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Abstract Hybrid nanofluids are widely used to improve the efficiency of a thermal system in many

aspects of engineering and science. Therefore, the current work is design to investigate the heat

transfer of Cu-Fe3O4 nanoparticles in water base Maxwell fluid flow over a cone, which is kept

in a porous medium. Additionally, the fluid experiences magnetic field and thermal radiation effects.

As a result, the impacts of volume fraction, porosity, magnetic field, and thermal radiation are

properly taken into account. It is observed that increasing temperature time relaxation with con-

stant temperature fractional derivative decreases the thermal gradient, whereas increasing temper-

ature fractional derivative parameter with constant time relaxation increases the thermal gradient.

Moreover, adding 1% Cu-Fe3O4 increases the heat transfer rate of the fluid up to 1.13% and 1.24%

when Rd ¼ 0 and Rd ¼ 0:2, respectively. On the other hand, the heat transfer rate of Maxwell fluid

decreases up to 0.5% in the presence of a magnetic field specifically consideringM ¼ 2 without ther-

mal radiation.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A study of heat transfer analysis is one of the most important
studies in fluid dynamics for engineers due to its almost univer-

sal application to various branches of science and engineering.
The term ”heat transfer” refers to the transfer of energy
between regions caused by the random motion of atoms and
molecules. It is important to keep in mind that convection,
conduction, and radiation are the basic mechanisms of heat

transfer in a heat transfer analysis. Among the methods of heat
transfer, convection is one of the most important and is classi-
fied into natural convection (free convection) and forced and

mixed convection. Convection occurs when a temperature gra-
dient induces a density difference in the fluid, resulting in the
fluid’s flow. As a result of their poor heat transfer properties,

these conventional fluids are required to be reprocessed in
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Nomenclature

ðu; vÞ velocity components in (x; y) direction
ðx; yÞ cartesian coordinates
C1 � C6 nanofluid constants
B0 magnetic field strength
Cp specific heat capacity

g gravitational accelration
Gr thermal Grashof number
K non-dimensional porosity parameter

k thermal conductivity
k0 permiability of porous medium
kb absorption parameter

L reference length
M non-dimensional magnetic parameter
Nux Nusselt number
q heat flux

r radius of the cone
Rd non-dimensional thermal radiation
T temperature

t time
Pr Prandtl number

Greek Symbols

a fractional order

b fractional order

bT volumetric thermal expansion

Dt time step
Dx grid size in x direction
Dy grid size in y direction
k1 momentum relaxation time

k2 thermal relaxation time
l dynamic viscosity
m kinematic viscosity

q density
r electrical conductivity
rb Steafen Boltzman coefficient

u nanoparticles volume fraction

Subscripts/Superscripts

� non-dimensional
f base fluid

hnf hybrid nanofluid
i grid point in x direction
j grid point in y direction

k time level
nf nanofluid
s nanoparticles
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order to enhance their heat transfer properties when applied to

engineering and industrial applications. The use of nanoscale
particles, also called nanofluid, in the base fluid, was first intro-
duced by Choi and Eastman [1]. Recent studies have demon-

strated that the addition of solid nanoparticles can enhance
thermal conductivity and affect suspension viscosity by 10%.
In a study, the value thermophysical properties of nanofluids

usually depend on certain factors such as size, shape, particle
material, base fluid and concentration. They are the next gen-
eration of working fluids set to replace conventional fluids. It is

reported in [2] that nanofluid velocity can be quantified as the
sum of the relative velocity and the base fluid velocity. In addi-
tion, the thermophoresis and Brownian diffusion mechanisms
are an integral part of the model provided by Buongiorno [2].

Several researchers have considered both models when analyz-
ing convective transport in nanofluids. For instance, [3] consid-
ered the heat transfer flow of viscoelastic Walters’-B nanofluid

through a circular cylinder by using Keller -box technique in
convective and constant heat flux. Mat Noor et al. [4] exam-
ined magnetohydrodynamics (MHD) squeezing flow of Jeffrey

nanofluid with a chemical reaction in a horizontal channel.
Later, Asjad et al. [5] discussed and extended Mat Noor
et al. [4] work by considering the same effect on the exponen-
tial stretching sheets. Hanif [6] investigated and analyze the

heat and mass transfer in kerosene-based c-oxide nanofluid
using the finite difference method for cooling applications.
Heat transfer over a stretching sheet on the MHD stagnation

point flow of a nanofluid with radiation effects is analyzed
by Ghasemi and Hatami [7]. References to nanofluids can
widely be found in [8–11]. The latest development in nanofluid

technology is hybrid nanofluids, in which suspended particles
represent a complex combination of multiple nanoparticles.

Hybrid nanofluids’ purpose is to rectify mono nanofluids’
shortcomings by using a contrasting property additive to over-
come their disadvantages. To improve heat transfer distinctive,

hybrid nanofluids are being utilized to balance the advantages
and disadvantages of individual suspensions, attributed to
their good aspect ratio, improved thermal network, and syner-

gistic effects. In conclusion, the composite nanoparticles in
hybrid nanofluids significantly increase thermal conductivity.
A major challenge for practical applications may be long-

term stability, production process, selection of appropriate
nanomaterials combinations to create synergistic effects, and
the cost of nanofluids. Therefore, it is a popular research topic
to analyze heat transfer characteristics in hybrid nanofluids.

Thirumalaisamy et al. [12] Compare the heat transfer of
Fe3O4-MWCNT-water and Fe3O4-MWCNT-kerosene hybrid
nanofluids using the non-Fourier heat flux mode. Hanif et al.

[13] studied widely the applications of magneto–hybrid nano-
fluid flow past an absorptive cone in material engineering.
Later, Hanif et al. [14] extended their work [13] and analyzed

the hybrid model of Cu–Fe3O4/water nanofluid with PHF/
PWT. However, Mohamed et al. [15] considered heat transfer
of different base fluids, which is Ag-Al2O3/water hybrid nano-
fluid past a stretching sheet with Newtonian heating at a stag-

nation point. Ramzan et al. [16] presented a hybrid nanofluid
model on an oscillating disk and studied the factor of nanopar-
ticle shape and surface reaction. Gamachu and Ibrahim [17]

extended the work of Ramzan et al. [16] by exploring the vis-
coelastic hybrid nanofluid model through a rotating disk. Shah
et al. [18] presents the significance of suction and dual stretch-

ing on the dynamics of two different types of hybrid nanoflu-



Fig. 1 Graphical representation.
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ids. More discussion on hybrid nanofluid can be found in [19–
21] Meanwhile, non-Newtonian fluids studies have generated
considerable interest in recent years. Consequently, they are

extensively used in industrial products. This has led to several
non-Newtonian liquid models being proposed as a result. In
addition to these models, the Maxwell fluid model has drawn

the most attention. There are several constitutive equations
that cannot be applied to such fluids. Due to the diversity of
these fluids, various constitutive equations are proposed. Dif-

ferent types of non-Newtonian fluids can be divided into three
categories: integral, rate, and differential. Non-viscous fluids
are among the rate types of Maxwell fluid. Hanif et al.
[22,23] investigated numerically the heat transfer of fractional

Maxwell fluid past a vertical plate. Vieru et al. [24] investigated
free convection flow of viscous fluids in a circular cylinder due
to a generalized fractional thermal transport. Saqib et al. [25]

extended the work and discussed heat transfer in the MHD
flow of Maxwell fluid via the fractional Cattaneo–Friedrich
model. As part of their research, Al Nuwairan et al. [26] inves-

tigated the numerical solution of Maxwell fluid with heat
transfer through a porous medium as well as Soret-Dufour
effects and thermophoretic particle deposition. It has been

demonstrated by Fetecau et al. that the flow of Maxwell fluid
through a porous plate channel can be numerically analyzed
[27], while Loganathan et al. [28] have examined MHD flow
of thermally radiative Maxwell fluid past a stretched sheet with

Cattaneo–Christov dual diffusion. Zhang et al. [29] presented a
study on memory effects on a conjugate buoyant convective
transport of nanofluids. It should also be noted that Sadiq

et al. [30] have developed some extensions of previous solu-
tions to fractional Maxwell fluids. Some fruitful discussions
on Maxwell fluid can be found in [31–35]. According to prior

study, the flow of fractional Maxwell hybrid nanofluid past a
permeable cone has not yet been studied. This study article
considers the flow of fractional Maxwell hybrid nanofluid

under the influence of magnetic field and thermal radiation
to close this research gap. The fractional constitutive equations
of Friedrich and Cattaneo for shear stress and heat conduc-
tion, respectively, are used in the mathematical modelling of

the flow phenomena. The problem is approached for numerical
solutions using the L1 algorithm and Crank-Nicolson numer-
ical methods. The findings are displayed in graphs, and it is

discussed how the relevant flow parameters affect fluid velocity
and temperature distribution.

2. Mathematical formulation

Consider a two-dimensional unsteady flow of an incompress-
ible Maxwell hybrid nanofluid over a vertical permeable cone.

The x-axis is considered along the cone and the y-axis is
assumed to be normal to the cone, see Fig. 1. A magnetic field
of strength B0 is applied in the y direction. Using boundary
layer assumptions and Boussinesq approximations, the conti-

nuity and momentum equations are given as [19]:

@

@x
ruð Þ þ @

@y
rvð Þ ¼ 0; ð1Þ

qhnf

@u

@t
þ u
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þ v
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Here r is the radius of the cone, q is the density, sxy is the shear
stress, l is the dynamic viscosity, k0 is the permeability, r is the
electrical conductivity, B0 refers to applied magnetic strength,

g is the gravitational acceleration, and bT is the thermal expan-
sion, T is the temperature, and the subscript hnf refers to
hybrid nanofluid. Furthermore, the mathematical expressions

of qhnf; lhnf; rhnf and qbTð Þhnf are provided by [13,14,18]:

qhnf ¼ 1� us2

� �
qnf þ us2

qs2
; lhnf ¼ lf

1�us1ð Þ2:5 1�us2ð Þ2:5 ;
rhnf
rnf
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ð3Þ

The thermal and physical properties of water and nanoparti-
cles are presented in Table 1. The stress component sxy is

defined by the following relation [22]
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; ð4Þ

where k1 denotes relaxation time, a is the fractional order, and

@a
t is the Caputo fractional derivative of order a, defined as [31]
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The Gamma function Cð�Þ is

CðnÞ ¼
Z
R

gn�1e�gdg; 8n 2 C; RðnÞ > 0: ð6Þ

Evaluating sxy form Eqs. (2) and (4) leads us to
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Assuming that the effects of viscous dissipation are minimal,
then the energy equation including thermal radiation is [36]



Table 1 Thermo-physical properties of water nanoparticles [10,12].

Materials q r bT Cp k

kgm�3 Sm�1 K�1 J(kgK)�1 W(mK)�1

Pure water 997.1 0.05 21�10�5 4179 0.613

Fe3O4 5200 2.5�104 1.3�10�5 670 6

Cu 8933 5.96�107 1.67�10�5 385 401
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qCp
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where qCp

� �
hnf

represents heat capacitance, q is the heat flux, qr

is radiative heat flux. The mathematical expressions of qCp

� �
hnf

and khnf are given as [13]

qCp

� �
hnf

¼ 1� us2

� �
qCp
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nf
þ us2

qCp
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s2
;

khnf
knf
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ks2�knfð Þ
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ks2�knfð Þ : ð9Þ

Furthermore, Rosseland approximation for qr is [31]

qr ¼ � 4rb

3kb

@T4

@y
; ð10Þ

where kb and rb denote the absorption and Stefan–Boltzmann
coefficients, respectively. The temperature difference T� T1
within the flow is assumed to be small. Consequently, the Tay-

lor approximation for T4 is (neglecting higher terms):

T4 ¼ T4
1 þ 4T3

1 T� T1ð Þ: ð11Þ
Moreover, the fractional Cattaneo heat flux [29,37] gives us
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Using Eqs. (10)-(12), in Eq. (8) gives us
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The assumed initial and boundary conditions are

u x; y; 0ð Þ ¼ 0; v x; y; 0ð Þ ¼ 0; T x; y; 0ð Þ ¼ T1;

u 0; y; tð Þ ¼ 0; T 0; y; tð Þ ¼ T1;

u x; 0; tð Þ ¼ 0; v x; 0; tð Þ ¼ 0; T x > 0; 0; tð Þ ¼ Tw;

u x;1; tð Þ ¼ 0; T x;1; tð Þ ¼ T1:

ð14Þ
3. Non-dimensional problem

Non-dimensional variables simplify the computing process by
allowing units of variables to be discarded. Therefore, a set of

non-dimensional parameters listed below are introduced [19]
x� ¼ x
L
; y� ¼ y

L
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mf

Grð Þ�1
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m2
f
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L2 Grð Þ12:
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Using non-dimensional parameters (15) in Eqs. (1), (7), (13)
and (14), we arrived at (removing the �):
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subject to initial boundary conditions:

u x; y; 0ð Þ ¼ 0; v x; y; 0ð Þ ¼ 0; T x; y; 0ð Þ ¼ 0;

u 0; y; tð Þ ¼ 0; T 0; y; tð Þ ¼ 0;

u x; 0; tð Þ ¼ 0; v x; 0; tð Þ ¼ 0; T x > 0; 0; tð Þ ¼ 1;

u x;1; tð Þ ¼ 0; T x;1; tð Þ ¼ 0:

ð19Þ

The nanofluid constants C1 � C6 represent nanofluid constant
coefficients defined as

Pr ¼ lCpð Þ
f
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; 1
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4. Physical quantities

The wall shear stress sw and Nusselt number Nux for the Max-
well fluid can be evaluate by following relations [22]

1þ ka1@
a
t

� �
sw ¼ lhnf

@u

@yy¼0

; 1þ kb2@
b
t

� �
Nux

¼ khnfx

kf Tw � T1ð Þ
@T

@y

� �
y¼0

: ð21Þ

The following non-dimensional forms are obtained using
parameters (15)

1þ ka1@
a
t

� �
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1=4

¼ C6x
@T

@y
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; ð22Þ

where sW ¼ swL2

mflf
.

5. Numerical procedure

The Crank-Nicolson approach is used to approximate the

integer-order derivatives and L1 algorithm of Caputo derivat-
ice is used to evaluate the fraction order derivatives of nonlin-

ear, coupled, partial differential Eqs. (16)-(18). If wk
1i;j
;wk

2i;j

� �
are the numerical solutions at xi; yj; tk

� �
with time step Dt

and mesh size Dx;Dyð Þ such that
tk ¼ kDt; k ¼ 0; 1; � � � ; n xi ¼ iDx; i ¼ 1; 2; � � � ; p and
yj ¼ jDy; j ¼ 1; 2; � � � ; q, then the derivatives can be approxi-

mated as follows [23]:

1. Integer-order derivatives using Crank-Nicolson method:
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2. fractional order derivative using L1 algorithm and

Crank-Nicolson method:

@aw1

@ta
’ Dt�a

2Cð2� aÞ wkþ1
1i;j

þ wk
1i;j

þ
Xk

m¼1

bmw
kþ1�m
1i;j

þ
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bmw
k�m
1i;j

" #
;

ð27Þ
where bm ¼ am � am�1ð Þ; am ¼ mþ 1ð Þ1�a �m1�a.

Using . Eqs. (23)-(27) in Eqs. (16)-(18) results in the systems
of linear equations which have been further solved in
MATLAB software. The time-step Dt and mesh sizes

Dx;Dyð Þ are taekn as: Dt ¼ 0:001;Dx ¼ 0:05, and Dy ¼ 0:05.
Following some preliminary investigation, ymax is determined
to be 9, which is far distant from the momentum and temper-

ature boundary layers.

6. Analysis of resutls

This section is intended to aid comprehension of explanation
of graphical depictions and discuss the theoretical aspects of
problem, including the Cu-Fe3O4 volume concentration, rela-
tion parameter, thermal radiation parameter, magnetic param-

eter, porosity parameter, and fractional-order derivative.

6.1. Temperature and velocity profiles

The purpose of Figs. 2–9, is to assess the influence of all con-
trolling factors/parameter on Maxwell fluid characteristics.
The influence of fractional parameter a on velocity patterns

has shown in Fig. 2. This figure reveals that the velocity pro-
files exhibit an decreasing tendency at the beginning level
and a increasing trend with higher fractional parameter values.

Physically, this is due to the fact that higher values of the frac-
tional parameter create resistance in the flow of maxwell
hybrid nanofluid, and thus the momentum of the fluid
decreases. Moreover, as a increases, the thickness of momen-

tum boundary layers decreases, consequently the velocity pro-
file declines prior to y ¼ 0:7. Fig. 3 displays an increase in the
velocity field as the relaxation parameter k1 is enlarged. As k1
increases, the velocity field widens, which increases the time
necessary to return to a normal condition. This can be physi-
cally explained as the time required for momentum flow to

occur after the velocity gradient is formed. Fig. 4 illustrates
the impact of u on velocity profiles. The velocity of hybrid
nanofluids decreases as the nanoparticle volume percentage
increases. This is physically plausible since the viscosity of

the hybrid nanofluid increased as u increased, resulting in a
reduction in the nanofluid velocity and thickness of momen-
tum barrier layer. In Fig. 5, the properties of velocity profiles

in the presence of the porosity parameter K for Maxwell
hybrid nanofluid are illustrated. A increase in velocity profiles
is caused by rising K values. This is plausible since a porous

media offers fluid flow without resistance. Consequently, as
seen in Fig. 5, large values of the K parameter increase fluid
velocity and momentum thickness of layer. The influence of

the magnetic parameter M on the velocity profiles of Maxwell
hybrid nanofluids is seen in Fig. 6. As the anticipated value of
M increases, the velocity of nanofluids drops. Because an
increase in M indicates an improvement in resistive force

(the Lorentz force), the velocity of the Maxwell hybrid nano-
fluid is decreased. The influence of the fractional parameter
b on the temperature profiles is seen in Fig. 7. The temperature

profiles exhibit an upward tendency for changes in the frac-
tional parameter b. For longer durations, the temperature pro-
files showed an increasing trend for higher values of b. When b
is raised, the thickness of thermal boundary layers increases,
reaching a maximum at b=0.9, which correlates to a rise in



Fig. 2 Effect of a on velocity field.

Fig. 3 Effect of k1 on velocity field.
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temperature profile performance. However, this impact

reverses for a shorter duration when fractional temperature
distributions are present. Fig. 8 demonstrates a drop in the
temperature profiles when the relaxation parameter k2 is
expanded. Physically, this is due to the fact that for large val-

ues of k2, the time required for heat flow to occur after the tem-
perature gradient is formed, therefore, the temperature profile

becomes smother. Fig. 9 depicts the variations in the tempera-
ture profile in relation to the radiation parameter Rd for Max-
well hybrid nanofluids. It is believed that an increase in Rd
factor causes a rise in temperature. Physically, the Rd factor

compares the input of heat exchange by conduction to thermal



Fig. 4 Effect of u on velocity field.

Fig. 5 Effect of K on velocity field.
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Fig. 6 Effect of M on velocity field.

Fig. 7 Effect of b on temperature distribution.
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Fig. 8 Effect of k2 on temperature distribution.

Fig. 9 Effect of Rd on temperature distribution.
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radiation transmission. Clearly, an increase in the radiation

parameter induces a rise in temperature. In addition, there is
a positive relationship between the Rd and the temperature
gradient at the plate’s surface. Consequently, the hybrid nano-
fluid has superior properties compared to the viscous fluid.
6.2. Physical quantities

The effects of porosity parameter with magnetic number and
velocity fractional derivative with time relaxation parameter

on wall shear stress are shown in Figs. 10 and 11, respectively.
It is easy to see that velocity gradients decrease with rising time



Fig. 10 Wall shear stress for distinct values of a and k1.

Fig. 11 Wall shear stress for

Fig. 12 Nusselt number for distinct values of b and k2.
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relaxation parameter and magnetic number but rise with
increasing the fractional derivative and the porosity parameter.
Figs. 12 and 13 depict the effects of the temperature fractional

derivative with the temperature time relaxation parameter and
the volume fraction parameter with the thermal radiation
parameter on the Nusselt number, respectively. It is easy to

see that increasing temperature time relaxation with constant
and temperature fractional derivative decreases thermal gradi-
ent, whereas increasing temperature fractional derivative

parameter with constant time relaxation increases thermal gra-
dient. Thermal radiation with a volume fraction parameter
exhibits the same Nusselt number behavior.

6.3. Particular cases

Tables 2–4, present specific numerical results for the various
cases of the considered problems in the hope that other

researchers and scientists working experimentally in this
distinct values of K and M.

Fig. 13 Nusselt number for distinct values of u and Rd.



Table 2 Shear stress and Nusselt number for Maxwell fluid when M ¼ 0.

a k1 b k2 k Rd sWGr�3=4 NuxGr
1=4

0.1 0.3 0.1 0.1 0.1 0.2 0.13911 0.48832

0.5 0.16128 0.48507

0.7 0.16731 0.48412

0.9 0.17074 0.48351

0.5 0.1 0.16594 0.48423

0.6 0.15704 0.48583

0.9 0.15398 0.48639

0.3 0.5 0.16435 0.53283

0.7 0.16794 0.59185

0.9 0.16987 0.61516

0.1 0.3 0.16044 0.4748

0.6 0.15987 0.46807

0.9 0.15953 0.46405

0.1 0.3 0.2304 0.50671

0.5 0.26179 0.51927

0.7 0.28069 0.5279

0.1 0 0.15769 0.52952

0.1 0.15959 0.50579

0.3 0.1628 0.46676

Table 3 Shear stress and Nusselt number for Maxwell fluid when Rd ¼ 0.

a k1 b k2 k M sWGr�3=4 NuxGr
1=4

0.1 0.3 0.1 0.1 0.1 2 0.12721 0.52976

0.5 0.14752 0.52684

0.7 0.15304 0.52598

0.9 0.15619 0.52544

0.5 0.1 0.15179 0.52609

0.6 0.14363 0.52752

0.9 0.14083 0.52802

0.3 0.5 0.15033 0.57854

0.7 0.15361 0.64224

0.9 0.15535 0.66684

0.1 0.3 0.14676 0.51577

0.6 0.14624 0.50852

0.9 0.14592 0.50419

0.1 0.3 0.1946 0.54043

0.5 0.2119 0.54622

0.7 0.22109 0.5495

0.1 0 0.15769 0.52952

4 0.1392 0.52474

8 0.12622 0.52166

Table 4 Shear stress and Nusselt number for Newtonian fluid.

k M Rd sWGr�3=4 NuxGr
1=4

0.1 2 0.2 0.16948 0.60449

0.3 0.22927 0.62647

0.5 0.25197 0.63641

0.7 0.26418 0.64218

0.1 0 0.18213 0.60867

4 0.15923 0.60128

8 0.14343 0.59665

2 0 0.16659 0.6602

0.1 0.16812 0.63047

0.3 0.17069 0.58154
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domain of research will compare their results in order to vali-
date their experimental results. Furthermore, if they achieve
similar results to ours, the cost of the experiments can be

reduced.

7. Conclusions

This study evaluates the influence of Cu-Fe3O4 nanomaterials,
thermal radiation, and fractional derivatives on the flow and
heat transmission properties of Maxwell Hybrid nanofluid.

Using the Caputo derivative and Crank-Nicolson approach,
the fractional Maxwell hybrid nanofluid model is solved. The
outcomes of many relevant factors are examined numerically

via graphs and physically discussed. The following are the
key points obtained from this study:

� The velocity (temperature) profiles demonstrate that for ris-
ing values of aðbÞ, the diminishing (increasing) behavior is
most pronounced a ¼ 0:9ðb ¼ 0:9Þ over a longer period of
time.

� The velocity (temperature) profiles demonstrate an increas-
ing (decreasing) trend for rising k1ðk2Þ values.

� The velocity profiles decrease when the magnetic and vol-

ume fraction parameters are increased.
� The velocity profile reduced by increasing the intensity of
the magnetic field.

� The thickness of the thermal boundary layer increases when
the radiation parameter is increased.

� When the volume fraction parameter value is small (large),
the velocity increases (decreases).
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