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Abstract: An explicit formula for the zero of the Szego kernel for an annulus region is well-known. 
There exists a transformation formula for the Szego kernel from a doubly connected region onto an 
annulus. Based on conformal mapping, we derive an analytical formula for the zeros of the Szego 
kernel for a general doubly connected region with smooth boundaries. Special cases are the explicit 
formulas for the zeros of the Szego kernel for doubly connected regions bounded by circles, limacons, 
ellipses, and ovals of Cassini. For a general doubly connected region with smooth boundaries, the zero 
of the Szego kernel must be computed numerically. This paper describes the application of conformal 
mapping via integral equation with the generalized Neumann kernel for computing the zeros of the 
Szego kernel for smooth doubly connected regions. Some numerical examples and comparisons are 
also presented. It is shown that the conformal mapping approach also yields good accuracy for a narrow 
region or region with boundaries that are close to each other.
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1. Introduction

Univalent functions are analytic functions that are one-to-one. Conformal mapping functions are 
analytic functions that are one-to-one with the angle preserving property. Thus, conformal mapping 
functions are univalent.
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Many conformal mapping problems can be solved using the Szego kernel, which also satisfies the 
Kerzman-Stein integral equation [1,2]. The Szego kernel for an annulus has both bilateral series and 
infinite product representations [3-5 ]. The Szego kernel is closely related to the Ahlfors map. The 
Ahlfors map of a doubly connected region H is a branching two-to-one map onto the disk. From 
the boundary values of the Szego kernel, the boundary values of the Ahlfors map are completely 
determined [6- 8]. The Ahlfors map of H has two zeros, one zero is predetermined which is mapped to 
zero, the other zero comes from the unique zero of the Szego kernel. The zero of the Szego kernel for 
an annulus has a nice closed formula [3]. Computing the zero of the Szego kernel for H is an interesting 
problem in computational complex analysis. A system of nonlinear equations with integrals involving 
the Szego kernel and its derivative, satisfied by the zeros of the Szego kernel for a multiply connected 
region has been presented by Tegtmeyer [8], but did not show any numerical computations of the zeros. 
In [9] the zero of the Szego kernel of H has been computed numerically by extending the approach 
of [10]. However, the numerical methods in [9] are iterative and require good initial approximation of 
the zero for convergence. This approximation is obtained by plotting the graph of the absolute value 
of the Ahlfors map. Additional numerical methods for computing the zeros of the Szego kernel for 
doubly connected regions are shown in [11]. Since there exists a transformation formula for the Szego 
kernel from H onto an annulus [3], the possibility of applying conformal mapping for computing the 
zero of the Szego kernel arises, thus, avoiding iterative, and graphing procedures.

There exist many numerical conformal mapping methods in the literature. An introduction to 
numerical methods for conformal mapping can be found in the books [12, 13]. For some recent 
numerical conformal mapping methods, see [14-18].

In this paper, by means of conformal mapping, we derive an analytical formula for the zero of the 
Szego kernel for H. The conformal mapping of H onto an annulus is computed numerically based on 
the boundary integral equation with the generalized Neumann kernel [15]. The integral equation is 
uniquely solvable Fredholm integral equation of the second kind.

The plan of the paper is as follows: In Section 2, some known techniques for calculating the zero 
of the Szego kernel for H are given. In Section 3, the conformal mapping method for computing the 
zero of the Szego kernel for H via integral equation with the generalized Neumann kernel are shown. 
In Section 4, the numerical implementations of the techniques in Sections 2 and 3 are discussed. In 
Section 5, seven numerical examples for computing the zeros of the Szego kernel for various H are 
given based on conformal mapping, some comparisons with other techniques of Section 2 are also 
made. The last Section 6 presents some concluding remarks.

2. Preliminaries

Let H be a bounded doubly connected region with the boundary r  = r 0 U r  consists of two smooth 
Jordan curves with the inner curve r  1 oriented clockwise and outer curve r 0 oriented counterclockwise. 
Further, we assume a  and a (a ^  a) are auxiliary given distinct points in the region H and z0 is an 
auxiliary given point in the simply connected region bounded by r 1.

The curve rj, j  = 0,1 is parametrized by a 2n-periodic triply continuously differentiable complex­
valued functions Zj(s) with zj(s) ^ 0, s e Jj = [0,2n]. The total parameter domain J = J0 U J1 is the 
disjoint union of two intervals Jj = [0,2n]. Define a parametrization of the whole boundary r  as the
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complex function z(s) define on J  by

Z0(s), s e J0 = [0,2n],
z(s) = (2 .1)

Z1(s), s e J 1 = [0,2n].

For the special case where H is an annulus D = {z : p < |z| < 1} bounded by C = C0 U C1, 0 < p < 1, 
there exists a bilateral series representation for the Szego kernel for D given by [3]

1 00 ( —)n
s d(z,a) = Y"+zp2nTT■ a e D. z e D U C. (2.2)

n=-ro ^

It has a unique zero at z = - p /— [3]. The Szego kernel for D has another bilateral series 
representation [4] (in an equivalent form)

1 w (—1)npn
Sd(z, a) = — Y i \ ^ , z e D U C, a e D. (2.3)

2n ^  p2n -  za

The bilateral series (2.2) is actually a basic bilateral series and can be expressed as an infinite 
product. For a e D, z e D U C, the Szego kernel for D can be represented by the infinite product [5]

S ( ) = _1  (1 + —z p1>1+1)(—z  + p2n+1)(1 -  p2n+2)2
D z, 2n A=A (1 -  —zp2n)(—z -  p2n+2)(1 + p2n+1)2

The infinite product in (2.4) is convergent for p < 1 and p 2 < |—z| < 1. The zero of SD(z, a) in D is 
equal to z = - p /—, which is the zero of the factor —z + p.

For the doubly connected region H, the Szego kernel SH(z, a) satisfies the Kerzman-Stein integral 
equation on r  [3,6,7]

S h(z, a) + J A (z , w)S h(w, a)|dw| = r(z), z e r , (2.5)

where

A(z, w)
z £ w e r , 

0, z = w e r ,

,z -  w z -  ^  (2 .6)

and

^  1 r  (z) T-1r(z) = - ^ = —=, z e r , (2.7)
2ni z -  a

z?(t)
T (z) = i?(oi • z e r - (28)

The Kerzman-Stein kernel A(z, w) is continuous on r . In fact the integral equation (2.5) is also valid
for an n-connected region for n > 3 [6,7]. Using the Cauchy integral formula, the interior values of the
Szego kernel for every z e H can be determined by

-  f- 2n U r
S h(z, a) = —  I dw, z e H. (2.9)w - z
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The derivative of the Szego kernel on r  is computed by [9]

d
S H (z (t), a) z' (t)

_ rd_  
Jj  dt

[A (z (t), z (s))] S H (z (s), a) |z' (s)| ds + r' (z (t)) z' (t): (2.10)

where

r' (z (t)) z' (t) = - —  
2ni

T' (z (t)) z' (t)

T' (z (t)) z' (t) T (z (t)) z' (t)
z ( t) -  a (z (t) -  a)2

z'' (t) (z' (t))2 z'' (t)
2 |z' (t)| 2 |z' (t)|3

and

d
—A (z (t), z (s)) 
dt

2ni (z(t)-z(s))
-T (z(s))z'(t) T'(z(t))z'(t) + T (z(t))z'(t)

‘2 (z(t)-z(s)) (z(t)-z(s))2

^ [1Im ( 1$(-  Re (m(Im (SI)], z (t) =z (s) e r.

z (t) £ z (s) e r ,

G4n|z'(t)| L3
The zero of the Szego kernel z* for the doubly connected region H has the explicit formula [8]

= -  f2n U r
S H(z, a)

z— — - ̂S H(z, a)
z e r. (2.11)

The boundary values of SH(z, a) and S H(z, a) can be computed by solving the integral equation (2.5) 
and applying (2.10) respectively. The zero z* has been computed numerically in [11] based on (2.5), 
(2 .10), and (2 .1 1 ).

The Szego kernel is closely connected to the Ahlfors function. The Ahlfors function g(z) is a 
connected two-to-one analytic function mapping H onto the unit disk E = {w : |w| < 1}, satisfying 
g(a) = 0, g'(a) > 0. The function g(z) has another zero from the unique solution of SH(z, a)=0. 
Further, g(z) maps each component of the boundary of H one-to-one onto the unit circle. Thus the 
boundary values of g(z) are given by

g(z,(t)) = eie j(t),

where 0j(t), j  = 0,1, are the boundary correspondence functions. It can be shown that [9]

ot (S H (z (t), a) z '(t) \ ( z'' (t)N0' (t) = 2 Im  —r-rr— ;—  I + Im f
S h (z (t) , a)

z (t) e r ,  a0 e H,

(2.12)

(2.13)

where S H (z (t), a0) and S H (z (t), a0) z' (t) are computed by solving the integral equations (2.5) and 
(2 .10) respectively.

For all z e r ,  the function 0'(t) and the zero z* for the Szegc) kernel for H are related by the nonlinear 
algebraic equation (by treating z* as unknown) [19]

z'(t)
i0' (t) + ^ V  f

n J j z(t) - z(s)
0'(s)ds = 2z'(t)

1
+

1
z(t) -  a z(t) -  z

(2.14)

*z
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where 0'(t) can be computed using (2.13). Murid et al. [11] calculated z* as follows

(2.15)

where
= ____ 1

(2.16)

Again 0'(t) can be computed using (2.13). By taking imaginary part on both sides of (2.14), it reduces 
to the equation derived in [10], i.e.,

is the Neumann kernel. The Newton iterative method and the trapezoidal rule has been used to solve 
z* from the nonlinear algebraic equation (2.17) in [9].

Theoretically, the Szego kernel SH(z, a) for H can be found using a transformation formula under 
conformal mapping. If H is any doubly connected region with smooth boundary r  and f(z) is a 
conformal map of H onto D, then [6]

where SD is represented by (2.2). Note that (2.2) contains the inner radius p which needs to be 
computed.

In the next section, we give another explicit formula for computing zero z* of S H(z, a) based 
on (2.19).

3. Computing the zero of S H(z, a) via conformal mapping

Consider the doubly connected region H with boundary denoted by r  as described in Section 2. Let 
f  (z) be a conformal map from H to the annulus D = {w : p < |w| < 1}, where the modulus (or the inner 
radius) p can be computed by a special method which will be explained later. Consequently f -1 is an 
inverse map of D onto H.

Theorem 1. The Szego kernelfor H can be represented by the bilateral series as

(2.17)

where

(2.18)

S h(z, a) = f z ) S D ( f ( z ) ,  f ( a ) ) f —), — e H, z e H U r , (2.19)

V ^ f —) v  (f(z)f(a))1

The zero of S H(z, a) in H is
z* = f - 1( - p / f  (a)). (3.1)
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Proof. Applying (2.2) to the transformation formula (2.19), yields

S h(z, a) = f z ) S D ( f ( z ) ,  f ( a ) ) f —)

_  Vf'cz) Vf'c—) v  (f(z)f(—))
2n 1 + p,2n+1 (3.2)

Using the fact that SD(z, a) has a zero at z = -p /a  in D, the zero z* of S H(z, a) for H satisfies f  (z*)f (a)D , = -  p /( (
-p, or f  (z*) = -p /f (a )  which implies z* = f -1 ( - p / f  (a)(. □

Formula (3.1) is an explicit formula for the zero of S H(z, a) in terms of f  and f -1. Thus formula (3.1) 
is applicable provided the mapping functions f  and f -1 are known. These functions are known only 
for very few special regions. For general region H we must resort to numerical conformal mapping.

The following theory from [16, 20] shows an integral equation method with the generalized 
Neumann kernel to compute the conformal map w = f(z) from H onto the annulus D with 
normalization

f  (a) > 0,

where a  is an auxiliary given point in H.
Denote by H the space of all functions of the form

Ms) =

U0(s), s e J0,
(3.3)

W(s), s e J 1 ,

where u0(s) and ju1(s) are 2n-periodic Holder continuously real functions on J0 and J 1, respectively. 
Define a complex function B on r  as [16,20]

B(s) = z(s) -  a  = <
B0(s) = z0(s) -  a, s e J0,

B1(s) = z1(s) -  a, s e J 1.
(3.4)

For u and 7  in H, consider the following integral equation [16,20]

(I -  N) u = -M y, 

where the integral operators N and M are defined respectively by

Nu(s) = N(s, t)u(t)dt, s e J,

and
Mu(s) = M(s, t)u(t)dt, s e J,

with the kernels N(s, t) and M(s, t) defined respectively as

(3.5)

N(s, t) = M  B( s) z '(t) (s, t) e J  x J (3.6)

n

n=-oo
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and

M(s, t) = 1  R e ( ^  ( z' (t)( \ , (s, t) e J  x J. (3.7)
n \B(t) z(t) -  z(s)/

The kernel N(s, t) is known as the generalized Neumann kernel.
The integral equation (3.5) is uniquely solvable for any real Holder continuous function y  e H.

Additionally, if u is the unique solution of the boundary integral equation (3.5), then the real function
h defined by

h = [Mu -  (I -  Ny)] /2, (3.8)

is a piecewise constant function on the boundary r , where hj are real constants j  = 0, 1 and h(t) = hj 
for z(t) e Tj. Moreover,

F(z(,)) = Y(f) + B(;),+ ,U(f), z(t) e r , (3.9)B(t)

are the boundary values of an analytic function F  in the doubly connected region H. For z e H the 
function F(z) is calculated by the Cauchy integral formula

= f
2ni Jp £ -  z

F(z) = —  T ^ d ^ .  (3.10)

For more details on the generalized Neumann kernel, see [21].

Theorem 2. [20] Let the function B be defined by (3.4), and the function y be defined by

z(t) -  z0Y(t) = -log
a  -  z0

t e J. (3.11)

If u is the unique solution of the boundary integral equation (3.5), and the piecewise constantfunction 
h is given by (3.8), then the function F  with the boundary values (3.9) is analytic in the region H, and 
the conformal mapping f  is given by

f(z) = e-h0 ( e(z-a)F(z), z e H U r , (3.12)
\ a  -  z0/

and the modulus p is given by
p = e(h1-h0). (3.13)

The inverse mapping function f -1 is analytic and one-to one in the annulus region. If the boundary 
C of D is parametrized by ^(t), t e J , the value of z = f - 1(w) at interior point w e D can be computed 
using the Cauchy integral formula [22]

x- 1_  1 r f - 1^  1 r f - 1^ ) ) ^ ^z = f  (w) = ^  --------d^ = —  — ------£(t)dt, (3.14)
2n ^ c  £ -  w 2m J j £(t) -  w

where f - 1(£(t)) = z(t) and £ '(t) = f'(z(t))z'(t).
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4. Numerical implementations

In this section, we first review some numerical implementations for computing z*, the zero of 
S H(z, a), using the formulas (2.11), (2.14), and (2.15). The n equidistant collocation ti is defined

The integral in (2.11) is discretized using the trapezoidal rule with n equidistant nodes in each 
interval Jj, j  = 0,1. Since all relevant functions are 2n-periodic, the trapezoidal rule is the most 
accurate method to numerically integrate the periodic functions [23,24]. Let z1 n represents the zero z* 
approximated using (2 .1 1 ), i.e.,

where the integral equation (2.5) is solved numerically to get the approximate values SH,n(z(ti), a) of 
S H(z(ti), a), while the approximate values SHn(z(ti), a) of SH(z(ti), a) are computed using (2 .10) (for 
more details see [1 1 ]).

The Newton iterative technique with trapezoidal rule can be used to solve for the zero z* from the 
nonlinear algebraic equation (2.17), where 0 '(t) is calculated using Eq (2.13). It is shown that the zero 
z* has two unknowns because it is divided into real and imaginary parts (for more details, see [9]). Let 
z2n represents the zero z* approximated using (2.17).

To evaluate (2.15) for z* at t e J0, the trapezoidal rule is used to discretize the integral (2.16). The 
approximation of the zero z* using (2.15) is denoted by z3 n, i.e.,

where q0,n(ti) is the approximation of q0(ti) computed numerically using (2.16) (see [1 1 ] for details).
We next describe a numerical method for computing z* via conformal mapping using (3.1) and

Theorem 2. We use the following algorithm for the computation of z*:

(1) Solve the integral equation (3.5) with y  given by (3.11) for u.
(2) Calculate the boundary values F(z(t)) using (3.9).
(3) Calculate F(a), a e H, using (3.10).
(4) Compute f  (a) in (3.1) using (3.12) and p using (3.13).
(5) Calculate f -1 in (3.1) using (3.14) to compute z*.

The MATLAB function fb ie  in [18] provides us an efficient method for solving the boundary
integral equation (3.5). The function fb ie  is based on discretizing the boundary integral (3.5) using 
the Nystrom method with the trapezoidal rule [20,23]. This discretization leads to a non-symmetric 
linear system. Then, the MATLAB function gmres is used to solve the linear system. The matrix- 
vector multiplication in the GMRES method is computed using the MATLAB function zfmm2dpart in

by

n

(4.1)

(4.2)

where

AIMS Mathematics Volume 8, Issue 5, 12040-12061.



12048

the toolbox FMMLIB2D [25]. The function fb ie  also provides us with approximations to the piecewise 
constant function h in (3.8). The computational cost for the overall method is O(nlogn) operations 
where n (an even positive1 integer) is the number of nodes in each of the intervals J0 and J 1.

To use the MATLAB function fb ie , the vectors z, zp, B, and gam that contain the discretization of 
the functions z(t), z'(t), B(t), and y(t), respectively, are stored in MATLAB. Then we call the function

[mu, h] = fb ie (z , zp, B, gam, n, ip re c , r e s t a r t ,  gm restol, maxit).

Once the discretization of the two functions u(t) and h(t) are computed, we use

Fz = (gam + h + i  x mu)/B

to find approximations F n to the boundary values of the function F . Then approximations F n(z) to 
the values of the function F(z) for any vector of points z e H can be obtained using the Cauchy 
integral formula (3.10). Numerically we carry out this computation by applying the MATLAB function 
fcau  [18] by calling

fz  = fcau(z, zp, Fz, z).

In this way, the approximate value of f n(a) for f  (a) in (3.1) is computed.
The approximate value of f n_1 for f -1 in (3.1) is computed with the help of (3.14). For numerically 

computing the inverse mapping function f - 1(w), we apply the MATLAB function fcau [18] by calling

wz = fcau(w, wp, wplus, ww),

where
wplus=z,wp=[w®p;wip], ww=mappingfunction(a), 

w ® p= derfft(rea l(w (1 :n ) ) )+ i  d e rff t( im a g (w (1 :n ) ) ) ,

and
w1p = d e rf f t( re a l(w (n + 1 :2n ) ) )+ i  d erfft(im ag (w (n + 1 :2n ) ) ) .

The approximation of zero z* using (3.1) and Theorem 2 is represented by z^n.
The computations presented in this paper were performed on ASUS Laptop with Intel(R) Core(TM) 

i7-3537H CPU @ 2.00 GHz, 2.50 GHz, 6 Core(s), and 4 GB RAM. We have used Mathematica for 
computing z1 n, z2 n, z3 n, and MATLAB R2022a for computing z4 n.

5. Numerical examples

In this section, we show some examples of conformal mapping using the integral equation with 
the generalized Neumann kernel to calculate the zero z* of the Szego kernel for H based on (3.1). 
Numerical comparisons for z* using (2.11), (2.14), and (2.15) are also given.

Example 1. Region bounded by circles.
Consider a region H bounded by the circles

r  : zc(t) = eit,

AIMS Mathematics Volume 8, Issue 5, 12040-12061.
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r  : z1(t) = 0.5 + 0.25e-it,

as shown in Figure 1. The exact mapping function that maps H onto D = {w : p < |w| < 1} is [26, p. 
A-21]

m \ z -  A
w = f ( z) = 1 -----T,Az -  1

where

c + d
A

1 + cd + V(1 -  c2)(1 -  d2)

and the exact inner radius is

d - c
p  = ------------- , = .

1 -  cd + 7 (1  -  c2)(1 -  d2)

The inverse mapping function is

z = f-1(w) = aw— A .Aw -  1

Using (3.1) the exact zero of the Szego kernel S H(z, a), with a e H, is

* r_1, p (— -  1) + A(— -  A) 
z = f  (-p /f(a )) = — —— — - - — - .pA(Aa -  1) + (a -  A)

For numerical implementation we have selected c = 0.25, d = 0.75, a = -0.5 -  0.5i, z0 = 0.5, and 
a  = -0.5. The computed exact inner radius p and the exact zero z* are

p = 0.344131154255050,

and

z* = 0.767241379310345 -  0.043103448275862i.

AIMS Mathematics Volume 8, Issue 5, 12040-12061.
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Figure 1. The region Q (top) and its annulus map (bottom) for Example 1 with n = 128.

Table 1 shows that the absolute errors \z* -z1 n\, \z* -z2 n\, \z* -z3 n\, \z* -z4 n\, and \p -pn\ are decreasing 
to zero with increasing number of nodes n. The computation of the zero z* using (3.1) together with 
Theorem 2 produces better accuracy than that of the other methods using (2.11), (2.14), and (2.15).

Table 1. Absolute errors for Example 1.

n \Z* -  Z1 ! \Z* -  Z2,n\ \Z* -  Z3,n\ \Z* -  Z4,n\ \n-

32
64
128

6.2373(-02)
4.7118(-03)
2.9136(-05)

6.9171(-02)
4.4510(-02)
1.0796(-05)

1.3283(-02)
1.8761(-03)
1.4338(-06)

9.0387(-06)
3.7816(-10)
3.4170(-16)

1.4279(-09)
1.1102(-16)

Example 2. Region bounded by limacons.
Consider a region Q bounded by limacons

r 0 : z0(t) = a0 cos t + b0 cos 2t + z'(a0 sin t + b0 sin 2t),

r  : zi (t) = a  cos t + bi cos 2t + i'(ai sin t + b  sin 2t),

with a0 = 10, a 1 = 5, b0 = 2, and b1 = 0.25b0, such that

b1/b0 = («1/a 0)2,

as shown in Figure 2. The exact mapping function that maps Q onto D = {w : p < \w\ < 1} and the 
exact radius are [14]

- a 0 + (a0 + 4b0z)1/2w = f  (z) = ---------- —----------- ,
2b0

AIMS Mafhemafics Volume 8, Issue 5, 12040-12061.
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p = ai/ao.

The inverse mapping function is

z = f  V )  = b0w2 + a0w.

Using (3.1), the exact zero of the SzegO kernel SH(z, a), with a e H, is

z* = f -1( - p / f  (a))
2pb0(a2 + 2pb2 -  a0^ a 2 + 4ab0)

(ao -  Va02+4ib0)2

For our numerical work, we have chosen a = 8 + 2i, a = 10, and z0 = 0. The computed exact inner 
radius p and exact zero z* are

p = 0.5,

and

z* = -5.889310225331653 -  1.090525292189129i.

Figure 2. The region H (top) and its annulus map (bottom) for Example 2 with n = 128.

Table 2 shows that the absolute errors |z* -  z1,n|, |z* -  z2,nl, |z* -  z3,nl, |z* -  z4,nl, and |p -  pnl are 
decreasing to zero with increasing number of nodes n. The computation of the zero z* using (3.1) 
together with Theorem 2 produces better accuracy than that of the other methods using (2.11), (2.14), 
and (2.15).
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Table 2. Absolute errors for Example 2.

n \z* -  z1,n\ \z* -  z2,n\ \z* -  z3,n\ \z* -  z4,n\ \npn-\p
64
128
256

5.5025(-08)
1.8957(-14)
9.7725(-15)

3.7778(-07)
0.4610(-10)
0.6060(-10)

3.0006(-03)
8.9337(-08)
4.9651(-14)

1.9725(-08)
1.4888(-14)
5.4208(-15)

1.4336(-05)
5.9298(-10)
5.5511(-17)

Example 3. Region bounded by ellipses.
Consider a region H bounded by the ellipses

r 0 : z0(t) = a0 cos t + ib0 sin t,

r 1 : z1(t) = a1 cos t + ib1 sin t,

with a0 = 7, a 1 = 1, b0 = 5, b1 = 5, such that

2 i 2 2 i 2a0 -  b0 = aj -  b1,

as shown in Figure 3. The exact mapping function that maps H onto D = {w : p < \w\ < 1} and the 
exact radius are [14]

f z + (z2 -  (a° -  b0))1/2
w = f  (z) = ------------ -V----------a0 + b0 

a 1 + b1
p a0 + b0 ‘

The inverse mapping function is

r-u  x w2(a0 + b0) + a0 -  b0z = f  (w) = ----------- -------------- .2w

Using (3.1), the exact zero of the Szego kernel S H(z, a) is

z* = f - 1( - p / f  (a)) = V 0 0
[a + (a2 -  a2 + b°)1/2]2( -a 0 + b0) -  p2(a0 + b0)3

2p(a0 + b0)[a + (a2 -  a2 + b2)1/2]

For our numerical work, we have chosen a = 5 -  2i, a  = 6, and z0 = 0. The computed exact inner 
radius p and the exact zero z* are

p = 0.344131154255050,

and

z* = -4.420534003935095 + 1.010160008109000i.
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Figure 3. The region Q (top) and its annulus map (bottom) for Example 3 with n = 256.

Table 3 shows that the absolute errors \zf -z1 n\, \zf -z2 n\, \zf -z3 n\, \zf -z4 n\, and \p -pn\ are decreasing 
to zero with increasing number of nodes n. The computation of the zero zf using (3.1) together with 
Theorem 2 produces better accuracy than that of the other methods using (2.11), (2.14), and (2.15).

Table 3. Absolute errors for Example 3.

n Iz* -  z1,n\ \ n,
* <Nz-
*

z\ \z* -  z3,n\ z - z \n \n-

64
128
256

2.8344(-05)
1.8038(-11)
2.3093(-14)

1.1895(-04)
4.3040(-11)
5.8284(-15)

4.5738(-04)
2.3000(-07)
3.6680(-14)

1.5805(-06)
4.9647(-10)
4.8035(-15)

5.1137(-08)
5.9298(-10)
5.5511(-17)

Example 4. Region bounded by ovals of Cassini.
Consider a region Q bounded by the ovals of Cassini

ro : zo(t) = ro(t)(cos t + i sin t), 

r  : zi(t) = ri(t)(cos t -  i sin t),

with

ro(t) = b0 V (cos 2t + sin2 2t),

r1(t) = b1 y  (cos 2t + -\J(a1/b 1)4 -  sin2 2t), 

and a0 = 8.5488 (up to 4 decimal places), a1 = 4, b0 = 7, b1 = 2, such that

(a0 -  b0)b? = (a4 -  b1)b2,
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as shown in Figure 4. The exact mapping function that maps Q onto D = {w : p < \w\ < 1} and the 
exact radius are [14]

w = f  (z) =
a0z

(b0z2 + a4 -  M)1/2’
and

The inverse mapping function is

P =
a0b1

z = f  1(w) =

a 1b0

-  V w2b0 -
24w a 0

Using (3.1), the exact zero of the Szego kernel SQ(z, a) is

-  ^ p 2(b0 -  a4)(a4 + a2b2 -  b4)
zf = f - 1(-p^.f (a)) =

^ p 2b0(a2b2 -  b̂ J) + a0(p2b0a2 -  a2a2)

For our numerical work, we have chosen a = -8  -  2i, a  = -9 , and z0 = 0. The computed exact radius 
p and the exact zero zf are

p = 0.610629257081536,

and
zf = 5.034600845346161 + 0.833658538455800i.

Figure 4. The region Q (top) and its annulus map (bottom) for Example 4 with n = 256.

a
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Table 4 shows that the absolute errors \z* -z1 n\, \z* -z2 n\, \z* -z3 n\, \z* -z4 n\, and \p -pn\ are decreasing 
to zero with increasing number of nodes n. The computation of the zero z* using (3.1) together with 
Theorem 2 produces better accuracy than that of the other methods using (2.11), (2.14), and (2.15).

Table 4. Absolute errors for Example 4.

n \z* -  z1,n\

* * z -*z\

* * z1*z\

* ^ z -*z\ \npn-\p

64
128
256

8.5045(-04)
1.9189(-07)
2.1081(-12)

4.4473(00)
2.3109(-07)
1.6586(-12)

2.7495(-03)
3.0427(-07)
1.3563(-11)

1.1486(-06)
1.6884(-13)
6.0576(-15)

7.4455(-08)
1.1213(-14)
1.1102(-16)

Example 5. Narrow region bounded by ovals of Cassini.
Consider a similar region as in Example 4 with a0 = 10.7703 (up to 4 decimal places), a 1 =

8, b0 = 9, bi = 6, such that
(a0 -  b0)b? = (a4 -  b1)b2,

as shown in Figure 5. The region is much narrower than the region shown in Example 4.
For our numerical work, we have chosen a = -12  -  2i, a  = -12.5, and z0 = 0. The computed exact 

radius p and the exact zero z* are
p = 0.897527467855751,

and
z* = 11.363858728989024 + 1.790685260129058i.

Figure 5. The region Q (top) and its annulus map (bottom) for Example 5 with n = 512.
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Table 5 shows that the absolute errors |zc -  z1 n|, |zc -  z2 n|, |zc -  z3 n| using (2.11), (2.14) and (2.15) 
respectively produce poor accuracies, while |zc -  z4 nl and |p - pn| are decreasing to zero with increasing 
number of nodes n. Table 5 shows the superiority of conformal mapping approach.

Table 5. Absolute errors for Example 5.

n |z* -  z1,n| |z* -  z2,n| |z* -  z3,n| |z* -  z4,n| |P -  Pn|

64 4.4428(00) 2.8534(01) 1.9380(00) 1.4242(-01) 2.3787(-03)
128 2.9301(00) 3.5825(01) 3.2135(00) 1.1725(-03) 2.0576(-05)
256 3.7657(00) 9.3503(00) 3.0514(00) 9.3258(-08) 1.6414(-09)
512 1.2996(01) 6.0062(14) 4.0772(00) 1.6969(-14) 6.6613(-16)

Example 6. Consider a region Q bounded by

r 0 : zo(t) = cos t + 0.45 cos 2t + z'(sin t + 0.45 sin 2t) ,

r  : Z1(t) = (0.3 + 0.1 cos3t)e-it,

with 0 < t < 2n, a0 = 0.5 -  0.5i, and a  = -0.50 -  0.5i. The region is shown in Figure 6. The exact 
zero zc, the exact mapping function f  (z), and the inner radius p for this region are unknown.

Figure 6. The region Q (top) and its annulus map (bottom) for Example 6 with n = 256.

Since S Q(zc, a) has zero as theoretical value, the accuracy is determined by calculating |SQ(z1 n , a)|, 
|SQ(z2n , a)|, |SQ(z3 n , a)|, and |SQ(z4 n , a)| using (2.9) along with trapezoidal rule. Table 6 shows the 
numerical results and the conformal mapping approach yields high accuracy.
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Table 6. Absolute errors for Example 6.

n |S Q(z1,n, a)| |S Q(z2,n, a)| |S Q(z3n, a)| |S Q(z4n, a)|

64
128
256

2.28182(-05)
2.69091(-08)
3.74744(-14)

2.93287(-07)
2.19028(-11)
1.39858(-15)

1.18440(-07)
1.04818(-11)
8.47000(-16)

6.29401(-08)
2.54814(-11)
1.95062(-16)

Example 7. We consider an annulus Q bounded by

To : zo(t) = c + 0.5 cos t -  i sin t, 

n  : zx(t) = pe-it,

with 0 < t < 2n, c = -0.1 -  0.1i, p = 0.3, a0 = -0 .4  + 0.5i, and a  = -0.3 -  0.5i. The test region is 
shown in Figure 7. The exact zero zc, the exact mapping function f  (z), and the inner radius p for this 
region are unknown.

Figure 7. The region Q (top) and its annulus map (bottom) for Example 7 with n = 512.

Since SQ(zc, a) has zero as theoretical value, the accuracy is determined by calculating |SQ(z1 n, a)|, 
|SQ(z2n, a)|, |SQ(z3 n, a)|, and |SQ(z4n, a)| using (2.9) based on trapezoidal rule with modification [27]. 
Table 7 shows the numerical results and superiority of conformal mapping approach.
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Table 7. Absolute errors for Example 7.

n |S Q(4n, a)| |S Q(z2,n, a)| |S Q(z3n, a)| |S Q(z4n, a)|

64
128
256

7.5944(-06)
1.27105(-08)
3.56166(-14)

1.60932(-05)
8.78021(-07)
3.18398(-13)

3.61678(-06)
4.07031(-09)
1.20319(-14)

5.34997(-08)
1.79584(-14)
3.10317(-17)

The computations above show that the approximations z^n in (4.1) involves trapezoidal rule and 
approximations SQ,n(z0(ti), a), Sn^z^t;), a), SQ n(z0(ti), a), and S Q n(z1(ti), a). The approximation z2,n 
involves trapezoidal rule, Newton iterative method and approximations ^n(ti) based on approximations 
S Q,n(z(t), a) and SQn(z(t), a). The approximation z3n involved approximations q0,n(ti) based on 
trapezoidal rule and approximation ^n(ti) which is further based on approximations S Q,n and S Qn. 
However, the approximation z4 n does not rely on approximations S Q,n, S Q n, and n̂ as in previous three 
methods. This explains why the conformal mapping approach yields better accuracy, even for a narrow 
region.

6. Conclusions

Based on conformal mapping, we derived an analytical formula for the zero of the Szego kernel for a 
doubly connected region with smooth boundaries. Special cases are the explicit formulas for the zeros 
of the Szego kernel for doubly connected regions bounded by circles, limacons, ellipses, and ovals of 
Cassini. Some MATLAB functions have been used for fast and efficient numerical conformal mapping 
via the integral equation with the generalized Neumann kernel. The performance and accuracy of the 
presented conformal mapping method for computing the zeros of the Szego kernel are compared to 
analytic solutions or to previous results whenever analytic solutions or previous results are available. 
Comparisons with previous results show that the conformal mapping approach always yields better 
accuracy, even for a narrow region. Furthermore, the conformal mapping approach requires only the 
first and second derivatives of the parametrization of the boundary, while previous methods require up 
to the third derivative.

The conformal mapping approach presented in this paper can also be extended to doubly connected 
region with piecewise smooth boundaries with corners. The integral equation (3.5) is valid only at off- 
corner points [22,28]. By means of singularity subtraction [29], (3.5) can be written in an alternative 
form for which the trapezoidal rule with a graded mesh [30] can be applied wherein the derivative of 
the new integrand vanishes at the corner points. See [18,22,28-30] for more details.

Another competitive approach for numerical conformal mapping of doubly connected region with 
corners is the conjugate function method with the hp-FEM algorithm [31,32]. In [21, Example 3.4, 
p.8], for a square in square region it is found that the computations of the conformal capacity of a 
condenser, using the integral equation with the generalized Neumann kernel with the trapezoidal rule 
and graded mesh are not as accurate as the results obtained by the hp-FEM algorithm in [32]. Thus, 
we think computing the zero of the Szego kernel for a doubly connected region with piecewise smooth 
boundaries with corners constitutes a good problem for future research.
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