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A B S T R A C T   A R T I C L E   I N F O 

Wetland water is opted as the source of domestic water 
supply when the availability of clean fresh water is scarce. 
Wetland water requires proper treatment due to the high 
concentration of organic matter and high salinity, particularly 
in the dry season. This research aims to synthesize, 
characterize, and investigate the performance of 
polyvinylidene fluoride (PVDF)-TiO2 hollow fiber membrane 
for wetland saline water desalination via pervaporation. The 
PVDF-TiO2 hollow fiber membranes were fabricated through 
the dry wet spinning method under various air gaps (10, 15, 
and 20 cm). Then, the resulting membranes were tested in a 
pervaporation process at temperatures of 25, 40, and 60°C. 
Results show that the incorporation of TiO2 into the PVDF 
matrix imparted hydrophilicity properties into the resultant 
membranes. The presence of TiO2 was confirmed by the TiO2 
stretching vibration at 1640 cm-1 (FTIR) and the TiO2 phase at 
diffraction peaks at 25.5 and 37°. The membranes exhibited 
the highest water flux (7.48 kg/m2.h) and salt rejection (> 
99.5%) at 40°C. Overall, the developed PVDF-TiO2 hollow 
fiber membranes showed encouraging results and 
demonstrated their effectiveness for the desalination of 
wetland saline water. 
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1. INTRODUCTION 
 

 South Kalimantan-Indonesia is located in 
the Southern part of Borneo, with a 
population of  ~4.3 million, dominantly 
covered by tropical. The wetland water is 
commonly used for domestic usage in 
remote coastal areas and households that 
are yet to receive clean water from the 
municipal water supply. Fundamentally, 
direct consumption of wetland water is not 
advisable because it has poor quality, and 
frequently it becomes saline during the dry 
season (Elma, Mustalifah et al., 2020; Elma, 
Riskawati et al., 2018; Lestari et al., 2020; 
Rahma, Elma, Mahmud, Irawan et al., 2019). 
Wetland saline water contains high salt 
concentrations of 0.3-3.2 wt% NaCl, which 
are almost equal to brackish and seawater 
salt concentrations (Rahma, Elma, Rampun, 
et al., 2020). Hence, a simple yet versatile 
treatment is required.  

Different types of treatments have been 
explored for wetland saline water such as 
pervaporation, ultrafiltration, and 
coagulation (Elma, Rahma et al., 2020; 
Mahmud et al., 2020; Rampun, Elma, 
Syauqiah et al., 2019). These treatments 
enable to remove natural organic matter 
(NOM) and salinity (Elma, Bilad et al., 2022; 
Elma, Ghani et al., 2022; Elma, Mujiyanti et 
al., 2020; Elma, Pratiwi et al., 2022; Elma, 
Rahma et al., 2022; Elma, Rahma et al., 2020; 
Mat Nawi et al., 2022; Nawi et al., 2020; 
Rahma, Elma, Aliah, et al., 2022; Rahma, 
Elma, Pratiwi et al., 2020; Rahma, Elma, 
Rampun et al., 2020; Satria Anugerah et al., 
2022). Among these treatments, the 
pervaporation process provides interesting 
features of less thermal energy consumption 
compared to membrane distillation because 
it only requires vacuum conditions (Rampun, 
Elma, Rahma, et al., 2019). Previous studies 
employed inorganic membranes based on 
silica materials and removed up to 60% of 
NOM from wetland saline water (Elma et al., 
2023; Maulida et al., 2023; Pratiwi et al., 
2023; Rahma et al., 2023; Sari et al., 2023). 

The materials could operate with minimum 
issues of membrane scaling and fouling 
(Elma, Mujiyanti et al., 2020; Elma, Rampun 
et al., 2020). 

Polyvinylidene fluoride (PVDF) is a 
commercial polymer typically used for the 
fabrication of ultrafiltration and 
microfiltration membranes but has been 
used limitedly for water desalination (Li et al., 
2017). PVDF polymer is desirable since it 
provides (1) good chemical resistance, (2) 
chemical stability; (3) temperature stability; 
and (4) mechanical strength (Deshmukh & Li, 
1998; Shi et al., 2013). PVDF has been 
explored for desalination applications due to 
its high selectivity to reject salt content (Fan 
& Peng, 2012). However, its inherent 
hydrophobic properties may cause fouling 
when used for the traditional pressure-
driven filtration processes.  

The application of TiO2 as an additive in 
polymeric membranes has been reported to 
enhance the membrane properties, i.e. 
selectivity, permeability, and physical 
strength, whilst reducing the membrane 
fouling propensity (Dzinun et al., 2016). TiO2 
has been chosen due to its low-cost, non-
toxic, and commercially available.  It reduces 
the hydrophobicity and imposes anti-fouling 
properties on the resultant membranes 
(Parvizian et al., 2020; Sun et al., 2020). 
However, those resultant membrane 
properties were found to be dependent on 
the membrane’s fabrication method. For 
instance, PVDF-TiO2 hollow fiber membranes 
fabricated using a wet-spinning method had 
a strong interaction between polymeric and 
inorganic networks due to the uniform 
dispersion of TiO2 within the polymeric 
matrix. The incorporation of TiO2 into the 
polymeric matrix increased the average pore 
size compared to the pristine PVDF 
membrane (Yu et al., 2009).  

The dry-wet spinning method is known in 
membrane fabrication because it has specific 
benefits such as simplicity, shortening time, 
and producing asymmetric cross-section 
structures. In addition, the effect of air gap in 
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the dry-wet spinning method has been 
reported in previous studies. The 
morphological analysis of PVDF membranes 
prepared under various air gaps (10, 20, 30 
cm) was investigated, that the air gap 
affected the resulting membrane properties 
such as finger-like structure, membrane 
roughness, pore size distribution, porosity, 
hydrophobicity, and tensile strength. Khulbe 
et al. (2007) applied different air gaps from 
10 to 90 cm and found their effect on the 
membrane roughness. They found different 
roughness between the inner and outer 
surfaces of the hollow fiber membrane. The 
air gap significantly affected the water flux 
membrane as well. The water flux increased 
at higher air gaps, leading to an increase in 
membrane pore size.  

Li et al. (2017) investigated the 
performance of the PVA/PVDF membrane in 
the pervaporation desalination process at 
different operating temperatures (50-90°C) 
and feed salinities (0-250 g/L NaCl). The 
water flux was at 8.6 L/m2h for 100 g/L NaCl 
at 80°C. The loss of water flux occurred when 
treating a high solute concentration of 250 
g/L NaCl. The decline in water flux was mainly 
attributed to the concentration polarization 
during the pervaporation process. Such 
findings concluded that the feed 
temperature and salinity concentration were 
crucial parameters in evaluating the 
pervaporation performance. In other work, a 
composite hollow fiber membrane was 
synthesized by blending PVA and nano-TiO2. 
Interestingly, the membrane could not reject 
NaCl and Na2SO4 (inorganic salt) in the feed 
solution because of the Donnan effect 
between the hydroxyl group on the 
composite membrane surface with similar 
ionic states (Li et al., 2014). 

To our knowledge, the desalination of 
wetland saline water using PVDF/TiO2 hollow 
fiber membranes through pervaporation has 
not yet been reported. This study aims to 
synthesize, characterize, and investigate the 
performance of PVDF-TiO2 hollow fiber 
membranes for wetland saline water 

desalination via pervaporation. The 
membranes were synthesized using the dry-
wet spinning method at various air gaps (10, 
15, 20 cm) to modulate the resultant 
membrane properties. 

2. METHODS 
2.1. Chemicals and Materials 

Wetland saline water was taken from 
Muara Halayung village, Banjar District, 
South Kalimantan-Indonesia in August 2020 
during the dry season. PVDF (Kynar 760 
powder series) was selected as the base 
polymer, TiO2 (Merck) as the additive, 
Dimethylacetamide (DMAc, QReC) and 
ethanol as the solvent, demineralize water as 
the non-solvent, while epoxy resin (E30CL, 
Loctite Corporation, USA) as the module 
potting agent. All chemicals, otherwise 
clearly specified, were used as analytical 
grade reagents. 

2.2. Step-By-Step Method for Membrane 
Synthesis and Characterization  

The synthesis of PVDF-TiO2 hollow fiber 
membranes was done according to our 
earlier works (Kamaludin et al., 2019), as 
detailed in the step-by-step method as 
follows. PVDF polymer and TiO2 were dried in 
an oven at 50°C for 24 h to remove the 
moisture. Approximately 21 g of PVDF 
polymer was added into 152 mL of DMAc 
solution. The mixture was stirred at 530 rpm 
at 70oC until homogeneous. Then, 6 g of TiO2 
powder was added to the mixture and 
continuously stirred for 24 h. The resultant 
dope solution was then cooled to room 
temperature and degassed in an ultrasonic 
water bath for 60 min. Finally, the spinning of 
hollow fiber was performed by loading the 
degassed dope solution into the dope 
reservoir through a syringe pump and 
extruded by spinneret at an extrusion rate of 
26 mL/min. The air gap distances were varied 
by 10, 15, and 20 cm during the spinning 
process. The resultant membranes were 
characterized using Scanning Electron 
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Microscope (SEM) analysis, contact angle, 
and Fourier Transform InfraRed (FTIR). 

2.3. How to Evaluate the Pervaporation 
Performance 

The performance of the PVDF-TiO2 hollow 
fiber membrane was tested in the 
pervaporation set-up as illustrated in Figure 
1. The performance was assessed in the 
forms of permeate flux, salt rejection, and 
organic matter rejection. The feed solution’s 
temperature was varied between 25°C (room 
temperature) to 60°C at a fixed 
pervaporation duration of 20 minutes. 
Permeate conductivity (representing the 
solute concentration) and the absorbance of 
UV254 (representing the NOM concentration) 
were measured using a conductivity meter 
and UV-Vis spectrophotometer, respectively. 
The membrane performance was 
determined using the equation below:  

𝐹 =
𝑚

(𝐴 ∆𝑡)
                     (1) 

𝑅 =
(𝐶𝑓 − 𝐶𝑝)

(𝐶𝑓)
× 100% 

(2) 

Where 𝐹 is permeate flux (kg/m2.h), m is the 
mass of permeate (kg) retained in the cold 
trap, A is the surface-active area (m2), Δt is 
the time measurement (h), 𝑅 is rejection (%), 
Cf and Cp are the feed and permeate 
concentration (wt%) of solute or organic 
matter. 

3. RESULTS AND DISCUSSION 
3.1. Characteristics of Wetland Saline Water 

The wetland saline water naturally formed 
a cloudy brown color caused by the 
appearance of NOM, as shown in Figure 2. 
The NOM also represents a soluble and 
insoluble material that directly affects the 
water quality (Dayarathne et al., 2021). The 
presence of NOM can be proven by using the 
UV254 analysis. Table 1 shows the inherent 
water quality of the wetland saline water 
used in this study. The pH of wetland saline 
water was around 6.6, still within the WHO 
standard limit (6.5-8). However, the 
conductivity and the TDS parameters were 
higher than the WHO standard; thus, the 
wetland saline water required further 
treatment before could be consumed. 

 

Figure 1. Illustration of pervaporation setup used for evaluating the membrane 
performance. 
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Table 1. The inherent water quality of wetland saline water taken in August 2020 at Muara 
Halayung village (GPS location: -3.479779, 114.621480). 

Parameters Unit 
Weeks 

Average Standard 
I II III IV 

pH - 6.67 6.66 6.64 6.66 6.66 6.5 – 8 
Conductivity ms/cm 9.35 9.34 8.79 8.56 9.01 4 mS/cm 
Total Dissolved Solid mg/L 5400 5370 5365 5360 5373 500 
UV254 1/cm 0.315 0.310 0.305 0.295 0.306 - 

 

 

Figure 2. The sampling location (attached photograph picture) and the wetland saline water 
samples used as the feed for the pervaporation. 

 

3.2. Membrane characteristics 

SEM was used as a tool to analyze the 
surface and cross-section microstructure and 
morphologies of the resultant PVDF-TiO2 
membranes. Step-by-step analysis of the 
membrane microstructure based on the 
obtained SEM images is discussed as follows. 
Based on Figure 3 (a-c), the cross-section 
images of the membrane can be observed. It 
has a macro void that resembles a finger-like 
structure combined with a sponge-like 
structure.  It is a type of asymmetric pore that 
is formed by the phase inversion method 
(Kingsbury & Li, 2009; Wang et al., 2016).  

The macro void structures were formed 
close to the inner and outer membrane 
surfaces. The sponge-like pores consisted of 
an interconnected network type and a 
closed-cell type within the entire membrane 

structure. Such structure formation was 
attributed to the exchanging process 
between non-solvent and strong solvents 
during the phase separation as reported 
earlier (Tan & Rodrigue, 2019).  

The white spots visible in Figure 3(d), 
proved the presence of TiO2 embedded as 
part of the membrane matric. The presence 
of TiO2 reduced the formation of finger-like 
pores massively, as discussed elsewhere 
(Kamaludin et al., 2019). TiO2 presence 
increases the viscosity of a dope polymer 
solution hence altering the path of polymer-
solvent-nonsolvent compositions during the 
phase inversion process. The aggregation of 
TiO2 particles led to a rougher membrane 
surface for the PVDF-TiO2 membrane 
compared to the pristine PVDF membrane, as 
also found by others (Sakarkar et al., 2020). 
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Figure 3.  SEM images of the cross-section (a1-c1 and a2-c2) and surface (a3-c3), showing 
the microstructure and morphology of PVDF-TiO2 membranes. 

The air gap is one of the primary variables 
that influence membrane morphology. The 
gravity forces of the falling film during the 
spinning process imposed elongational stress 
on the hollow fiber membrane in the air gap 
region during the dry-wet spinning process. 
As the air gap increased, the membrane 
tended to elongate, followed by a decrease 
in diameter and fiber thickness. Figure 3 (a1-
c1) shows the outer diameter (OD) of the 
membranes were 2010, 1980, and 1740 µm 
for air gaps of 10, 15, and 20 cm, respectively. 
Meanwhile, the inner diameter (ID) of the 
membranes were 1390, 1380, and 1170 µm 
for the air gaps of 10, 15, and 20 cm, 
respectively. Each membrane with variations 
of air gap has a thickness of 620, 600, and 570 
nm. Similar results were also found by Okubo 
et al. (1991) and Abidin et al. (2020).  

The shortest air gap distance produced the 
thickest membrane with the largest OD and 
the smallest ID attributed to the effect of die 

swell in the membrane polymers. Die swell 
occurred because the material had elasticity 
(i.e. polymers), and experienced extrusion on 
the die channel when flew out through the 
spinneret. After that, the polymers instantly 
swell because of their viscoelasticity 
properties (Peng et al., 2008). Such findings 
prove that the effect of gravity force on air 
gap impacts polymer deformation during the 
dry-wet spinning process (Chung et al., 
1999).  

The polymer has strong intermolecular 
interactions. At a certain level, it only 
deformed and did not break the interactions 
between molecules under stress. This 
deformation caused the molecules in the 
polymer to find a new balance to maintain 
the intermolecular interactions (Khayet, 
2003). Therefore, it is possible to a form 
hollow fiber membrane with a smaller 
diameter and thickness by increasing the air 
gap. 
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The air gap does not only affect the 
dimensions of the membrane but also affects 
the structure formed in the membrane 
matrix. Smaller air gaps tend to form finger-
like macro voids. This kind of macro void is 
highly undesirable because it imparts a low 
mechanical strength in the resultant 
membrane. As the air gap increases, the 
macro void changes from finger-like to 
sponge-like. This type is more desirable and 
has better mechanical properties. Sponge-
like structures have a smaller void volume 
than finger-like structures (Gao, 2017). The 
membrane structure was denser in the more 
significant air gap than the smaller air gap as 
illustrated in Figure 3. In summary, the 
membrane morphology was affected by two 
main mechanisms; a) the orientation of the 
molecules on the membrane and elongation 
stress due to gravity effect on the air gap, and 
b) shear stress and elongation stress in the 
spinneret (Khayet, 2003). 

The hydrophilicity test was performed by 
the contact angle analysis. The contact angle 
analysis quantifies the interfacial interaction 
between solids and liquids to determine the 
hydrophilicity of the membranes. The 
membrane can be indicated as hydrophilic 
when the liquid spreads well on the 
membrane surface with a contact angle value 
below 90° (Law, 2014). 

The contact angle value (θ) of the PVDF-
TiO2 membrane was 62o as shown in Figure 
4. PVDF is a polymer-based material 
frequently used in membrane fabrication. It 
has hydrophobic properties with a contact 
angle value of 90o (Zou et al., 2020). 
Meanwhile, pure TiO2 has excellent 
hydrophilic properties, outstanding chemical 
stability, and potential as an anti-fouling 
agent (Hong et al., 2017). Blending TiO2 
particles into the polymer-based membrane 
matrix imparted hydrophilicity properties 
into the resultant material (Huang et al., 
2017; Méricq et al., 2015; Qin et al., 2015). 
Such changes were attributed to TiO2 
properties, which consisted of highly 
oxygenated hydrophilic functional groups 

Hong et al., (2017) that had a higher affinity 
towards water than the pristine PVDF 
membrane (Damodar et al., 2009). 

The FTIR spectra of the PVDF-TiO2 
membrane are shown in Figure 5a. A step-by-
step analysis of the chemical bonds identified 
from the FTIR spectra is presented as follows. 
FTIR analysis is a qualitative method to 
determine the functional groups composed 
within the membrane matrix (Sakarkar et al., 
2021). The fingerprint-like peaks appeared at 
the wavelength range from 700 to 1500 cm-1 
and corresponded to the characteristic of 
PVDF functional groups, consisting of α, β, 
and γ crystalline phases. The vibration bond 
found at peaks 763-766 (Medeiros et al., 
2018; Mun et al., 2018), 795, 854, and 975 
cm-1 is the characteristic peak of α crystalline 
phase (Cai et al., 2017).  

The characteristic peak for the β 
crystalline phase was observed at 1275 cm-1 

(Cai et al., 2017; Medeiros et al., 2018). The γ 
crystalline phase characteristic peak was also 
found at 1234 cm-1. The peaks in the range of 
860 – 900 and 1050 – 1200 cm-1 represented 
the combination of α, β, and γ crystalline 
phases, which were also reported elsewhere 
(Benz et al., 2002; Cai et al., 2017; Kaspar et 
al., 2020; Yoon et al., 2008). The absorption 
bands found at 820 – 860 and 1140 – 1280 
cm-1  were characteristic of asymmetrical 
stretching and symmetrical stretching of CF2, 
respectively (Sakarkar et al., 2021). In 
addition, the peaks 1403 cm-1 and 1640 cm -1 
were attributed to –CH2 from PVDF and –OH 
from TiO2 stretching vibration (Bai et al., 
2012; Qin et al., 2015; Yu et al., 2003).  
Furthermore, the absorption from 800 to 900 
cm-1 represented a mixed band of –CH2 
rocking and –CF2 asymmetric stretching in α, 
β, γ phases or a combination of the three 
phases (Cai et al., 2017).  

Figure 5(b) represents the XRD spectra of 
the PVDF-TiO2 membranes in uncalcined and 
calcined conditions. Step-by-step analysis of 
the membrane crystallinity identified from 
the XRD spectra is detailed as follows.  
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Figure 4.  Typical contact angle image of PVDF-TiO2 hollow fiber membrane.

 

Figure 5. a) FTIR spectra and b) XRD spectra of the PVDF-TiO2 hollow fiber membrane in 
various conditions. 
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The XRD analysis confirmed that the β phase 
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PVDF-TiO2 membrane. It was proven by the 
distinct diffraction peak of β crystalline phase 
compared to α crystalline phase for the 
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However, the diffraction peaks of α and β 
crystalline phases decreased significantly at 
300°C. Such changes could be attributed to 

the decomposition of the polymer materials 
at a higher temperature (Mun et al., 2018). 
The diffraction peaks at around 25.5 and 37° 
indicated the TiO2 crystal remained in the 
membrane matrix and did not decompose at 
higher temperatures (Sakarkar et al., 2021). 
These findings were in tandem with the FTIR 
analysis. 

3.3. Pervaporation of Wetland Saline Water 

The performance of PVDF-TiO2 
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desalination of varied feeds of wetland saline 
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of the PVDF-TiO2 membrane spun at air gaps 
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the pure water permeation increased by 
decreasing the air gap from 20 to 10 cm. It is 
due to the longer air gap’s length that led to 
the formation of a thinner separation layer, 
as discussed elsewhere (Yu et al., 2009). A 
similar trend was also observed at different 
feed water conditions, i.e., brackish, saline 
wetland, seawater, and brine water (Figure 
6). For instance, PVDF-TiO2 spun at a 10 cm 
air gap recorded the highest permeate flux 
for brackish water, surpassed that of air gap 
at 15 and 20 cm by 34.8 and 70%, 
respectively.  

The air gap has a crucial effect on the 
cross-section morphology and performance 
of the PVDF-TiO2 hollow fiber membrane. 
Increasing air gap resulted in low 
permeability and high solute rejection (Gao, 
2017). It can be well correlated with the 
morphology of the membrane. As the finger-
like pores reduced at longer air gap length, 
the permeate fluxes decreased (Zakria et al., 
2021). This is corroborated by the SEM cross-
sectional images shown in Figure 3c1 which 
incorporated a denser sponge-like structure 
consisting of a small amount of finger-like 
pores within the membrane matrix.  

 

Figure 6. Effect of air gap during the dry-wet spinning on the pervaporation performance of 
PVDF-TiO2 hollow fiber membranes treating various feeds.
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The permeation performances of PVDF-
TiO2 hollow fiber membrane spun at 10 cm 
for multiple saline water feed desalination 
were in the order of brackish > saline wetland 
> sweater > brine water. Reduction in 
permeate fluxes as the feed saline 
concentration increased from 0.3 (brackish) 
to 5 wt% NaCl (brine) was attributed to the 
salt concentration polarization effect (Elma 
et al., 2015). The driving force for salt 
diffusion increased across the membrane 
due to the increase in feed salt concentration 
at the membrane surface (Elma et al., 2013). 

Moreover, salt rejections of 90.6-99, 92.6-
99.8, and 96-99.7% were recorded for 
membranes spun at air gaps of 10, 15, and 20 
cm in multiple feed water conditions, 
respectively. As increasing air gap length 
from 10 to 20 cm, the salt rejection also 
increased. The air gap length allows the 
membrane morphology to restrain the NaCl 
molecule via its thinner and denser finger-
like structure (Khayet, 2003). In addition, the 
longer length of the air gap enables 
modulation of the distribution of TiO2 
nanoparticles within the outer surface 
membrane layer, which causes the 
membrane to become hydrophilicity and 
improves salt rejection (Yaacob et al., 2020). 
Salt rejection was generally very high with 
more than 91% for all air gaps and feed water 
conditions. 

The PVDF-TiO2 membrane was also tested 
at various feed temperatures to investigate 
the pervaporation performance. They were 
determined by permeability and 
permselectivity as shown in Figure 7(a) and 
(b). It shows the effect of temperature on the 
water flux at various feed water conditions at 
a fixed pervaporation time of 20 minutes. 
The water flux of wetland saline water was 
higher than the feed with 3.5 wt% NaCl 
solution (simulating sea water) but was lower 
than the feed with 0.3 wt % NaCl solution. 
The highest water flux of NaCl 0.3 wt%, 
wetland saline water, and NaCl 3.5 wt% 
solutions were 15.19, 13.64, and 8.78 
kg/m2.h at 60 °C, respectively. The finding 

could be attributed to the effect of different 
salt concentrations in each feed. High salt 
concentration led to the flux decline caused 
by concentration polarization (Elma et al., 
2012). The pervaporation process of wetland 
saline water was previously using an 
interlayer-free-silica-pectin membrane. It 
was found that the water fluxes of the same 
wetland saline water (using pectin 
concentrations of 0.5 and 2.5 wt% as 
template) were 4.78 and 3.22 kg/m2.h, 
respectively. Thus, the pervaporation 
process using PVDF-TiO2 hollow fiber 
membrane had excellent performance 
because it produced a higher water flux than 
using an interlayer-free-silica-pectin 
membranes. 

The decline of salt rejection in permeate 
was observed with the increase in the feed 
temperature. The decrease of salt rejection 

followed the order of 60 > 40 > 25C.  Such 
findings can be well correlated with the 
condition caused by a random movement of 
polymer chains under the effect of 
temperature. The polymer chain movement 
(expansion) led to the enlargement of 
membrane pores, which facilitated the 
diffusion of salt molecules freely through the 
membrane (Jyoti et al., 2015). The salt 
rejections for all feed temperatures were 
higher than 90%, and the highest was 99.9% 

at 25C for the wetland saline water. This 
result is similar to the previous work 
conducted by other researchers.  

Total dissolved solid (TDS) removal and 
UV254 absorbance were measured to 
determine the membrane’s ability to remove 
the dissolved solids and organic impurities as 
shown in Figure 8. All the TDS removal of 
wetland saline water at various feed water 
conditions showed higher than 99.99%. This 
result indicated that the pervaporation 
process using PVDF-TiO2 hollow fiber 
membrane successfully removed the 
dissolved solid in wetland saline water.  UV254 
absorbance of the wetland saline water at 25, 

40, and 60C were 98.58, 89.87, and 87.47%, 
respectively. UV254 absorbance decreased 
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along with the increase in the feed 
temperature originating from the presence 
of organic foulant found on the membrane 
surface. The wetland saline water had a 
brown color and high NOM constituted of 
high humic materials (Mahmud & Noor, 
2005). The high concentration of polarization 
of NOM in water contributed to membrane 
fouling (Goh et al., 2018). UV254 absorbance 
was lower than TDS rejection because the 
wetland saline water contained high humic 
material which caused the membrane fouling 

during the pervaporation process, while TDS 
rejection was not affected by the presence of 
NOM. 

The performance of several types of 
membranes applied for wetland saline water 
desalination is summarized in Table 2. The 
developed PVDF-TiO2 hollow fiber showed 
decent performance at moderate feed 
temperature. It was proven by the higher 
water flux value than previous reportswith 
the salt rejection of more than 99.5%.  

 

Figure 7. Water flux (a) and salt rejection (b) of PVDF-TiO2 hollow fiber membrane at various 
feed temperatures. 

 

Figure 8. Effect of the feed temperature variations (25°C, 40°C, and 60°C) on TDS removal 
and UV254 absorbance of wetland saline water. 
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Table 2. Comparison of of several types of membranes used for desalination of wetland 
saline water. 

Type of 
membranes 

Feed 
Temperature 

(C) 

Feed Types 
Water 

Flux 
(kg/m2.h) 

Salt 
Rejection 

(%) 
References 

PVDF-TiO2 
hollow fiber 
membrane 

40 Wetland 
saline water 

7.48 >99.5 This research 

CTA/Al2O3 hollow 
fiber membrane 

70 Wetland 
saline water 

6.7 99.8 (Prihatiningtyas et 
al., 2020) 

Silica-Pectin 25 Wetland 
saline water 

4.48 99.9 (Rahma, Elma, 
Mahmud, Irawan, 
et al., 2019) 

Coagulation 
(Silica-Pectin) 

25 Wetland 
saline water 

5.4 99.9 (Rahma, Elma, 
Mahmud, Irawan 
et al., 2019) 

Alumina hollow 
fiber membrane 

80 Wetland 
saline water 

42.9 99.5 (Fang et al., 2012) 

 

4. CONCLUSION 
 

PVDF-TiO2 hollow fiber membrane was 
successfully prepared and characterized. The 
results show that membrane morphology 
(OD, ID, and thickness) decreased with the 
increasing the air gap. The resultant 
membrane imparted hydrophilic properties 
as TiO2 particles blended well within the 
membrane matrix as visually observed from 
the SEM images. The presence of TiO2 was 
confirmed through the observed diffraction 

peaks at 25.5 and 37. The highest water flux 
and salt rejection were observed at 7.48 

kg/m2.h and > 99.5 wt% at  40C with a 
decent percentage of TDS and NOMs 
removal. Overall, it can be concluded that the 
PVDF-TiO2 hollow fiber membrane showed 
the potential to treat wetland saline water 
via the pervaporation process. 
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