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Abstract

Many systems in the real world are periodic due to periodic phenomena in nature. Periodic
hybrid stochastic differential equations are often used to model them. In many situations,
it is inappropriate to study whether the solutions of periodic hybrid stochastic differen-
tial equations will converge to an equilibrium state (say, 0 or the trivial solution) but more
appropriate to discuss whether the probability distributions of the solutions will converge
to a stationary distribution, known as stability in distribution. This paper aims to determine
whether or not a periodic stochastic state feedback control can make a given nonlinear
periodic hybrid differential equation, which is not stable in distribution, to become stable
in distribution. This problem will be referred to as stabilisation in distribution by peri-
odic noise. There is little known on this problem so far. This paper initiates the study in
this direction.

1 INTRODUCTION

Many practical systems may experience abrupt changes in their
structure and parameters. These practical systems include elec-
tric power systems, the control system of a solar thermal central
receiver, manufacturing systems, financial systems. Hybrid ordi-
nary differential equations (ODEs) and stochastic differential
equations (SDEs) have been widely used to model these systems
(see e.g., [5, 15, 16, 40, 42, 48, 49]). On the other hand, periodic-
ity (e.g. seasonal changes) is a natural phenomena which occurs
in many practical systems too. Naturally, many authors have
devoted their interests to the study of periodic hybrid ODEs
and SDEs (see e.g., [4, 9, 13, 23, 25, 38, 44, 45]).
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Since systems in the real world often need to run for a long
period of time, their stability is one of the major concerns. On
the asymptotic stability of SDE systems, there are two funda-
mental categories: (ASE) asymptotic stability of an equilibrium
state; (ASD) asymptotic stability in distribution. ASE is to study
whether the solutions of a given SDE system will tend to the
equilibrium state (e.g. 0 as in most papers) in moment or in
probability; while ASD is to study whether the probability distri-
butions of the solutions of the given SDE system will converge
to a probability distribution, known as stationary distribution.
There is an intensive literature on ASE (see e.g., [6, 11, 19, 30,
34, 37] and many others). The literature on ASD is much less
than ASE but has been growing quickly for the past 10 years
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(see e.g., [24, 46, 51, 52]), in particular, several recent papers
[21, 22, 50]. The reason why there are fewer papers on ASD
than ASE is because the mathematics involved is much more
complicated than that used for the study of ASE but certainly
not because ASD is less important. In fact, it is inappropri-
ate to study ASE for many stochastic hybrid systems in the
real world but more appropriate to study ASD. For example,
for many population systems under random environment, the
stochastic permanence is a more desired control objective than
the extinction (see e.g., [7, 8, 17]). In this situation it is useful
to investigate whether or not the probability distribution of the
solutions will converge to a probability distribution (i.e. ASD),
but not to zero (i.e. ASE) (see e.g., [17, 31, 43]). The two stabil-
ity categories can also be illustrated by the control of Covid-19.
There are essentially two control strategies: one is to suppress
infected to 0 but the other is to live with Covid-19. The for-
mer is to stabilise the infected to 0 with probability 1 (i.e. ASE),
while the latter is to stabilise the distribution of the infected to
a stationary distribution (i.e. ASD).

We have here just mentioned the concept of control. It is
a normal practice that a feedback control is used to make the
controlled system to be stable if a given system is not and this is
known as stabilisation by feedback controls. For SDE systems,
most of papers on the stabilisation use the feedback controls in
the drift term, referred to as deterministic feedback controls for
convenience (see e.g., [19, 41, 47]). Nevertheless, there are some
papers where feedback controls driven by Brownian motions,
referred to as stochastic feedback controls for convenience,
are used (i.e. controls are in the diffusion term). Compari-
son between deterministic and stochastic feedback controls, in
particular, some advantages of the latter can be found in, for
example, [32]. In particular, stochastic feedback controls have
been used or observed in many real world systems. For exam-
ple, the stochastic volatility stabilise the financial markets (see
e.g., [14] and the control here is the volaility); the environmen-
tal noise suppresses explosion in population dynamics (see e.g.,
[33] and here the control is the natural environmental noise),
noise suppresses or expresses exponential growth in biologi-
cal and ecological systems (see e.g., [12] and here the control
is noise again). The pioneering work on the latter was due to
Hasminskii [20, p.229], who investigated how an ODE system
could be stabilised by using two white noise sources. The theory
on stabilisation driven by Brownian motion has since then been
developed by several authors (see e.g., [2, 3, 10, 26, 28, 35, 39]).
It is noted that all of the existing papers in this area aim to make
the solutions of stochastically controlled SDEs to tend to the
equilibrium state (i.e. 0 by default) with probability 1 (i.e. in the
area of category ASE).

However, there is so far little known on the problem: if a
stochastic feedback control can make a given unstable system
stable in distribution. The aim of this paper is to address this
problem. To explain more precisely in mathematics, we assume
that the given unstable system is described by a periodic hybrid
ODE driven by a continuous-time Markov chain of the form

ẋ (t ) = f (x(t ), r (t ), t ), (1.1)

where x(t ) is in general referred to as the state and r (t ) is
regarded as the mode and is modelled by a Markov chain on
a finite state space 𝕊 = {1, 2, … ,N }. (The notation used in this
section will be explained in more detail in the next section). We
assume that the coefficient f is periodic in t with period h, that
is

f (x, i, t ) = f (x, i, h + t ) ∀(x, i, t ) ∈ ℝn × 𝕊 × ℝ+. (1.2)

Our aim is to discuss if we can design a periodic feedback con-
trol driven by an m-dimensional Brownian motion B(t ) of the
form u(x(t ), r (t ), t )dB(t ) so that the stochastically controlled
system

dX (t ) = f (X (t ), r (t ), t )dt + u(X (t ), r (t ), t )dB(t ). (1.3)

becomes stable in distribution, where u ∶ ℝn × 𝕊 × ℝ+ →
ℝn×m and is periodic in t with period h, that is

u(x, i, t ) = u(x, i, h + t ), ∀(x, i, t ) ∈ ℝn × 𝕊 × ℝ+. (1.4)

Please also note that we have replaced the state process x(t )
by X (t ) to highlight the state X (t ) of the controlled system
differs from the state x(t ) of the given system. For conve-
nience, we will call the problem above as the stabilisation in
distribution by periodic noise. Before we develop our theory,
let us highlight some special features of this paper to close this
section:

∙ This paper is the first to study the stabilisation in distribution
by periodic noise.

∙ The challenge lies in the fact that it is much harder mathemat-
ically to study if the probability distributions of the solutions
to the periodic controlled SDE will converge to a stationary
distribution periodically.

∙ The usefulness of this paper is because it is more desired to
have the property of stability in distribution for many systems
in the real world, for example, the control of Covid-19.

2 NOTATION AND DEFINITION

Throughout this paper, unless otherwise specified, we let ℝn be
the n-dimensional Euclidean space and (ℝn ) denote the family
of all Borel measurable sets in ℝn. If x ∈ ℝn, then |x| is its
Euclidean norm. Let ℝ2n

0 = {(x, y) ∈ ℝn × ℝn ∶ x ≠ y}. If A is
a vector or matrix, its transpose is denoted by AT . If A is a
matrix, its trace norm is denoted by |A| = √

trace(AT A) while
its operator norm is denoted by ‖A‖ = sup{|Ax| ∶ |x| = 1}.
If A is a symmetric matrix, denote by 𝜆max(A) and 𝜆min(A) its
largest and smallest eigenvalue, respectively. By A > 0 and A ≥
0, we mean A is positive and non-negative definite, respectively.
If both a, b are real numbers, then a ∧ b = min{a, b} and a ∨ b =
max{a, b}. Let ℕ+ denote the set of nonnegative integers. If G

is a set, IG (⋅) denotes its indicator function, that is IG (x ) = 1

 17518652, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12383 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [24/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BAHAR ET AL. 465

for x ∈ G and 0 otherwise. We set inf ∅ = ∞, where ∅ denotes
the empty set. Moreover, x ∶= y means x is defined by y while
y =∶ x means y is denoted by x.

We let (Ω, , {t }t≥0, ℙ) be a complete probability space
with a filtration {t }t≥0 satisfying the usual conditions (i.e. it
is increasing and right continuous while 0 contains all ℙ-null
sets). Let B(t ) = (B1(t ), … ,Bm (t ))T be an m-dimensional Brow-
nian motion defined on the probability space. Let r (t ), t ≥ 0, be
a right-continuous irreducible Markov chain on the probability
space taking values in a finite state space 𝕊 = {1, 2, … ,N } with
generator Γ = (𝛾i j )N×N given by

ℙ{r (t +�) = j |r (t ) = i} =

{
𝛾ij� + o(�) if i ≠ j ,

1 + 𝛾ii� + o(�) if i = j ,
(2.1)

where Δ > 0. Here 𝛾i j ≥ 0 is the transition rate from i to j if
i ≠ j while 𝛾ii = −

∑
j≠i

𝛾i j . We assume that the Markov chain
r (⋅) is independent of the Brownian motion B(⋅).

For a positive number h, denote by h the family of càdlàg
(right continuous with left limits) periodic functions 𝜅 from ℝ+

to [0, 1] with period h. If 𝜅 ∈ h, we set 𝜅(𝜈) = (1∕h) ∫ h

0
𝜅𝜈 (s)ds

for 𝜈 = 1, 2, where throughout this paper we write (𝜅(s))𝜈 =
𝜅𝜈 (s). Denote by h the family of continuous functions 𝜉
from [0, h] to ℝn with norm ‖𝜉‖h = sup

s∈[0,h] |𝜉(s)|. Denote
by  (h ) the family of probability measures on h. For P1, P2 ∈ (h ), define the Kantorovich metric dΦ by

d�(P1, P2) = sup
𝜙∈�

|||||∫h

𝜙(𝜉 )P1(d𝜉 ) − ∫h

𝜙(𝜉 )P2(d𝜉 )
||||| , (2.2)

where

� = {𝜙 ∶ h → ℝ satisfying |𝜙(𝜉 ) − 𝜙(𝜁)| ≤ ‖𝜉 − 𝜁‖h

and |𝜙(𝜉 )| ≤ 1 for 𝜉, 𝜁 ∈ h}.
(2.3)

It is known that (h, dΦ ) is a complete metric space (see e.g., [18]
for the details on the Kantorovich metric).

Let us consider the stochastically controlled system (1.3). For
it to be well defined, we impose the following assumption.

Assumption 2.1. The coefficients f (x, i, t ) and u(x, i, t ) are
mappings fromℝn × 𝕊 × ℝ+ toℝn andℝn×m , respectively, and
they are continuous and periodic in t with period h (> 0) and
locally Lipschtiz in x. There are moreover periodic functions
𝜅1, 𝜅2 ∈ h and non-negative numbers ai , bi , ci (i ∈ 𝕊) such
that

(x − y)T ( f (x, i, t ) − f (y, i, t )) ≤ ai𝜅1(t )|x − y|2,
|u(x, i, t ) − u(y, i, t )| ≤ bi𝜅2(t )|x − y|,

|(x − y)T (u(x, i, t ) − u(y, i, t ))| ≥ ci𝜅2(t )|x − y|2, (2.4)

for all (x, y, i, t ) ∈ ℝn × ℝn × 𝕊 × ℝ+.

Set K1 ∶= maxi∈𝕊(ai ∨ bi ). It then follows from Assumption
2.1 that

(x − y)T ( f (x, i, t ) − f (y, i, t )) ≤ K1|x − y|2, (2.5)|u(x, i, t ) − u(y, i, t )| ≤ K1|x − y|. (2.6)

It is hence well known (see e.g., [30, 36]) that under Assumption
2.1, for any given initial data X (0) = x̂ ∈ ℝn and r (0) = î ∈ 𝕊
at time 0, the SDE (1.3) has a unique global solution on t ≥
0, which will be denoted by Xx̂,î (t ) in this paper in order to
highlight the role of the initial data, though we often write it
as X (t ) for convenience. We also denote by rî (t ) the Markov
chain starting from î at time 0. It is also known that the second
moment of the solution Xx̂,î (t ) is finite for all t ≥ 0.

To discuss the stability in distribution, we need the time-
homogeneous Markov property (see e.g., [1]). It is known that
the joint process (Xx̂,î (t ), rî (t )) is a Markov process on t ≥ 0
(see e.g., [36]) but not time-homogeneous. Fortunately, the coef-
ficients are periodic with period h. This enables us to form two
time-homogeneous Markov processes for the use of this paper:

∙ For any fixed number h̄ ∈ [0, h), {(Xx̂,î (h̄ + kh), rî (h̄ +
kh))}k∈ℕ+ forms a discrete-time ℝn × 𝕊-valued time-
homogeneous Markov process.

∙ For k ∈ ℕ+, define X̃x̂,î (kh) = {Xx̂,î (kh + s) ∶ 0 ≤ s ≤ h}

which is h-valued. Then {(X̃x̂,î (kh), rî (kh))}k∈ℕ+ forms
a discrete-time h × 𝕊-valued time-homogeneous Markov
process.

In fact, the time-homogeneous property for both processes
defined above follows clearly from the periodic property of the
coefficients. So we only need to explain their Markov property.
It is easy to see that the first process is Markov by the known
fact that (Xx̂,î (t ), rî (t )) is a Markov process on t ∈ ℝ+. This first
process with h̄ = 0 will play its important role in this paper and
we denote by P (k, x̂, î; dy × { j }) its k-step transition probability
measure, namely

P (k, x̂, î;B × S ) = ℙ((Xx̂,î (kh), rî (kh)) ∈ B × S ), (2.7)

for any B ∈ (ℝn ) and S ⊂ 𝕊. To see why the second pro-
cess is Markov, we observe that once (X̃x̂,î (k1h), rî (k1h)) for
some k1 ∈ ℕ+ is given, (Xx̂,î (k1h), rî (k1h)) is known and then
(Xx̂,î (t ), rî (t )) for all t ≥ k1h, namely (X̃x̂,î (kh), rî (kh)) for all
k ≥ k1, can be uniquely determined by solving the SDE (1.3)
with initial data (Xx̂,î (k1h), rî (k1h)) at time k1h, but the infor-
mation on how the process reaches (X̃x̂,î (k1h), rî (k1h)) starting
from (x̂, î ) at time 0 is of no further use. These do not
only explain the Markov property but also show the following
important property that

𝔼𝜙(X̃x̂,î ((k + q)h))

=
∑
j∈𝕊

∫
ℝn

𝜙(X̃y, j (qh))P (k, x̂, î; dy × { j }), (2.8)
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466 BAHAR ET AL.

for 𝜙 ∈ Φ and k, q ∈ ℕ+. It should be emphasised that
the formula above uses the transition probability measure of
{(Xx̂,î (kh), rî (kh))}k∈ℕ+ but not that of {(X̃x̂,î (kh), rî (kh))}k∈ℕ+ .
This formula will play a critical role in the proof of our main
theorem in this paper.

Denote by (X̃x̂,î (t )) the probability measure on h gener-
ated by X̃x̂,î (t ). (Please see e.g., [18], for more details about
probability measures generated by stochastic processes and
Definition 2.2 below.) We can now give the definition of the
stability in distribution.

Definition 2.2. The controlled SDE (1.3) is said to be
asymptotically stable in distribution if there exists a probability
measure 𝜇h ∈  (h ) such that

lim
k→∞

dΦ((X̃x̂,î (kh)), 𝜇h ) = 0, (2.9)

for all (x̂, î ) ∈ ℝn × 𝕊.

It should be pointed out that in the literature (see e.g., [51]),
the asymptotic stability in distribution is in general defined on
the joint process (X̃x̂,î (kh), rî (kh)). On the other hand, given the
known fact that the probability distribution of the Markov chain
rî (t ) converges to its unique stationary distribution (see e.g., [1]),
our definition here only on X̃x̂,î (kh) is consistent with that in
the literature.

3 STABILISATION BY PERIODIC
NOISE

In this section, we shall impose some additional conditions on
the coefficient f and the control function u so that the con-
trolled SDE (1.3) will be stable in distribution. However, we will
only address in Section 5 the issue how to design the control
function u to meet these additional conditions given that f sat-
isfies its corresponding conditions. Let us begin with a lemma
which will play a fundamental role in this section.

Lemma 3.1. Under Assumption 2.1,

ℙ(Xx̂,î (t ) − Xŷ,î (t ) ≠ 0 for all t ≥ 0) = 1, (3.1)

for any x̂, ŷ ∈ ℝn with x̂ ≠ ŷ and î ∈ 𝕊.

Proof. If (3.1) were false, there would exist some (x̂, ŷ, î ) ∈ ℝn ×
ℝn × 𝕊 with x̂ ≠ ŷ such that ℙ(𝜏 < ∞) > 0, where

𝜏 = inf{t ≥ 0 ∶ Xx̂,î (t ) − Xŷ,î (t ) = 0}. (3.2)

We can then find a pair of positive numbers R and T such that
ℙ(Ω1) > 0, where

�1 = {𝜔 ∈ � ∶ 𝜏(𝜔) ≤ T and
sup

0≤t≤𝜏(𝜔)
(Xx̂,î (t , 𝜔)| ∨ |Xŷ,î (t , 𝜔)|) ≤ R − 1}. (3.3)

Recall (2.5), (2.6) and let K1 = 2K1 + 4K 2
1 . Define the Lyapunov

function

V1(z, t ) = e−K2t |z|−2, (3.4)

for (z, t ) ∈ (ℝn − {0}) × ℝ+. For any 𝜀 ∈ (0, |x̂ − ŷ|), define a
stopping time

𝜏𝜀 = inf{t ≥ 0 ∶ |Xx̂,î (t ) − Xŷ,î (t )| ≤ 𝜀

or |Xx̂,î (t )| ∧ |Xŷ,î (t )| ≥ R}.
(3.5)

Set Z (t ) = Xx̂,î (t ) − Xŷ,î (t ). Applying the Itô formula (see e.g.,
[29]), we can show that

𝔼V1(Z (𝜏𝜀 ∧ T ), 𝜏𝜀 ∧ T ) − |Z (0)|−2

= 𝔼∫
𝜏𝜀∧T

0
e−K2sLV1(Xx̂,î (s),Xŷ,î (s), rî (s), s)ds, (3.6)

where LV1 ∶ ℝ
2n
0 × 𝕊 × ℝ+ → ℝ is defined by

LV1(x, y, i, t ) = −K2|z|−2

− |z|−4(2zT f̄ + |ū|2) + 4|z|−6|zT ū|2, (3.7)

in which z = x − y, f̄ = f (x, i, t ) − f (y, i, t ) and ū =
u(x, i, t ) − u(y, i, t ). Applying (2.5) and (2.6) yields

LV1(x, y, i, t )

≤ −K2|z|−2
+ (2K1 + 4K 2

1 )|z|−2
= 0. (3.8)

It then follows from (3.6) that

𝔼
[
e−K2(𝜏𝜀∧T )|Z (𝜏𝜀 ∧ T )|−2

] ≤ |x̂ − ŷ|−2. (3.9)

Noting that 𝜏𝜀 ≤ T and |Z (𝜏𝜀 )| = 𝜀 whenever 𝜔 ∈ Ω1, we see
from the inequality above that

𝔼
[
e−K2T 𝜀−2IΩ1

] ≤ |x̂ − ŷ|−2. (3.10)

This implies

ℙ(Ω1) ≤ 𝜀2|x̂ − ŷ|−2eK2T . (3.11)

Letting 𝜀 → 0 yields that ℙ(Ω1) = 0. This is in contradiction
with ℙ(Ω1) > 0. The required assertion (3.1) must hence hold.
The proof is complete. □

The following is the first technical assumption. We will, in
Section 5, explain how the control function u can be designed
to satisfy it plus Assumption (3.3) below.

Assumption 3.2. There is a constant p ∈ (0, 1) such that

 ∶= diag(𝜎1 − pa1, … , 𝜎N − paN ) − Γ, (3.12)

is a nonsingular M-matrix, where

𝜎i = 0.5p[(2 − p)c2
i − b2

i ], i ∈ 𝕊. (3.13)
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BAHAR ET AL. 467

In the Appendix, we will give a couple of easy-to-check suffi-
cient criteria for Assumption 3.2 to hold. We need a number of
new notations. Define

(𝜃1, … , 𝜃N )T = −1(1, … , 1)T . (3.14)

By the theory of M-matrices (see e.g., [36, Theorem 2.10 on page
68]), 𝜃i > 0 for all i ∈ 𝕊. Set

�̂� = min
1≤i≤N

𝜃i , �̌� = max
1≤i≤N

𝜃i , (3.15)

â = min
1≤i≤N

ai , b̌ = max
1≤i≤N

bi , �̌� = max
1≤i≤N

𝜎i . (3.16)

It should be pointed out that we must have �̌� > 0. If not, 𝜎i ≤ 0
for all i ∈ 𝕊 and hence, by Proposition A.3 in the Appendix,
 can never be a nonsingular M-matrix. Let us now state our
second assumption.

Assumption 3.3. With the notations above, assume

𝛽 ∶=
1

�̌�
+ pâ

(
1 − 𝜅

(1)
1

)
− �̌�

(
1 − 𝜅

(2)
2

)
> 0. (3.17)

It is useful to observe that under Assumption 3.2, if 𝜅2(⋅) ≡
1, then Assumption 3.3 always holds. Let us present four
lemmas in order to show our main theorem.

Lemma 3.4. Let Assumptions 2.1, 3.2 and 3.3 hold. Define

𝛽(t ) =
1

�̌�
+ pâ(1 − 𝜅1(t )) − �̌�

(
1 − 𝜅2

2 (t )
)
, (3.18)

for t ≥ 0. Then

|||∫ t

0
𝛽(s)ds − 𝛽t | ≤ (pâ + �̌�)h. (3.19)

Proof. Let k be the integer part of t∕h, whence kh ≤ t < (k +
1)h. By the properties of the h-class functions 𝜅1 and 𝜅2, we
derive

− ∫
t

0
𝛽(s)ds

= ∫
t

0

(
−

1

�̌�
− pâ(1 − 𝜅1(s)) + �̌�

(
1 − 𝜅2

2 (s)
))

ds

≤ −
t

�̌�
− pâ

(
1 − 𝜅

(1)
1

)
hk + �̌�

(
1 − 𝜅

(2)
2

)
h(k + 1)

≤ −
t

�̌�
− pâ

(
1 − 𝜅

(1)
1

)
(t − h) + �̌�(1 − 𝜅

(2)
2 )(t + h)

= −𝛽t + (pâ + �̌�)h. (3.20)

Similarly, we can show

−𝛽t − (pâ + �̌�)h ≤ −∫
t

0
𝛽(s)ds. (3.21)

Combining both (3.20) and (3.21) together gives the assertion.
The proof is complete. □

Lemma 3.5. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for any

(x̂, î ) ∈ ℝn × 𝕊,

𝔼|Xx̂,î (t )|p ≤ C1(1 + |x̂|p), (3.22)

for all t ≥ 0, where C1 is a positive number independent of the initial data

(x̂, î ).

Proof. Fix (x̂, î ) ∈ ℝn × 𝕊 arbitrarily and write Xx̂,î (t ) = X (t )
and rî (t ) = r (t ) for convenience. It is easy to show from
Assumption 2.1 that there is a positive constant K3 such that

2xT f (x, i, t ) ≤ 2𝜅(t )ai |x|2 + K3|x|,
|u(x, i, t )|2 ≤ 𝜅2(t )b2

i |x|2 + K3(|x| + 1), (3.23)

|xT u(x, i, t )|2 ≥ 𝜅2(t )c2
i |x|4 − K3(|x|3 + |x|2)

for all (x, i, t ) ∈ ℝn × 𝕊 × 𝕊. Define a Lyapunov function

V2(x, i, t ) = 𝜃i (1 + |x|2)
0.5p

e
∫ t

0 𝛽(s)ds , (3.24)

for (x, i, t ) ∈ ℝn × 𝕊 × ℝ+, where 𝛽(⋅) was defined by (3.18).
Applying the generalised Itô formula (see e.g., [36, Theorem
1.45 on page 48]), we can easily show that

𝔼V2(X (t ), r (t ), t ) − 𝜃î (1 + |x̂|2)
0.5p

= 𝔼∫
t

0
e
∫ s

0 𝛽(v)dv
(
𝛽(s)𝜃r (s) (1 + |X (s)|2)

0.5p

+LV2(X (s), r (s), s)
)

ds, (3.25)

for t ≥ 0, where LV2 ∶ ℝ
n × 𝕊 × ℝ+ → ℝ is defined by

LV2(x, i, s)

= 0.5p𝜃i (1 + |x|2)
0.5p−1

[2xT f (x, i, s) + |u(x, i, s)|2]

− 0.5p(2 − p)𝜃i (1 + |x|2)
0.5p−2|xT u(x, i, s)|2

+

N∑
j=1

𝛾ij𝜃 j (1 + |x|2)
0.5p

. (3.26)

Recalling p ∈ (0, 1), we observe that (1 + |x|2)
0.5p−1

(|x| + 1)

and (1 + |x|2)
0.5p−2

(|x|3 + |x|2 + 1) are bounded for x ∈ ℝn.
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468 BAHAR ET AL.

Using (3.23) and (3.14), we then derive that

LV2(x, i, s)

≤ K4 + (1 + |x|2)
−0.5p

[
pai𝜃i𝜅1(s) + 0.5pb2

i 𝜅
2
2 (s)

− 0.5p(2 − p)c2
i 𝜃i𝜅

2
2 (s) +

N∑
j=1

𝛾ij𝜃 j

]

=≤ K4 + (1 + |x|2)
−0.5p

[
−(𝜎i − pai )𝜃i +

N∑
j=1

𝛾ij𝜃 j

− pai𝜃i (1 − 𝜅1(s)) + 𝜎i𝜃i (1 − 𝜅2
2 (s))

]
≤ K4 + (1 + |x|2)

−0.5p [
−1 − pâ𝜃i (1 − 𝜅1(s))

+ �̌�𝜃i (1 − 𝜅2
2 (s))

]
,

(3.27)

where K4, the following K5,K6,K7 and K8, are all positive
numbers independent of the initial data. On the other hand,

𝛽(s)𝜃r (s) =

(
1

�̌�
+ pâ(1 − 𝜅1(s)) − �̌�(1 − 𝜅2

2 (s))

)
𝜃r (s)

≤ 1 + pâ𝜃r (s)(1 − 𝜅1(s)) − �̌�𝜃r (s)(1 − 𝜅2
2 (s)). (3.28)

Applying (3.27) and (3.28) to (3.25), we obtain

𝔼V2(X (t ), r (t ), t ) − 𝜃î (1 + |x̂|2)0.5p ≤ K4 ∫
t

0
e
∫ s

0 𝛽(v)dvds.

(3.29)
This implies

�̂�𝔼(1 + |X (t )|2)
0.5p

e
∫ t

0 𝛽(s)ds

≤ �̌�(1 + |x̂|2)
0.5p

+ K4 ∫
t

0
e
∫ s

0 𝛽(v)dvds. (3.30)

Applying Lemma 3.4, we then have

�̂�𝔼(1 + |X (t )|2)
0.5p

e𝛽t−(pâ+�̌�)h)

≤ �̌�(1 + |x̂|2)
0.5p

+ K4 ∫
t

0
e𝛽s+(pâ+�̌�)h)ds

≤ �̌�(1 + |x̂|2)
0.5p

+ (K4∕𝛽)e𝛽t+(pâ+�̌�)h. (3.31)

This implies that

𝔼(1 + |X (t )|2)
0.5p ≤ K5(1 + |x̂|p), (3.32)

hence the assertion (3.22) follows. The proof is complete. □

Lemma 3.6. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for any

(x̂, ŷ, î ) ∈ ℝ2n
0 × 𝕊,

𝔼‖X̃x̂,î (kh) − X̃ŷ,î (kh)‖p

h
≤ C2|x̂ − ŷ|pe−𝛽kh, (3.33)

for all k ∈ ℕ+, where C2 is a positive constant independent of the initial

data (x̂, ŷ, î ).

Proof. Fix (x̂, ŷ, î ) ∈ ℝ2n
0 × 𝕊 arbitrarily. Set Z (t ) = Xx̂,î (t ) −

Xŷ,î (t ) and write rî (t ) = r (t ) simply. By Lemma 3.1, Z (t ) ≠ 0
for all t ≥ 0 with probability 1. Define a Lyapunov function

V3(z, i, t ) = 𝜃i |z|pe
∫ t

0 𝛽(s)ds , (3.34)

for (z, i, t ) ∈ ℝn × 𝕊 × ℝ+, where 𝛽(⋅) was defined by (3.18).
Applying the generalised Itô formula, we can show that

𝔼V3(Z (t ), r (t ), t ) − 𝜃î |Z (0)|p

= 𝔼∫
t

0
e
∫ s

0 𝛽(v)dv
(
𝛽(s)𝜃r (s)|Z (s)|p

+LV3(Xx̂,î (s),Xŷ,î (s), r (s), s)
)

ds,

(3.35)

for t ≥ 0, where LV3 ∶ ℝ
2n
0 × 𝕊 × ℝ+ → ℝ is defined by

LV3(x, y, i, s) = p𝜃i |z|p−2
zT f̄ + 0.5p𝜃i |z|p−2|ū|2

− 0.5p(2 − p)𝜃i |z|p−4|zT ū|2 + N∑
j=1

𝛾ij𝜃 j |z|p
, (3.36)

in which z = x − y, f̄ = f (x, i, s) − f (y, i, s) and ū =
u(x, i, s) − u(y, i, s). By Assumption 2.1 as well as (3.14),
we derive

LV3(x, y, i, s)|z|−p

≤ p𝜃i ai𝜅1(s) + 0.5p𝜃i b
2
i 𝜅

2
2 (s)

− 0.5p(2 − p)𝜃i c
2
i 𝜅

2
2 (s) +

N∑
j=1

𝛾ij𝜃 j

= −(𝜎i − pai )𝜃i +

N∑
j=1

𝛾ij𝜃 j

− pai𝜃i

(
1 − 𝜅1(s)

)
+ 𝜎i𝜃i

(
1 − 𝜅2

2 (s)
)

≤ −1 − pâ𝜃i

(
1 − 𝜅1(s)

)
+ �̌�𝜃i

(
1 − 𝜅2

2 (s)
)
. (3.37)

Applying this and (3.28) to (3.35) we obtain

𝔼V3(Z (t ), r (t ), t ) − 𝜃î |Z (0)|p ≤ 0, (3.38)

which yields

�̂�𝔼|Z (t )|p ≤ �̌�|Z (0)|pe−
∫ t

0 𝛽(s)ds , (3.39)

for all t ≥ 0. This, together with Lemma 3.4, yields

𝔼|Z (t )|p ≤ K6|Z (0)|pe−𝛽t , (3.40)

for all t ≥ 0, where K6 = (�̌�∕�̂�)e(pâ+�̌�)h.
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BAHAR ET AL. 469

Now, for any k ∈ ℕ+, set Z̃ (kh) = {Z (kh + s) ∶ 0 ≤ s ≤ h}.
By the Itô formula (see e.g., [29]) and (2.5), (2.6), it is easy to
show that

𝔼‖Z̃ (kh)‖p

h
≤ 𝔼|Z (kh)|p

+ 𝔼

(
sup

0≤s≤h

H1(s)

)

+ K7 ∫
(k+1)h

kh

𝔼|Z (t )|p
dt, (3.41)

where

H1(s) = ∫
kh+s

kh

p|Z (t )|p−2Z T (t )û(t )dB(t ), (3.42)

in which û(t ) = u(Xx̂,î (t ), r (t )) − u(Xŷ,î (t ), r (t )). By the
Burkholder-Davis-Gundy inequality (see e.g., [36, page 76])
and (2.6), we can derive

𝔼

(
sup

0≤s≤h

J1(s)

)

≤ 3𝔼

(
∫

(k+1)h

kh

p2K 2
1 |Z (t )|2p

dt

)1∕2

≤ 3pK1𝔼

(‖Z̃ (kh)‖p

h ∫
(k+1)h

kh

|Z (t )|p
dt

)1∕2

≤ 0.5𝔼‖Z̃ (kh)‖p

h
+ 4.5p2K 2

1 ∫
(k+1)h

kh

𝔼|Z (t )|p
dt. (3.43)

Substituting this into (3.41) yields

𝔼‖Z̃ (kh)‖p

h
≤ 2𝔼|Z (kh)|p + K8 ∫

(k+1)h

kh

𝔼|Z (t )|pdt . (3.44)

Making use of (3.40), we obtain the required assertion (3.33).
The proof is complete. □

Lemma 3.7. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for any

compact subset G of ℝn,

lim
k→∞

dΦ((X̃x̂,î (kh)),(X̃ŷ, ĵ (kh))) = 0, (3.45)

uniformly in x̂, ŷ ∈ G and î, ĵ ∈ 𝕊.

Proof. Note that {r (kh)}k∈ℕ+ is a discrete-time ergodic Markov
chain with its one-step transition probability matrix ehΓ. Define
the stopping time

𝜅î ĵ = inf{kh ∶ rî (kh) = r ĵ (kh), k ∈ ℕ+}. (3.46)

Then 𝜅î ĵ < ∞ a.s. (see e.g., [1]). Hence, for any 𝜀 ∈ (0, 1), there
is a positive number T1 > 0 such that

ℙ(𝜅î ĵ ≤ T1) > 1 − 𝜀∕6 ∀î, ĵ ∈ 𝕊. (3.47)

Recalling a known result ([36, p. 99, Theorem 3.24]) that

sup
(x̂,î )∈G×𝕊

𝔼

(
sup

0≤t≤T1

|Xx̂,î (t )|2) < ∞, (3.48)

we see there is a sufficiently large 𝜌 > 0 such that

ℙ(�x̂,î ) > 1 − 𝜀∕12 ∀(x̂, î ) ∈ G × 𝕊, (3.49)

where Ωx̂,î = {𝜔 ∈ Ω ∶ sup0≤t≤T1
|Xx̂,î (t , 𝜔)| ≤ 𝜌}. We now

fix x̂, ŷ ∈ G and î, ĵ ∈ 𝕊 arbitrarily. For any 𝜙 ∈ Φ and k ∈ ℕ+

with kh ≥ T1, we have

|𝔼𝜙(X̃x̂,î (kh)) − 𝔼𝜙(X̃ŷ, ĵ (kh))| ≤ 𝜀

3
+ H2(kh), (3.50)

where

H2(kh) = 𝔼
(

I{𝜅î ĵ≤T1}|𝜙(X̃x̂,î (kh)) − 𝜙(X̃ŷ, ĵ (kh))|). (3.51)

Set Ω1 = Ωx̂,î ∩ Ωŷ, ĵ ∩ {𝜅î ĵ ≤ T1}. By the time-homogeneous
Markov property (please recall the paragraph containing (2.8)),
we derive

H2(kh)

= 𝔼
(

I{𝜅î ĵ≤T1}𝔼
(|𝜙(X̃x̂,î (kh)) − 𝜙(X̃ŷ, ĵ (kh))||𝜅î ĵ

))
= 𝔼

(
I{𝜅î ĵ≤T1}

× 𝔼|𝜙(X̃w,l (kh − 𝜅î ĵ )) − 𝜙(X̃z,l (kh − 𝜅î ĵ )|)
≤ 𝜀

3
+ 2𝔼

(
I�1

×𝔼
[
1 ∧ (0.5‖X̃w,l (kh − 𝜅î ĵ ) − X̃z,l (kh − 𝜅î ĵ )‖h )

])
≤ 𝜀

3
+ 2𝔼

(
I�1

𝔼‖X̃w,l (kh − 𝜅î ĵ ) − X̃z,l (kh − 𝜅î ĵ )‖p

h

)
,

(3.52)

where w = Xx̂,î (𝜅î ĵ ), z = Xŷ, ĵ (𝜅î ĵ ) and l = rî (𝜅î ĵ ) = r ĵ (𝜅î ĵ ).
Observing that for any given 𝜔 ∈ Ω1, |w| ∨ |z| ≤ 𝜌, we can
apply Lemma 3.6 to see that there is another positive constant
T2 such that

𝔼‖X̃w,l (kh − 𝜅î ĵ ) − X̃z,l (kh − 𝜅î ĵ )‖p

h
≤ 𝜀

6
, (3.53)

for kh ≥ T1 + T2. Substituting this into (3.52) yields that
H2(kh) ≤ 2𝜀∕3 for all kh ≥ T1 + T2. This, together with (3.50),
implies that

|𝔼𝜙(X̃x̂,î (kh) − 𝔼𝜙(X̃ŷ, ĵ (kh))| ≤ 𝜀, (3.54)

for kh ≥ T1 + T2. Since 𝜙 is arbitrary, we must have

d�((X̃x̂,î (kh)),(X̃ŷ, ĵ (kh))) ≤ 𝜀, ∀kh ≥ T1 + T2, (3.55)

for all x̂, ŷ ∈ G and î, ĵ ∈ 𝕊. This proves (3.45). The proof is
complete. □
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470 BAHAR ET AL.

We can now establish our main theorem in this paper.

Theorem 3.8. Let Assumptions 2.1, 3.2 and 3.3 hold. Then there

exists a unique probability measure 𝜇 ∈  (h ) such that

lim
k→∞

dΦ((X̃x̂,î (kh)), 𝜇) = 0, (3.56)

for all (x̂, î ) ∈ ℝn × 𝕊. In other words, the SDE (1.3) is asymptotically

stable in distribution.

Proof. We claim that {(X̃0,1(kh))}k∈ℕ+ is a Cauchy sequence in
 (h ) with metric dΦ. In other words, we need to show that for
any 𝜀 > 0, there is an integer k0 > 0 such that

dΦ((X̃0,1((v + q)h)),(X̃0,1(qh))) ≤ 𝜀, (3.57)

for all integers q ≥ k0 and v ≥ 1. Let 𝜀 ∈ (0, 1) be arbitrary. By
Lemma 3.5, there is a 𝜌 > 0 such that

ℙ{𝜔 ∈ Ω ∶ |X0,1(vh, 𝜔)| ≤ 𝜌} > 1 − 𝜀∕4, (3.58)

for any integer v ≥ 1. For any 𝜙 ∈ Φ, we can then derive, using
(2.8) and (3.58), that

|𝔼𝜙(X̃0,1((v + q)h)) − 𝔼𝜙(X̃0,1(qh))|
= |𝔼(𝔼[𝜙(X̃0,1((v + q)h))|vh]) − 𝔼𝜙(X̃0,1(qh))|
=
|||||
∑
j∈𝕊

∫
ℝn

𝔼𝜙(X̃y, j (qh))P (v, 0, 1; dy × { j })

− 𝔼𝜙(X̃0,1(qh))
|||||

≤ ∑
j∈𝕊

∫
ℝn

|𝔼𝜙(X̃y, j (qh)) − 𝔼𝜙(X̃0,1(qh))|
× P (v, 0, 1; dy × { j })

≤ 𝜀

2
+
∑
j∈𝕊

∫
B𝜌

d�((X̃y, j (qh)),(X̃0,1(qh)))

× P (v, 0, 1; dy × { j }), (3.59)

where B𝜌 = {x ∈ ℝn ∶ |x| ≤ 𝜌}. By Lemma 3.7, there is a
positive integer k0 such that

d�((X̃ŷ, ĵ (qh)),(X̃0,1(qh))) ≤ 𝜀

2
∀q ≥ k0, (3.60)

whenever (y, j ) ∈ B𝜌 × 𝕊. We therefore obtain

|𝔼𝜙(X̃0,1((v + q)h)) − 𝔼𝜙(X̃0,1(qh))| ≤ 𝜀, (3.61)

for q ≥ k0 and v ≥ 1. As this holds for any 𝜙 ∈ Φ, we must have
(3.57) as claimed. Consequently, there is a unique 𝜇 ∈  (h )
such that

lim
k→∞

dΦ((X̃0,1(kh)), 𝜇) = 0. (3.62)

This, together with Lemma 3.7, implies that

lim
k→∞

dΦ((X̃0,1(kh)), 𝜇)

≤ lim
k→∞

dΦ((X̃x̂,î (kh)),(X̃0,1(kh)))

+ lim
k→∞

dΦ((X̃0,1(kh)), 𝜇) = 0, (3.63)

for all (x̂, î ) ∈ ℝn × 𝕊, which is assertion (3.56). The proof is
complete. □

Note that h is an infinite space and  (h ) is huge. It may
therefore be hard to numerically approximate 𝜇, not mentioning
to obtain its probability distribution theoretically. Fortunately,
in practice, we are more concerned with the probability dis-
tribution of Xx̂,î (t ) in long term. For this purpose, let us
return to the discrete-time ℝn × 𝕊-valued time-homogeneous
Markov process {(Xx̂,î (h̄ + kh), rî (h̄ + kh))}k∈ℕ+ , where h̄ ∈
[0, h). Accordingly, let us denote by  (ℝn ) the family of
probability measures on ℝn. For P1, P2 ∈  (ℝn ), define the
Kantorovich metric dΨ by

dΨ(P1, P2) = sup
𝜓∈Ψ

|||∫
ℝn

𝜓(x )P1(dx ) − ∫
ℝn

𝜓(x )P2(dx )|||,
(3.64)

where

� =
{
𝜓 ∶ ℝn → ℝ satisfying |𝜓(x ) − 𝜓(y)| ≤ |x − y|

and |𝜙(x )| ≤ 1 for x, y ∈ ℝn
}
.

(3.65)

Denote also by (Xx̂,î (h̄ + kh)) the probability measure on
ℝn generated by Xx̂,î (h̄ + kh). Noting that (Xx̂,î (h̄ + kh)) is
a marginal probability measure of (X̃x̂,î (kh)), we obtain the
following useful corollary (which can be proved directly in the
same fashion as Theorem 3.8 was proved).

Corollary 3.9. Let Assumptions 2.1, 3.2 and 3.3 hold. Then, for every

h̄ ∈ [0, h), there exists a unique probability measure 𝜇h̄ ∈  (ℝn ) such

that

lim
k→∞

dΨ((Xx̂,î (h̄ + kh)), 𝜇h̄ ) = 0, (3.66)

for all (x̂, î ) ∈ ℝn × 𝕊.

4 SPECIAL BUT IMPORTANT CASES

In this section we will demonstrate that our theory established
in the previous section can be applied to several special but
important cases.

 17518652, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12383 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [24/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BAHAR ET AL. 471

4.1 Time-homogeneous ODE

Let us first consider the case where the given unstable system is
described by a time homogeneous ODE

ẋ(t ) = f (x(t ), r (t )), (4.1)

where f ∶ ℝn × 𝕊 → ℝn. Assume that f (x, i ) is locally Lip-
schtiz in x and there are non-negative numbers ai (i ∈ 𝕊) such
that

(x − y)T ( f (x, i ) − f (y, i )) ≤ ai |x − y|2, (4.2)

for all (x, y, i ) ∈ ℝn × ℝn × 𝕊. We first consider to design a
time-homogeneous control function u ∶ ℝn × 𝕊 → ℝn×m for
which we can find non-negative numbers bi , ci (i ∈ 𝕊) such
that

|u(x, i ) − u(y, i )| ≤ bi |x − y|, (4.3)|(x − y)T (u(x, i ) − u(y, i ))| ≥ ci |x − y|2, (4.4)

for all (x, y, i ) ∈ ℝn × ℝn × 𝕊. The corresponding controlled
SDE is

dX (t ) = f (X (t ), r (t ))dt + u(X (t ), t )dB(t ). (4.5)

If we regard both f and u as a periodic function with period
h = 0, this SDE is a special case of our underlying SDE (1.3).
In this case, h reduces to ℝn and Assumption 2.1 holds with
𝜅1(⋅) = 𝜅2(⋅) ≡ 1. If Assumption 3.2 holds, then, by (3.17),
𝛽 = 1∕�̌� which is always positive, whence Assumption 3.3 must
hold. The following useful corollary follows therefore from
Theorem 3.8.

Corollary 4.1. Let conditions (4.2), (4.3) and (4.4) as well as Assump-

tion 3.2 hold. Then there exists a unique probability measure 𝜇0 ∈ (ℝn ) such that for every initial data (x̂, î ) ∈ ℝn × 𝕊, the solution

of the SDE (4.5) satisfies

lim
k→∞

dΨ((Xx̂,î (kh)), 𝜇0) = 0. (4.6)

4.2 Intermittent control

Although it is natural to design a time-homogeneous control
function given that the ODE (4.1) is time homogeneous, it may
be necessary to design a periodic control function. For example,
a controller needs a rest periodically and an intermittent control
is required to be used (see e.g., [27, 53]). A typical intermittent
control function has the form 𝜅2(t )u(x, i ), where u(x, i ) is the
same as in Section 4.1 and

𝜅2(t ) =
∞∑

k=0

I[kh,(k+1−𝛿)h)(t ), t ≥ 0, (4.7)

in which 𝛿 ∈ [0, 1) is a positive constant. The corresponding
controlled SDE is

dX (t ) = f (X (t ), r (t ))dt + 𝜅2(t )u(X (t ), t )dB(t ). (4.8)

In operation, the stochastic control is switched on and off peri-
odically. That is, on during time periods [0, (1 − 𝛿)h)), [h, (2 −
𝛿)h), [2h, (3 − 𝛿)h), ⋯, while off during [(1 − 𝛿)h, h), [(2 −
𝛿)h, 2h), [(3 − 𝛿)h, 3h),⋯. The parameter 𝛿 is the proportion of
rest in one period of h or in long term. Under conditions (4.2)-
(4.4), Assumption 2.1 is satisfied with 𝜅1(⋅) ≡ 1. If Assumption
3.2 holds, then Assumption 3.3 becomes

1

�̌�
−
�̌�𝛿

h
> 0. (4.9)

We hence have the following useful corollary.

Corollary 4.2. Let conditions (4.2), (4.3) and (4.4) as well as Assump-

tion 3.2 hold. If (4.9) is satisfied, then there exists a unique probability

measure 𝜇 ∈  (h ) such that for every initial data (x̂, î ) ∈ ℝn × 𝕊,

the solution of the SDE (4.8) satisfies

lim
k→∞

dΦ((X̃x̂,î (kh)), 𝜇) = 0. (4.10)

4.3 Worst case

Let us return to the underlying ODE (1.1). Given the periodic
coefficient f , it is easy to identify non-negative numbers ai (i ∈
𝕊) such that

(x − y)T ( f (x, i, t ) − f (y, i, t )) ≤ ai |x − y|2, (4.11)

for (x, y, i, t ) ∈ ℝn × ℝn × 𝕊 × ℝ+. On the other hand, it may
be hard to identify a common 𝜅1 ∈ h for all i ∈ 𝕊 so that
the first inequality in Assumption 2.1 holds. In this worst case,
we just simply let 𝜅1(⋅) ≡ 1. However, we could still design the
periodic control function u as required by Assumption 2.1. In
particular, it is unnecessary to choose 𝜅2(⋅) ≡ 1, which is only
one of many possible choices. Let us form another corollary to
cope with this worst case.

Corollary 4.3. Let Assumption 2.1 hold with 𝜅1(⋅) ≡ 1. If, moreover,

Assumption 3.3 holds and

1

�̌�
− �̌�

(
1 − 𝜅

(2)
2

)
> 0, (4.12)

then the conclusion of Theorem 3.8 holds.

5 DESIGN OF CONTROL FUNCTION

The use of Theorems 3.8 depends on whether the control func-
tion u(x, i, t ) can be designed to meet Assumptions 2.1, 3.2 and
3.3, given that the coefficient f (x, i, t ) satisfies the first inequal-
ity in Assumption 2.1. In this section we will demonstrate how
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472 BAHAR ET AL.

to design the control function in various situations. Due to
the page limit, we will only design the linear periodic control
function in the form

u(x, i, t ) = 𝜅2(t )(A1ix,A2ix, … ,Amix ), (5.1)

for (x, i, t ) ∈ ℝn × 𝕊 × ℝ+, where Aki ∈ ℝn×n is symmetric
and nonnegative definite for i ∈ 𝕊 and k = 1, 2, … ,m and 𝜅2 ∈h. For (x, y, i, t ) ∈ ℝn × ℝn × 𝕊 × ℝ+, we have

|u(x, i, t ) − u(y, i, t )|2 = 𝜅2
2 (t )

m∑
k=1

|Aki(x − y)|2
≤ 𝜅2

2 (t )

(
m∑

k=1

‖Aki‖2

)|x − y|2, (5.2)

and

|(x − y)T (u(x, i, t ) − u(y, i, t ))|2
=𝜅2

2 (t )
m∑

k=1

|(x − y)T
Aki(x − y)|2

≥ 𝜅2
2 (t )

(
m∑

k=1

𝜆2
min(Aki )

)|x − y|2. (5.3)

These imply u satisfies Assumption 2.1 with

bi =

√√√√ m∑
k=1

‖Aki‖2 and ci =

√√√√ m∑
k=1

𝜆2
min(Aki ). (5.4)

What we need to do is: (I) to refine the choices of Aki for
Assumption 3.2 to hold, (II) to design 𝜅2(⋅) for Assumption 3.3
to hold.

Let us first explain (II) should (I) has been done. Compute
𝜅

(1)
1 by definition and â, �̌�, �̌� by (3.14)-(3.16). For Assumption

3.3 to hold, all we need is to design 𝜅2(⋅) for

�̌�
(

1 − 𝜅
(2)
2

)
<

1

�̌�
+ pâ

(
1 − 𝜅

(1)
1

)
, (5.5)

to hold. There are lots of choices 𝜅2 ∈ h to make this happen.
For example, 𝜅2 ≡ 1. Another example is the 𝜅2 defined by (4.7).
In this case, 𝜅

(2)
2 = 1 − 𝛿∕h and hence, by (5.5), all we need is to

set

𝛿 <
h

�̌�

(
1

�̌�
+ pâ

(
1 − 𝜅

(1)
1

))
. (5.6)

We leave the other choices of 𝜅2 to the reader but explain (I) in
two useful situations.

Case 1. Consider the situation where the state X (t ) can be
observed in every mode i ∈ 𝕊 at any time and the stochastic
feedback control can be applied in every mode as well. In this
case, for i ∈ 𝕊 and 1 ≤ k ≤ m, choose symmetric matrices Āki

such that √
2𝜆min(Āki ) > ‖Āki‖. (5.7)

Obviously, there are lots of such matrices. Choose a positive
number 𝛼 sufficiently large so that

0.5𝛼2

(
2

m∑
k=1

𝜆2
min(Āki ) −

m∑
k=1

‖Āki‖2

)
> ai , (5.8)

for all i ∈ 𝕊. This guarantees that there is a p ∈ (0, 1)
sufficiently small for which

0.5𝛼2

(
(2 − p)

m∑
k=1

𝜆2
min(Āki ) −

m∑
k=1

‖Āki‖2

)
> ai , (5.9)

for all i ∈ 𝕊. Let us now set Aki = 𝛼Āki . Noting that 𝜎i defined
by (3.13) has the form

𝜎i = 0.5𝛼2 p

(
(2 − p)

m∑
k=1

𝜆2
min(Āki ) −

m∑
k=1

‖Āki‖2

)
, (5.10)

we see

𝜎i > pai , ∀i ∈ 𝕊. (5.11)

By the theory of M-matrices (see e.g., [36, Theorem 2.10 on page
68]), we see that  defined by (3.12) is a nonsigular M-matrix. In
other words, Assumption 2.1 holds if Aki ’s are defined as above.

Observe that the arguments above still hold as long as

2
m∑

k=1

𝜆2
min(Āki ) >

m∑
k=1

‖Āki‖2, ∀i ∈ 𝕊, (5.12)

but it is unnecessary for (5.7) to hold for every i ∈ 𝕊 and
1 ≤ k ≤ m. This gives us an opportunity to design the con-
trol function to fit into various situations in the real world. For
example, we may let Āki = 0 for all k = 2, … ,m but only need

0.5𝛼2
(

(2 − p)𝜆2
min(Ā1i ) − ‖Ā1i‖2

)
> ai , (5.13)

for all i ∈ 𝕊. This is equivalent to the situation when m = 1.
In other words, we may only use a scalar Brownian motion
as the noise source to achieve the stochastic stabilisation
in distribution.

The observation above also reveals another useful situation,
where a different and independent scalar Brownian motion is
used in different mode i ∈ 𝕊. In terms of mathematics, we have
that m = N and Aki = 0 in (5.1) for all k ≠ i. In this situation,
we may choose Āii ’s and 𝛼 for which

0.5𝛼2
(

(2 − p)𝜆2
min(Āii ) − ‖Āii‖2

)
> ai , (5.14)

and then set Aii = 𝛼Āii for all i ∈ 𝕊.
Case 2. We now consider a situation where the state X (t ) can-

not be observed in some modes, whence the stochastic control
cannot be used in these modes. Without loss of any generality,
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BAHAR ET AL. 473

we let 𝕊1 = {1, 2, … ,N1} contain these modes (1 ≤ N1 < N ).
Mathematically speaking, we are forced to set

Aki = 0 for i ∈ 𝕊1, 1 ≤ k ≤ m, (5.15)

whence bi = ci = 0 for i ∈ 𝕊1. What we need to do is to design
matrices Aki for i ∈ 𝕊2 = {N1 + 1, … ,N } and 1 ≤ k ≤ m. To
establish a simple criterion, we impose an additional condition:
there is some ĵ ∈ 𝕊 for which

𝛾i ĵ > 0 for all i ∈ 𝕊 but i ≠ ĵ . (5.16)

Moreover, let 𝜐 = (𝜐1, 𝜐2, … , 𝜐N ) ∈ ℝ1×N denote the unique
stationary distribution of the Markov chain. It is known that
all 𝜐i ’s are positive. (Please see the appendix below for further
details). Choose symmetric positive definite matrices Āki for
N1 + 1 ≤ i ≤ N and 1 ≤ k ≤ m so that

m∑
k=1

𝜆2
min(Āki ) > 0.5

m∑
k=1

‖Āki‖2. (5.17)

Then choose a positive number 𝛼 so large that

N∑
i=N1+1

𝜐i𝛼
2

m∑
k=1

(
0.5‖Āki‖2 − 𝜆2

min(Āki )
)

+

N∑
i=1

𝜐i ai < 0. (5.18)

Now set Aki = 𝛼Āki . Recalling (5.4), we see

b2
i = 𝛼2

m∑
k=1

‖Āki‖2 and c2
i = 𝛼2

m∑
k=1

𝜆2
min(Āki ), (5.19)

for N1 + 1 ≤ i ≤ N . Consequently, it follows from (5.18) that

N∑
i=1

𝜐i ai +

N∑
i=N1+1

𝜐i (0.5b2
i − c2

i ) < 0. (5.20)

That is

N∑
i=1

𝜐i (ai + 0.5b2
i − c2

i ) < 0, (5.21)

if we recall that bi = ci = 0 for i ∈ 𝕊1. By Proposition A.2 in
the appendix below, we see Assumption 3.2 is satisfied as long
as Aki ’s are designed as above.

6 EXAMPLE

Due to the page limit we will only discuss an example to
illustrate our new theory.

Linear hybrid ODEs of the form ẋ(t ) = (𝜁r (t ) + Fr (t ) )x(t )
have been used widely in many branches of science and industry
(see e.g., [6, 11, 19]), where Fi ∈ ℝn×n and 𝜁i ∈ ℝn for i ∈ 𝕊.
Taking into account the natural phenomena of periodicity, for

example, seasonal changes (see e.g., [4, 9, 23, 38]), we arrive at
the periodic hybrid ODEs of the form

ẋ(t ) = [𝛼r (t )(t )𝜁r (t ) + 𝛽r (t )(t )Fr (t )]x(t ). (6.1)

We assume that 𝛼i ∶ ℝ+ → ℝ and 𝛽i ∶ ℝ+ → (0, 1] are all
continuous and periodic with period h while Fi + F T

i
> 0

for all i ∈ 𝕊. If we define f (x, i, t ) = [𝛼i (i )𝜁i + 𝛽i (t )Fi ]x for
(x, i, t ) ∈ ℝn × 𝕊 × ℝ+, the ODE (6.1) is in the form of (1.1).
It is obvious that f is continuous and periodic in t with period
h (> 0) and globally Lipschtiz in x. Moreover, define

ai = 0.5𝜆max(Fi + F T
i ) and 𝜅1(t ) = max

i∈𝕊
𝛽i (t ), (6.2)

or let 𝜅1(t ) ≡ 1 to make it simple (see the worst case in
Section 4). Then, for all (x, y, i, t ) ∈ ℝn × ℝn × 𝕊 × ℝ+,

(x − y)T ( f (x, i, t ) − f (y, i, t ))

= 0.5𝛽i (t )(x − y)T (Fi + F T
i )(x − y) ≤ ai𝜅1(t )|x − y|2. (6.3)

In other words, f satisfies Assumption 2.1. Let x1(t ) and
x2(t ) be two solutions of (6.1) with different initial states (i.e.
x1(0) ≠ x2(0)) but the same initial mode (i.e. the same r (0)). It
is straightforward to show that

d

dt
(|x1(t ) − x2(t )|2) ≥ �̂�𝛽|x1(t ) − x2(t )|2, (6.4)

where �̂� ∶= mini∈𝕊 𝜆min(Fi + F T
i ) > 0 and 𝛽 ∶= mini∈𝕊

min0≤t≤h 𝛽i (t ) > 0. This implies immediately that|x1(t ) − x2(t )| →∞ with probability 1. Hence the ODE
(6.1) is not stable in distribution.

Let us now design a stochastic feedback control to stabilise it.
To make it simple, we will use a scalar Brownian motion B(t ) as
the stochastic source, while look to design the control function
in the form u(x, i, t ) = 𝜅2(t )Aix for (x, i, t ) ∈ ℝn × 𝕊 × ℝ+,
namely, we need to design 𝜅2 ∈ h and matrices Ai ∈ ℝn×n for
i ∈ 𝕊. So the stochastically controlled system is

dX(t ) = [𝛼r (t )(t )𝜁r (t ) + 𝛽r (t )(t )Fr (t )]x(t )dt

+ 𝜅2(t )Ar (t )X (t )dB(t ). (6.5)

We will consider the situation described in Case 2 in Section 5
and use the notations there, bearing in mind that m = 1 in
this example. In particular, we also assume (5.16). We hence
set Ai = 0 for i ∈ 𝕊1. For each i ∈ 𝕊2, choose a symmetric

n × n matrix Āi such that 𝜆min(Āi ) >
√

0.5‖Āi‖. Then choose
a positive number 𝛼 so large that∑

i∈𝕊2

𝜐i𝛼
2
(
0.5‖Āi‖2 − 𝜆2

min(Āi )
)

+
∑
i∈𝕊

𝜐i ai < 0. (6.6)

Now set Ai = 𝛼Āi . Recalling Section 5, we see u(x, i, t ) satis-
fies Assumption 2.1 with bi = ci = 0 for i ∈ 𝕊1 and bi = 𝛼‖Ai‖
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474 BAHAR ET AL.

and ci = 𝛼𝜆min(Āi ) for i ∈ 𝕊2. Consequently, it follows from
(6.6) that ∑

i∈𝕊

𝜐i ai +
∑
i∈𝕊2

𝜐i (0.5b2
i − c2

i ) < 0. (6.7)

That is ∑
i∈𝕊

𝜐i (ai + 0.5b2
i − c2

i ) < 0. (6.8)

By Proposition A.2 in the appendix below, we see Assumption
3.2 is satisfied. In other words, we can find p ∈ (0, 1) for matrix
 defined by (3.12) to be a nonsingular M-matrix. Finally, we
can design 𝜅2 for Assumption 3.3 to hold as explained in the
paragraph just before Case 1 in Section 5 or simply let 𝜅2 ≡
1. In the latter case, Assumption 3.3 holds automatically and
there is no need to determine p. To perform computer sim-
ulation, we consider the 2-dimensional ODE (6.1), where the
Markov chain r (t ) has its state space 𝕊 = {1, 2} and generator

Γ =

(
−1 1
3 −3

)
and the others are: h = 0.1,

a1(t ) = 0.5 + cos(2𝜋t∕h), 𝛽1(t ) = 0.5 + 0.4 sin(2𝜋t∕h),
(6.9)

a2(t ) = 0.5 + sin(2𝜋t∕h), 𝛽2(t ) = 0.5 + 0.4 cos(2𝜋t∕h),
(6.10)

𝜁1 =

(
1
−1

)
, 𝜁2 =

(
−1
1

)
, (6.11)

F1 =

(
0.2 0.5
−0.5 0.1

)
,F2 =

(
0.1 −0.2
0.3 0.1

)
. (6.12)

By (6.2), we have that a1 = 0.2, a2 = 0.1309 but we let 𝜅1(t ) ≡ 1
to make it simple. Consider the case where 𝕊1 = {2} and 𝕊2 =
{1}. Accordingly, A2 = 0 but we need to design A1. We choose
A1 = 𝛼Ā1 with Ā1 = diag(1, 1). Noting that r (t ) has its station-
ary distribution 𝜐 = (0.75, 0.25), (6.6) becomes −0.375𝛼2 +
0.182725 < 0, that is, 𝛼 > 0.6980 and we choose 𝛼 = 2 so the
existence of p ∈ (0, 1) is guaranteed for Assumption 3.2 to hold.
We finally choose 𝜅2(t ) ≡ 1 so Assumption 3.3 holds as well and
there is no need to determine p. In other words, the controlled
system (6.5) is stable in distribution with the system coefficients
specified above.

We apply the well-known Euler-Maruyama method (see e.g.,
[29]) with the stepsize 0.001 to perform the simulation of three
sample paths of the solution with 3 different initial values
(0, 0)T , (5, −2)T and (−2, 5)T for X (0) but the same initial
value 1 for r (0), which are corresponding to Sample 1, 2 and
3 in Figure 1, respectively. The simulation does not only show
that three sample paths approach to each other very quickly
but also that three sample paths look like stationary sequences.
We observe that most of these sample paths are within [−1, 1]
but some outside. This is significantly different from the given
ODE—any of its two different solutions will diverge to infin-
ity with probability 1. In other words, the simulation illustrates
clearly that the stochastic feedback control stabilise the given
ODE in distribution.

FIGURE 1 Three sample paths of the controlled SDE

7 CONCLUSION

In this paper we proposed a new problem of stabilisation in dis-
tribution by periodic noise: whether or not a periodic stochastic
state feedback control can make a given nonlinear periodic
hybrid differential equation, which is not stable in distribution,
to become stable in distribution. We pointed out that there is
little known on this problem so far but also explained why such
a problem is required to be addressed from real applications
including the control of Covid-19. We did not only investigated
the problem successfully but also demonstrate how periodic
stochastic feedback controls could be designed to stabilise given
systems in distribution. A linear multi-dimensional example was
discussed with computer simulation to illustrate our new theory
on stabilisation in distribution by periodic noise.
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APPENDIX A

In this Appendix, we first give a couple of easy-to-check suffi-
cient criteria for Assumption 3.2 to hold. The first one is [36,
Theorem 5.13 on page 174] which we cite here as a proposition.

Proposition A.1. Assumption 3.2 holds if

||||||||||

c2
1 − 0.5b2

1 − a1, −𝛾12, ⋯ , −𝛾1N

c2
2 − 0.5b2

2 − a2, −𝛾22, ⋯ , −𝛾2N

⋮ ⋮

c2
N
− 0.5b2

N
− aN , −𝛾N 2, ⋯ , −𝛾NN

||||||||||
> 0, (A.1)

and, moreover, there is some ĵ ∈ 𝕊 for which

𝛾i ĵ > 0 for all i ∈ 𝕊 but i ≠ ĵ . (A.2)

To state another useful criterion, we recall that r (t ) is an irre-
ducible Markov chain in the finite state space 𝕊. Hence, it has
a unique stationary distribution 𝜐 = (𝜐1, 𝜐2, … , 𝜐N ) ∈ ℝ1×N

which can be determined by solving the linear equation 𝜐Γ = 0
subject to

∑
i∈𝕊

𝜐i = 1 and 𝜐i > 0 for all i ∈ 𝕊.

Proposition A.2. Assumption 3.2 holds if (A.2) holds and∑
i∈𝕊

𝜐i (ai + 0.5b2
i − c2

i ) < 0. (A.3)

This Proposition was proved in the appendix of [35]. We next
give another proposition which has been used to show why �̌� >
0 in Section 3.

Proposition A.3. If D = diag(d1, … , dN ) with all di ≤ 0, then

D − Γ is not a nonsingular M-matrix.

Proof. Assume that D − Γ is a nonsingular M-matrix. Set 1N =
(1, … , 1)T ∈ ℝN and z = (z1, … , zN )T = (D − Γ)−11N . Then
all zi > 0 and (D − G )z = 1N . Multiplying it from the left
by the stationary distribution 𝜐 of the Markov chain (see the
paragraph before Proposition A.2) gives

𝜐(D − Γ)z = 𝜐1N = 1. (A.4)

But

𝜐(D − Γ)z = 𝜐Dz − 𝜐Γz =
∑
i∈𝕊

𝜐i di ≤ 0. (A.5)

We see a contradiction. The proposition must hold. □
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