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The aim of this work is to model the influence of uneven contamination distribution under various
humidity on the pollution flashover voltage of 11 kV porcelain insulator disc. Four scenarios of contam-
ination distribution were proposed to test the sample under various severities of contamination simu-
lated by salt deposit density (SDD). Series flashover experiments on contaminated insulators were
performed under various conditions. The voltage of flashover under clean condition was appointed as
a reference value for analyzing the effect of pollution. Based on the percentage value of breakdown volt-
age of the contaminated insulator to the clean insulator, the conditions of the tested sample are classified
into three categories namely normal (55–60%), caution (45–54 %) and severe (35–44%). In the experimen-
tal tests, the uneven contamination area dimension was taken into consideration. An artificial neural net-
work (ANN), derived from experiment results was used as a tool to predict the flashover voltage. The ANN
method is built with five inputs related to the geometry of the sample and pollution factors while the
flashover voltage was set as the model’s output. The results showed that the distribution of pollutants
according to the presented scenario has a significant impact on the performance of the flashover voltage.
In addition, the error value between the experiment outcomes and the prediction system appeared to be
less than 6%. This suggests that the proposed ANN model can be an effective tool in forecasting the insu-
lators’ flashover voltage under test.

� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction transmission lines, have been receiving a great of interest recently
Contamination flashover on high voltage insulators in the trans-
mission lines is a substantial issue that endangers the safety and
reliability of electricity transmission operations. A Cap and pin
porcelain insulator, which is used in electrical distribution and
[1–3]. With the presence of wet (rain, fog, humidity), the contam-
inants that float through the air on the HV insulator resulted in the
production of a conductive layer. Consequently, the flow of the
leakage current from high voltage terminal to ground electrode
across the insulator surface became easy. Contamination flashover
of the insulators could easily occur in this situation [4–7]. Insulator
contamination is the first step in the flashover creation, and its
propagation method is influenced by a variety of factors, like insu-
lation architecture, contamination modes, and environmental con-
ditions so on. As a result, more research into insulator pollution is
still needed. Several methods of pollutant deposition studies [4,8–
16] have been performed recently. The flashover performance of
several insulators was examined under uniform pollution [4]. In
comparison to ceramic insulators, composite insulators’ flashover
voltage (FOV) under uniform pollution is observed to interact more
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[4]. Pollution non-uniformity on the bottom and top [8], longitudi-
nal [11], and fan-shaped [11,12], has been studied. As per [4], the
uneven contamination grade (bottom/top) has a significant effect
on the magnitude values of flashover voltage, which is roughly
28–30 % more than the FOV with uniform pollution. According to
[11], decreasing the flashover voltage stress is results of increases
the non-uniformity degree of the fan-shaped non-uniform pollu-
tion on the insulator surface. Whereas [13] looked at how the for-
mation, dimension, and location of the dry band affected FOVs and
arc development. According to [13], the dry band raises FOVs and
encourages arcs develop on insulators surfaces in present of moist.
Artificial intelligence approaches such as the Artificial Neural Net-
work (ANN) [17], fuzzy logic (FL) [18], Support Vector Machine
(SVM) [19], and Adaptive Fuzzy Inference System (ANFIS) [20]
are shown to be effective in forecasting the voltage of flashovers
in the literature. The fuzzy logic model has been employed to pre-
dict the critical voltage of the insulators under pollution in [21]. In
[22], the Particle Swarm Optimization (PSO) coupled with LS-SVM
was also used to predict the FOV of contaminated insulators’, insu-
lator size, and pollution intensity. The result indicated that the
error was less than 10%, demonstrating that the proposed method
is useful. Authors in [17] recently estimated the flashover voltage
using ANN based on arc constants A and n. According to the study,
the ANN delivers satisfactory results for forecasting flashover volt-
age. However, the distribution of contamination over the insula-
tors’ surface was not considered in [17].

On the surface of the insulator, pollution is usually not instantly
and uniformly deposited. In [12] (Table 1), the authors assert that
the pollution takes several surface forms, such as rings, top/bottom
shapes, and fans. Simulating the real-world pattern, where the con-
ductivity of the contaminated layer fluctuates at various levels in
particular locations with humidity variations, is difficult due to
the complicated nature of the non-uniform pollution deposition
on the insulator. On this basis, it is required to test and predict
the effects of various configurations for non-uniform pollution
with diverse dimensions and different contamination levels as well
in order to establish the flashover voltage in such circumstances.

The contribution of this paper is to evaluate the influence of con-
tamination distribution, humidity, and non-polluted-zones dimen-
sions and position on the insulator’s flashover voltage using
laboratory test and ANN model. Four different scenarios have been
studied. The test chamber was used to perform AC pollution flashover
experiments on cap-pin porcelain insulators. The flashover voltage
values of insulators under contamination were defined as proportion
of the clean-state flashover voltage, which served as a point of refer-
ence. Based on the experimental test, the flashover voltage under
the suggested scenarios of contaminated insulators was estimated
using the artificial neural network ANN method. The ANN approach
was verified in order to assess the model’s performance.
2. Experimental work

2.1. Sample preparation

In this study, the 11 kV cap-pin porcelain insulators were used
in this paper. The insulator technical and its geometrical parameter
Table 1
Fitting results under scenario SC-B.

FB/T 1 3 5 8 1 3

S% 40 60
a 7.97 9.18 10.27 11.99 7.22 8.45
b 0.332 0.32 0.311 0.304 0.346 0.33
R2 0.999 0.998 0.997 0.995 0.987 0.990

2

and contamination distribution suggested scenarios are shown in
Fig. 1. Fig. 1 (b) shows that the percent of area covered by pollution
was 40% in scenarios SC-A, SC-B, and SC-C, whereas the scenario
SC-D represents full pollution (100 %). The insulator has been
investigated in both clean and contaminated environments in four
scenarios. In the event of pollution. The insulator was artificially
contaminated with four varying quantities of Salt Deposit Density
(SDD) of NaCl combined in 1 L of distilled water: 0.05, 0.15, 0.25,
and 0.35 mg/cm2. The thicknesses of the contamination layer were
0.5 cm for all pollution profiles. The contaminant layer was created
over the insulator surface uniformly using the solid layer technique
[23–27]. The prepared solutions were applied to the sample using
spray method and hung it in the test room after being left to dry
normally at lab temperature for about a day. To characterize the
degree of contamination on the insulators at a specific conductiv-
ity, the SDDwas calculated using the equation below in accordance
with IEC 60507[28]:

SDD ¼ ð5:7� ðr20Þ1:03 � VÞ=A ð1Þ
r20 represents the electrical conductivity of contamination solution
at 20 �C in S/cm, A is an area of insulator surface in cm, and V is the
volume of pollution solution in cm3.

A conductivity meter HI8733 [7] was used to measure the solu-
tion’s electric conductivity. According to the IEC60507 standard
[28], about 40 (g/l) Kaolin was utilized as a non-soluble contami-
nant NSDD (Non-Soluble Deposit Density). The degree of uneven-
ness of pollution between the top and down sides FT/B in the case
of non-uniform pollution is determined as:

FB=T ¼ SDDB=SDDT ð2Þ
where SDDT and SDDB represents the salt deposit density on the top
and bottom insulator surface. The FB/T were chosen to be 3, 5, and 8.
To examine the effect of uneven pollution distribution on flashover
voltage, the ratio of contaminated to clean surface area can be
defined as:

S% ¼ AP

AC þ AP
� 100 ð3Þ

where AP and AC denote the polluted and the clean surface area,
respectively. The S values were set to 40%, 60%, and 80% to examine
the impact of the difference of contaminated area surface on the
flashover voltage. In this study, the contamination levels (SDD)
are selected by 0.05 mg/cm2, 0.15 mg/cm2, 0.25 mg/cm2, and
0.35 mg/cm2, which correspond to light, medium, heavy, and very
heavy pollution, respectively.

2.2. Test arrangement and procedure

The sample was suspended vertically in a test roommade of
500 � 500 � 750 mm polycarbonate sheet walls after drying.
To supply power to the tested insulators, an AC 0.23/100 kV
transformer providing 100 kV AC voltage was employed. The
flashover voltage was measured using a capacitive divider.
Fig. 2 depicts the schematic diagram as well as a laboratory view
of the FOV test. The FOV test was carried out under three humid-
ity levels of 75%, 85%, and 95%, which were controlled by a fog
generator. Before starting the test, the fog generator was
5 8 1 3 5 8

80
9.42 11.36 6.96 8.014 8.61 10.33
0.334 0.293 0.322 0.314 0.332 0.215
0.999 0.989 0.995 0.993 0.997 0.999



Fig. 1. Test sample: (a) Insulator dimensions; (b) Proposed scenarios of contamination distribution.

Fig. 2. Flashover test (a) schematic diagram (b) laboratory view: A: the test sample, B: test chamber, C: transformer, D: divider, and E: fog generator.
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activated to wet the sample. The pollution layer over the insula-
tor surface should be completely wet before the voltage for the
flashover test can be applied.

The voltage step was set at about 5% of the expected flashover
voltage. The flashover voltage UF measurement was repeated at
least four times for each humidity and pollution level. Eqs. (4)
and (5) were employed to calculate the average UF and standard
deviation error r (%), respectively [29],

UF ¼
X

ðUiniÞ=N ð4Þ

r% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðUi � UFÞ2
� �

N � 1ð Þ

vuuut � 100%
UF

ð5Þ

Here Ui is supply voltage, ni represents tests that were carried
out at Ui, N is the total number of conducted tests.

3. Results

3.1. Uniform distribution

The UF of the clean insulator was found at about 44 kV. For pol-
luted insulators, the UF value is decreased sharply compared to the
UF value in a clean state. According to the experimental results, the
Fig. 3. Studied insulator test results of four scenarios: (a) Relationship between UF

and SDD; (b) Box plot of UF for SDD from 0.05 to 0.25 mg/cm2.

4

UF of the insulator decreases significantly with increasing SDD in all
scenarios, and a negative power function was between UF and SDD
as indicated in Eq. (6), which is the outcome of fitting the test
findings.

UF ¼ a:SDD�b ð6Þ

where a is constant which is related to the materials and structure
of the insulator and air pressure and so on. And b represents the
contamination’s characteristic indication on the insulator. It should
be noted that the higher flashover voltage, the better the insulator’s
condition. Fig. 3 (a) depicts the connection between the UF and SDD
for the suggested scenarios with different pollution degrees at the
moisture of 75%. It should be highlighted that the offered scenarios’
pollutant distribution has a major impact on FOV value. For SDD of
0.05 mg/cm2 for instance, the ratio of UF values of the polluted insu-
lator to UF values of the clean insulator is 73.91 %, 59.06%, 83.13%,
and 52.84% for scenarios SC-A, SC-B, SC-C, and SC-D respectively.
The UF drops dramatically with the increase of SDD. For example,
under uniform pollution of scenario SC-B, when SDD is 0.05 mg/
cm2, 0.15 mg/cm2, and 2.5 mg/cm2 respectively, the corresponding
value of UF is 25.5 kV, 20.51 kV, and 17.3 kV, which indicates that
the UF value reduced by 19.77% and 32.3% with SDD increasing from
0.05 mg/cm2 to 0.15 mg/cm2, and 2.5 mg/cm2, respectively. At the
same rise in SDD, the flashover voltage percentage to 43.73 kV
decreased by 58.5 %, 46.9 %, and 39.6 %. The decrease in UF with
increased pollution is explained by the increase in electrical con-
ductivity, which leads to a decrease in the insulator resistance then
a decrease in the insulation strength. When SC-A and SC-B are com-
pared, it can be shown that increased SDD in SC-A has a higher
effect on the UF than increased SDD in SC-B does under the same
conditions. As a result, the position of pollution buildup affects
the generation of flashover on the surface of the insulator.

The box plot (Fig. 3(b)) compared the effect ranges of the sug-
gested scenarios for SDD within 0.05 mg/cm2 and 0.25 mg/cm2

on UF to assess the effect of the pollutant distribution for every sce-
nario on flashover voltage results. This can be useful knowledge for
comprehending the insulator’s characteristics under various con-
tamination distribution scenarios. According to the findings of
the tests in Fig. 3, the relative deviation error for all tests is
obtained lower than 6%. This means that the scattering rate of UF is
acceptable, implying that the experimental technique used in this
work was acceptable. The minimum value of median for UF is
14.11 kV, which has been observed in scenario SC-D as shown in
Fig. 3(b). Whereas the highest value for the moderate of UF is
20.8 kV in scenario SC-C. This means that when the contaminated
region on the insulator surface expands, the insulator enters a crit-
ical state faster, increasing the likelihood of flashover, as in sce-
nario SC-D. It is worth noting that the working voltage of the test
insulators is 11 kV. However, Fig. 3(b) reports that the minimum
UF in scenario SC-D would be below 11 kV, indicating that the
breakdown happens at a voltage lower than the operational volt-
age, potentially resulting in an outage.
3.2. Influence of humidity

This section discusses the influence of humidity in the contam-
ination scenarios provided. To examine this impact, three humidity
values of 75%, 85%, and 95% were chosen to simulate the humidity
which can be exposed to the real electrical network insulators. In
fact, raising the humidity level facilitates the formation of a con-
ductive water film on the insulator, lowering the UF of insulators
with uniform and non-uniform contamination. Fig. 4 depicts the
relationship between UF and SDD as humidity varies. Fig. 4 indi-
cates that humidity has a substantial influence on the UF findings,
with rising humidity causing a decrease in UF. For example, when



Fig. 4. Flashover voltage versus humidity under studied scenarios.
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SDD = 0.15 mg/cm2 and the humidity increases from 75% to 85%
and 95% under scenario SC-A, the FOV of the insulator decreases
by 3.75 kV and 5.5 kV, respectively. Under SC-B, SC-C, and SC-D
scenarios, the reduction in UF-SDD line slope with increasing
humidity of contaminated insulators is roughly identical to the
SC-A slope scenario, with minor oscillations in some cases due to
varying in conductance in the pollution layer.

3.3. Non-uniform distribution

Fig. 5 illustrates the results of flashover voltage testing for insu-
lator under uneven contaminated with scenario SC-B (for example)
at different levels of SDD, FB/T, and S%. For all experiments, the
humidity was 75% in the presence of non-uniform contamination.
According to Fig. 5, the greatest value of deviation was 4.4 % for all
tests, demonstrating that the test results were acceptable. With the
same FB/T and S, the UF of the tested sample reduced extremely as
the SDD levels are increased. When FB/T = 3, S% = 40% and SDD is
raised from 0.05 to 0.15 and 0.25 mg/cm2, for example, the UF of
the insulator under scenario SC-B falls by 23.613 and 18.914 %,
respectively.
5

In addition, the flashover voltage data were fitted using Eq. (6),
as shown in Fig. 5, and the correlation coefficients R2, a, and b, as
specified in Eq. (6), of the contaminated insulator under scenario
SC-B were displayed, as shown in Table 1.

Under non-uniform contamination, the value of a also influ-
enced by the change of FB/T. For example, the values of a for sce-
nario SC-B increases from 9.18 to 10.27, and 11.99, when FB/T
increases from 3 to 5, and 8, respectively, under S% = 40%. This
shows that the value of a grows by 10.4% and 30.3%. The UF of test
sample is related to the FB/T at the top and bottom sides. The FB/T
and S% impacts on UF of insulator under scenario SC-D with vary
of the SDD degree are depicted in 3D graphs in Fig. 6 (a and b).
Meanwhile, the FB/T and S% effects on UF at a constant of SDD =
0.15 mg/cm2 are demonstrated in Fig. 6 (c). According to the out-
put tests in Fig. 6, the increase of FB/T causes a gradual rise in UF.
For example, in the case of scenario SC-D, when SDD is 0.05
mg/cm2, S% = 40% and FB/T is 1, 3, 5, 8. UF is 21.6 kV, 23.8 kV,
26.04 kV, and 29.6 kV, respectively. It can be seen that the UF

increase by 9.9, 18.86, and 33.96% when the FB/T rises from 1 to
3, 5, and 8, respectively. This occurs because at the high FB/T there
are higher variations in the pollution levels on the top and bottom



Fig. 5. Non-uniform flashover voltage under S% of 40, 60 and 80%.
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sides than there are at low FB/T. Due to differences in pollution
levels between the top and bottom surfaces, electrical conductivity
on the side with less pollution may be poor. As a result, a high
value of voltage is required for discharge creation in low pollution
zones.

S% has also affected the FOV results. There is a slight decrement
in the UF with S% increase steadily under a certain value of FB/T and
SDD. Because the polluted-zone increases with increasing S%, it
was noted that the voltage value that causes discharge in a large
polluted-zone is lower than the voltage value when the zone is
small due to increases in surface conductance and leakage current
passage through the pollution layer on the insulator’s surface in
the case of a large polluted-zone.

Fig. 7 demonstrates the influence of S% on the insulators’ flash-
over voltage behavior in scenario SC-D as an example. From Fig. 7,
It can be observed that the UF value of scenario SC-D is 31.6 kV,
29.41 kV and 26.82 kV when FB/T = 5 and S% is 40, 60, and 80%, cor-
6

respondingly, at SDD is 0.15 mg/cm2. This denotes that the UF

decreased about 7.6% if the S% grows by 20 To evaluate the pollution
effect under uneven distribution on the flashover voltage of tested
porcelain insulator, the UF results of studied scenarios were plotted
and fitted as shown in Fig. 5 above. The coefficient R2 is more than
0.92 for all tests, indicating that the UF results versus SDDwere suc-
cessfully fitted nonlinearly using the function of power.
4. Artificial neural network model (Ann)

4.1. ANN model training

The Artificial Neural Network (ANN) is one of the artificial intel-
ligent tools that focuses on training using known data [30–33]. The
ANN is made up of a large number of linked processing units called
neurons that work together to solve a problem by transferring



Fig. 6. UF of scenario SC-D in term of: (a) SDD and S% at FB/T = 3; (b) SDD and FB/T at S%=40%; (c) SDD and S% at FB/T = 3.
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data. The ANN technique was simulated in this article using the
back-propagation approach in MATLAB to obtain maximum con-
vergence to the smallest feasible point, following which the model
was learnt and assessed. The UF was calculated using the ANN out-
put. SDD, FB/T, S%, and relative humidity were the model’s inputs. As
indicated in the experiment setup section, several pollution flash-
over experiments were performed on test sample under various
contamination situations with uniform and non-uniform pollution.
432 UF data (Fig. 8) were gathered in this simulation. 70% of data
(302) are selected for training the model, 15% for verification of
performance the model (65 data), and 15% for model testing (65
data).

Fig. 9(a) shows the model’s Mean Squire Error (MSE) for train-
ing, validation, and testing. As illustrated in Fig. 9(b), the model’s
optimal response was seen at epoch 44, with MSE hovering around
0.657. Fig. 10(a) illustrates the model’s (Training, Validation, and
Test) regression results.

The R2 of the whole regression was greater than 0.98, implying
that the performance the ANN model is adequate. The comparison
7

of test and model prediction findings with error is shown in Fig. 10
(b). It’s worth noting that the difference between the test and sim-
ulation results is less than 1.5. Wherefore, the ANN model may be
considered to introduce a successful prediction.

4.2. Verification of ANN model

The data of three different forms of uneven pollution distribu-
tion results are selected for the verification of the presented ANN
model forecast. To validate the proposed model, random data
from the training data of uneven pollution of the bottom, top,
and whole surfaces were chosen. Table 2 shows the ANN model
results compared to the experimental results as well as the error
of model respect to test results. According to Table 2, the absolute
values of relative errors Er between the experimental results of
flashover voltage and predicted results UP using the ANN model
are below 2.5%. Therefore, the prediction model gives accurate
results of the UF under various levels of humidity, S%, FB/T, and
SDD.



Fig. 8. Experimental results of flashover voltage data under different of SDD, S%, FB/T and humidity.

Fig. 7. UF of scenario SC-D in term of S%: (a) FB/T = 3; (b) FB/T = 5; (c) FB/T = 8.
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Fig. 9. (a) Artificial neural network error histogram; (b) MSE of trainings, validation and test data.

Fig. 10. (a) ANN model regression; (b) Comparison of the Tests data with the model prediction.

Table 2
Comparison between The ANN and experimental results.

Humidity FB/T S% SDD (mg/cm2) UF (kV) UP (kV) Er ¼ ðUp � UF Þ=UF
�� ��� 100

75 3.00 40 0.05 23.86 24.22 1.50
75 3.00 40 0.15 17.02 17.42 2.35
85 1.00 60 0.25 15.15 14.87 1.90
85 1.00 80 0.05 20.42 20.46 0.20
95 3.00 40 0.05 24.61 24.96 1.43
95 3.00 40 0.15 19.70 19.35 1.81
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5. Conclusion

The study carried out in this paper explores how insulators
under test behave during flashovers in varied pollution and humid-
ity conditions. This study was conducted in four scenarios regard-
ing pollution distribution. During the experimental and testing
procedure, the clean and polluted insulators’ flashover voltage
was investigated. In addition, the effect of flashover voltage value
on the non-polluted-zone, humidity, and contamination level
9

was measured. In fact, the SDD, humidity, location and dimension
of non-polluted-zone the insulator, are the factors that mainly
affect the flashover voltage. The interaction of UF as function with
SSD usually has appeared as a negative power advantage when
there is contamination on the insulator. It was noticed that the
contaminated region on the sample and the flashover voltage has
an inverse relationship between them. It means that, if there is a
growth in the contaminated area on the insulator, the flashover
voltage decreases. Moreover, flashover subsides when the
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humidity increases. Among the selected scenarios, it was con-
cluded that, scenario SC-D resulted in the lowest value of flashover
voltage. The proposed ANN model was developed as a comparison
tool to predict the flashover voltage value to compare it with the
test result. The results showed that the relative error value
appeared to be less than 2.5%, which means that the ANN model
is significantly precise, and can be employed efficiently for fore-
casting the samples’ flashover voltage.
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