                                                                                                                                                                                                   

https://doi.org/10.1080/02626667.2022.2030868
http://refhub.elsevier.com/S2590-1974(23)00034-4/sref2
http://refhub.elsevier.com/S2590-1974(23)00034-4/sref2
http://refhub.elsevier.com/S2590-1974(23)00034-4/sref2
http://refhub.elsevier.com/S2590-1974(23)00034-4/sref2
https://doi.org/10.1109/ACCESS.2021.3139312
https://doi.org/10.1109/ACCESS.2021.3139312


Applied Computing and Geosciences 20 (2023) 100145

15

Arguez, A., Vose, R.S., 2011. The definition of the standard WMO climate normal: the 
key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. https://doi. 
org/10.1175/2010BAMS2955.1. 

Balcha, S.K., Hulluka, T.A., Awass, A.A., Bantider, A., Ayele, G.T., 2023. Comparison and 
selection criterion of missing imputation methods and quality assessment of monthly 
rainfall in the Central Rift Valley Lakes Basin of Ethiopia. Theor. Appl. Climatol. 154, 
483–503. https://doi.org/10.1007/S00704-023-04569-Z/FIGURES/4. 

Burhanuddin, S.N.Z.A., Deni, S.M., Shaadan, N., 2021. Controlled Sampling Approach in 
Improving Multiple Imputation for Missing Seasonal Rainfall Data. https://doi.org/ 
10.21203/rs.3.rs-679692/v1. 

Canchala-Nastar, T., Carvajal-Escobar, Y., Alfonso-Morales, W., Cerón, W.L., Caicedo, E., 
2019. Estimation of missing data of monthly rainfall in southwestern Colombia using 
artificial neural networks. Data Brief 26, 104517. https://doi.org/10.1016/J. 
DIB.2019.104517. 

Carvalho, J.R.P. De, Monteiro, J.E.B.A., Nakai, A.M., Assad, E.D., 2017. Model for 
multiple imputation to estimate daily rainfall data and filling of faults. Rev. Bras. 
Meteorol. 32, 575–583. https://doi.org/10.1590/0102-7786324006. 

Che Ros, F., Tosaka, H., Sidek, L.M., Basri, H., 2016. Homogeneity and trends in long- 
term rainfall data, Kelantan River Basin, Malaysia. Int. J. River Basin Manag. https:// 
doi.org/10.1080/15715124.2015.1105233. 

Chen, L., Xu, J., Wang, G., Shen, Z., 2019. Comparison of the multiple imputation 
approaches for imputing rainfall data series and their applications to watershed 
models. J. Hydrol. 572, 449–460. https://doi.org/10.1016/J. 
JHYDROL.2019.03.025. 

Chhin, R., Yoden, S., 2018. Ranking CMIP5 GCMs for model ensemble selection on 
regional scale: case study of the indochina region. J. Geophys. Res. Atmos. 123, 
8949–8974. https://doi.org/10.1029/2017JD028026. 

Chiu, P.C., Selamat, A., Krejcar, O., 2019a. Infilling missing rainfall and runoff data for 
Sarawak, Malaysia using Gaussian mixture model based K-nearest neighbor 
imputation. Lect. Notes Comput. Sci. 27–38. https://doi.org/10.1007/978-3-030- 
22999-3_3/COVER, 11606 LNAI.  

Chiu, P.C., Selamat, A., Krejcar, O., Kuok, K.K., 2019b. Missing rainfall data estimation 
using artificial neural network and nearest neighbor imputation. Front. Artif. Intell. 
Appl. 318, 132–143. https://doi.org/10.3233/FAIA190044. 

Chiu, P.C., Selamat, A., Krejcar, O., Kuok, K.K., Herrera-Viedma, E., Fenza, G., 2021. 
Imputation of rainfall data using the sine cosine function fitting neural network. Int. 
J. Interact. Multimed. Artif. Intell. 6, 39–48. https://doi.org/10.9781/ 
IJIMAI.2021.08.013. 

Chivers, B.D., Wallbank, J., Cole, S.J., Sebek, O., Stanley, S., Fry, M., Leontidis, G., 2020. 
Imputation of missing sub-hourly precipitation data in a large sensor network: a 
machine learning approach. J. Hydrol. 588, 125126 https://doi.org/10.1016/J. 
JHYDROL.2020.125126. 

Dayal, D., Pandey, A., Gupta, P.K., Himanshu, S.K., 2023. Multi-criteria evaluation of 
satellite-based precipitation estimates over agro-climatic zones of India. Atmos. Res. 
292, 106879 https://doi.org/10.1016/J.ATMOSRES.2023.106879. 

de Carvalho, J.R.P., Almeida Monteiro, J.E.B., Nakai, A.M., Assad, E.D., 2017. Model for 
multiple imputation to estimate daily rainfall data and filling of faults. Rev. Bras. 
Meteorol. https://doi.org/10.1590/0102-7786324006. 

Dewan, A., Shahid, S., Bhuian, M.H., Hossain, S.M.J., Nashwan, M.S., Chung, E.S., 
Hassan, Q.K., Asaduzzaman, M., 2022. Developing a high-resolution gridded rainfall 
product for Bangladesh during 1901–2018. Sci. Data 91 (9), 1–16. https://doi.org/ 
10.1038/s41597-022-01568-z, 2022.  

Enders, C.K., 2010. Applied Missing Data Analysis. Guilford Press. 
Erdal, H.I., Karakurt, O., 2013. Advancing monthly streamflow prediction accuracy of 

CART models using ensemble learning paradigms. J. Hydrol. 477, 119–128. https:// 
doi.org/10.1016/J.JHYDROL.2012.11.015. 

Fakhruddin Kamaruzaman, I., Zawiah, W., Zin, W., Ariff, M., 2017. A comparison of 
method for treating missing daily rainfall data in Peninsular Malaysia. Malaysian J. 
Fundam. Appl. Sci. 13, 375–380. https://doi.org/10.11113/MJFAS.V13N4-1.781. 

Farzandi, M., Rezaee-Pazhand, H., 2021. Introduction of MICE method for imputation 
missing meteorological data and comparison by regression; case study: 130 Years of 
monthly temperature in mashhad, jask and bushehr. J. Water Sustain. Dev. 8, 31–42. 
https://doi.org/10.22067/JWSD.V8I3.2104.1038. 

Gorshenin, A.K., Martynov, O.P., 2019. Hybrid extreme gradient boosting models to 
impute the missing data in precipitation records. Inform. i ee Primen. 13, 34–40. 
https://doi.org/10.14357/19922264190306. 

Hamzah, F.B., Hamzah, F.M., Razali, S.F.M., Samad, H., 2021. A comparison of multiple 
imputation methods for recovering missing data in hydrological studies. Civ. Eng. J. 
7, 1608–1619. https://doi.org/10.28991/CEJ-2021-03091747. 

Hanaish, I.S., Ibrahim, K., Jemain, A.A., 2013. On the applicability of bartlett lewis 
model: with reference to missing data. Mat. Malaysian J. Ind. Appl. Math. 29, 53–65. 
https://doi.org/10.11113/MATEMATIKA.V29.N.359. 

Hyndman, Donald, Hyndman, David, 2016. Natural Hazards and Disasters. Cengage 
Learning. 

Jahan, F., Sinha, N.C., Rahman, Md Mahfuzur, Rahman, Md Morshadur, Mondal, M.S.H., 
Islam, M.A., 2019. Comparison of missing value estimation techniques in rainfall 
data of Bangladesh. Theor. Appl. Climatol. 136, 1115–1131. https://doi.org/ 
10.1007/S00704-018-2537-Y/FIGURES/2. 

Jakhar, Y.K., Mishra, N., Poonia, R., 2018. Predication accuracy analysis of data mining 
algorithms on meteorological data using R programming. SSRN Electron. J. https:// 
doi.org/10.2139/SSRN.3166223. 

Kalteh, A.M., Hjorth, P., 2009. Imputation of missing values in a precipitation–runoff 
process database. Nord. Hydrol 40, 420–432. https://doi.org/10.2166/ 
NH.2009.001. 

Kamaruzaman, I.F., Zawiah, W., Zin, W., Ariff, M., 2017. A comparison of method for 
treating missing daily rainfall data in Peninsular Malaysia. Malaysian J. Fundam. 
Appl. Sci. 13, 375–380. https://doi.org/10.11113/MJFAS.V13N4-1.781. 

Lai, W.Y., Kuok, K.K., 2019. A study on bayesian principal component analysis for 
addressing missing rainfall data. Water Resour. Manag. 33, 2615–2628. https://doi. 
org/10.1007/S11269-019-02209-8/FIGURES/7. 

Latrubesse, M., de Farias, K.M.S., Bayer, M., Duarte, L.V., Formiga, K.T.M., Costa, V.A.F., 
2022. Comparison of methods for filling daily and monthly rainfall missing data: 
statistical models or imputation of satellite retrievals?, 2022 Water 14, 3144. 
https://doi.org/10.3390/W14193144. Page 3144 14.  

Martínez, J.L.M., Horta-Rangel, F.A., Segovia-Domínguez, I., Morua, A.R., Hernández, J. 
H., Martínez, J.L.M., Horta-Rangel, F.A., Segovia-Domínguez, I., Morua, A.R., 
Hernández, J.H., 2019. Analysis of a new spatial interpolation weighting method to 
estimate missing data applied to rainfall records. Atmósfera 32, 237–259. https:// 
doi.org/10.20937/ATM.2019.32.03.06. 

Milo, E., Ekonomi, L., Margo, L., Donefski, E., 2019a. Seasonal means estimation and 
missing data in real data time series. Appl. Math. Sci. 13, 25–32. https://doi.org/ 
10.12988/ams.2019.812192. 

Milo, E., Ekonomi, L., Margo, L., Donefski, E., 2019b. Seasonal means estimation and 
missing data in real data time series. Appl. Math. Sci. 13, 25–32. https://doi.org/ 
10.12988/ams.2019.812192. 
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