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Abstract: The lightweight nature of micro air vehicles (MAVs) makes them highly sensitive to
perturbations, thus emphasizing the need for effective control strategies that can sustain attitude
stability throughout translational movement. This study evaluates the performance of two controllers
(Proportional-Integral-Derivative (PID) and Adaptive PID based on Sliding Mode Control (SMC))
on a MAV that is subjected to external disturbances. These controllers are initially simulated using
MATLAB®/Simulink™ and then implemented in real-time on the Parrot Mambo Minidrone. The
observation on the waypoint follower and the orbit follower in both simulation and experiment
showed that the Adaptive PID (APID) controller is more effective and robust than the PID controller
against external disturbances such as wind gusts. The study provides evidence of the potential of the
APID control scheme in enhancing the resilience and stability of MAVs, making them suitable for
various applications including surveillance, search and rescue, and environmental monitoring.

Keywords: parrot mambo minidrone; adaptive control; sliding mode control; PID; trajectory tracking;
external disturbance; wind gust

1. Introduction

Micro air vehicles (MAVs) are gaining popularity in various applications, including
surveillance, reconnaissance, and inspection. Accurate position control is essential for
these tasks, and researchers have devoted significant effort to improving the position
control of MAVs, particularly quadrotor MAVs. However, due to their small size, MAVs
are highly vulnerable to disturbances such as wind gusts, which can make real-time
implementation challenging. As a result, it is crucial to develop a reliable controller for
the successful operation of MAVs, enabling researchers to evaluate and verify various
approaches. To this end, a wide range of control strategies [1,2] have been explored, namely
Proportional-Integral-Derivative (PID), Linear Quadratic Regulator (LQR), Backstepping,
Feedback Linearization Control (FLC), Sliding Mode Control (SMC), Model Predictive
Control (MPC), Neural Network, H-infinity, Fuzzy Logic, and Adaptive Control.

This research is focused on the Parrot Mambo Minidrone, which is a type of micro air
vehicle (MAV) and one of several quadrotors designed for educational purposes that are
available today. Weighing less than 1 kg, the Parrot Mambo Minidrone comes equipped
with a range of sensors, including ultrasonic sensors, accelerometers, gyroscopes, air
pressure sensors, and down-facing cameras (optical flow), allowing for six-degree-of-
freedom control.

The Simulink Support Package for Parrot Minidrones (SSPPM) [3] provided by MAT-
LAB is a valuable tool for researchers [4]. This package, which was developed by MIT and
based on the Aerospace Blockset, enables researchers to enhance the tracking performance

Aerospace 2023, 10, 512. https://doi.org/10.3390/aerospace10060512 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10060512
https://doi.org/10.3390/aerospace10060512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-5422-4435
https://doi.org/10.3390/aerospace10060512
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10060512?type=check_update&version=2


Aerospace 2023, 10, 512 2 of 23

of the Parrot Mambo Minidrone by testing low-level control in a real-time platform. With
SSPPM, researchers can create flight control algorithms using Simulink blocks, simulate
systems to verify control laws and directly deploy control algorithms on the drone through
a Bluetooth wireless network. Several studies were conducted on the topic of PID and
LQR control techniques. For example, [5,6] have examined PID, while [7–9] have focused
on LQR. In addition, fuzzy control was investigated by [10,11], INDI by [12], H∞ by [13],
sliding mode control by [14–19] and adaptive control by [20–22].

In [7], it was concluded that LQI provides better flight than regular LQR due to its
ability to reduce steady-state error, whereas [8] claims that LQR control yields better system
tracking with minimum settling time. This optimal control can also be used instead of
six PID controllers for the entire system, with one LQR controller being sufficient for multi-
axis control of MAV [9], on the other hand, argues that MPC exceeds PID and LQR in
confirming that the system is stable and robust, based on both simulation and experimental
results. However, the authors detected that the performance of the sensor declines over a
certain period of operation, and the controller is not efficient enough to demonstrate its
full strength.

In [10], the pitch, roll, and vertical rate of the Parrot AR. Drones were controlled
using three Fuzzy Logic Controllers (FLCs). Both the desired and real positions were
used as inputs, while the FLCs generated pitch, roll, and vertical rate outputs. The input
was represented using five triangular membership functions, and five singletons were
used for the defuzzification process to speed up calculations. The study found that all
three FLC schemes were effective in enabling the Parrot AR. Drone to reach the waypoint,
but the approach that worked best involved flying straight towards the waypoint with
FLCs functioning simultaneously. Meanwhile, ref. [11] reported on the use of the Fuzzy
PI-PD controller to control the Parrot Mambo Minidrone quadrotor MAV. The controller
utilized a 3 by 3 rule system for its FLC settings, with the input consisting of a triangle
membership function and the output consisting of five singletons. To ensure robustness
against nonlinearities, the center of sets was chosen as the defuzzification method. The
author concluded that the Fuzzy PI-PD controller outperformed both the Parrot PD and
PI-PD control systems.

One study presented in [12] investigated the effectiveness of the Incremental Non-
linear Dynamic Inversion (INDI) control strategy for the Parrot Mambo Minidrone. This
strategy uses a cascade control structure with separate layers for attitude and position
control. Through simulation as well as actual tests, the study evaluates the performance
of the INDI controller, comparing it to the classical cascade PID control strategy. Results
show that the INDI controller functions satisfactorily for the Mambo MAV, exhibiting
admirable robustness against uncertainties and instrumentation models while effectively
tracking trajectories. Thus, the paper suggests that the INDI controller is a suitable tool for
educational purposes, particularly for teaching linearization of feedback and INDI control
applications for in flight control.

Another study presented in [13] investigates the translational dynamics of Parrot
Mambo Minidrones using data from real-time input-output obtained throughout experi-
ments with four Mambo MAV platforms equipped with a motion capture system. The study
selects a mathematical model consisting of integrator with first-order structure as well as
dead-time delay and identifies x and y translational dynamics of each drone using an ex-
tended least-squares algorithm. Using a reduction technique, the study obtains new linear
model collections minus the dead-time delay and designs a control approach that is based
on a discrete-time linear system with parameter-variant. This method includes two robust
control approaches: a robust controller for global stability and a robust nonlinear controller
with disturbance estimation for effective reference tracking. The study conducts real-time
flights to demonstrate the efficiency of the proposed method notwithstanding the existence
of modelling perturbations, delays and other uncertainties.

Since sliding mode control has become popular for nonlinear control strategies, the
integral terminal SMC approach has been utilized in adaptive saturated tracking control
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to achieve a fast convergence rate, eliminate input saturation, and suppress chattering,
as reported in [14]. Subsequently, in [15], the same author applied a nonsingular fast
fixed-time sliding mode surface for quadrotor attitude stabilization to achieve an even
faster convergence rate. In the articles [16–19], the same author propose different control
approaches for the position and attitude tracking problem of quadrotor systems, consid-
ering uncertainties, perturbations, and unknown dynamics. In [16], the author proposes
a mix of Hierarchical Perturbation Compensator (HPC) and a Sliding Mode Controller
(SMC) to compensate for perturbations in the system. Later on, in [17], the author improves
upon the previous work by proposing a Three Loop Uncertainties Compensator (TLUC)
and Exponential Reaching Law Sliding Mode Controller (ERSM) that can estimate and
compensate for uncertainties and unknown time-varying disturbances in three loops to
provide a greater level of support to the controller. In [18], the author studies the issue
regarding the finite-time position and attitude trajectory of a modified second-order sliding
mode algorithm based quadrotor UAV systems to ensure robustness against unknown
dynamics and perturbations. In [19], the author suggests for an improved non-singular
terminal super-twisting control for quadrotor UAVs position and attitude tracking affected
by disturbances and uncertainties. The proposed control schemes in all references are tested
through simulations and experiments on the Parrot-Rolling Spider quadrotor, and the ac-
quired results indicate enhanced performance compared to other conventional methods,
including improved tracking performance, and chattering reduction.

One proposed approach, as described in [20], for the Parrot Rolling Spider quadrotor
MAV involves the use of an adaptive sliding mode controller. This controller is designed to
reduce chattering and avoid perturbations by utilizing appropriate controls. Additionally,
the same author discusses in [21], the development of a flight control for a quadrotor micro
aerial vehicle which is robust towards the presence of external perturbations. The system
mathematical model is represented by the spatial vectors convention and adaptive second
order sliding mode technique is used to design the flight control. This controller is able to
diminish matched and bounded perturbations with unidentified constraints, while also
minimizing control effort and chattering effects through the use of adaptive gains. The
performance of the planned adaptive flight control is compared to second order sliding
mode method through simulation results, demonstrating the effectiveness and appeal of
this strategy. Another technique, outlined in [22], utilizes a neural network (RBFNN) with
radial basis function to approximate uncertainties and compensate for them, leading to
accelerated error reduction. Consequently, fast error convergence in the closed loop control
system is achievable.

Researchers successfully controlled a DC motor using FPGA technology by employing
a sliding mode control approach with an adaptive mechanism, as reported in [23] while [24]
has simulated it on UAV. This same approach was then applied to real-time control of
the altitude of a Parrot Mambo Minidrone in a study comparing the performance of PID,
adaptive PID as well as fuzzy compensator attached adaptive PID as described in [25]. The
study found that the sliding mode control based adaptive PID was more robust than the
PID controller, consuming 2% less power while maintaining the same level of hovering
performance for the MAV.

This study compares the tracking performance of two controllers, namely; PID and
APID, using a Parrot Mambo Minidrone as the platform. The key contribution of this
research is the introduction of APID in the tracking the trajectory of the drone and assessing
its performance in comparison to the PID controller. Furthermore, both simulation and
real-time experiments are conducted to test the stability and robustness of the system
against external disturbances such as wind gusts.

The organization of this manuscript is as follows. Section 2 describes the dynamics
model of the parrot mambo MAV quadrotor. Section 3 shows the design of the APID for
position control of the quadrotor. Section 4 presents the APID system’s simulation and
experimental results, and Section 5 presents the conclusion of the research work.
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2. MAV Quadrotor Modeling

This section exhibits the quadrotor mathematical model. The quadrotor’s translations
and orientations dynamics are described using a 6 degree-of-freedom (DOF) model, which
is defined by two state vectors: ξ = [x, y, z]T and η = [φ, θ, ψ]T . To transform these vectors
from the fixed frame body to the inertial frame (as shown in Figure 1), a rotation matrix R
is used, where C represents cosine and S represents sine.

R =

CθCψ SφSθCψ− CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ− SφCψ
−Sθ SφCθ CφCθ

 (1)
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As the thrust force is produced by rotor i, i = 1, 2, 3, 4 is Fi = b.Ω2
i where b is the factor

of the thrust and Ωi is the rotor speed, we may acquire a first set of differential equations
as described the quadrotor acceleration:

..
ξ = −g·

0
0
1

+ R· b
m

4

∑
i=1

Ω2
i ·

0
0
1

 (2)

where, g is the gravitational coefficient, m is quadrotor mass, and with the inertia matrix
I = diagonal

[
Ixx, Iyy, Izz

]T , the inertia of the rotor Jr and the vector τ that expresses the
torque, which is applied to the body frame, a second set of differential equations is obtained:

I
..
η = − .

η × I
.
η −

4

∑
i=1

Jr

 .
η ×

0
0
1

Ωi + τ (3)

The vector τ is termed as:

τ =


lb
(

Ω2
1 −Ω2

2 −Ω2
3 + Ω2

4

)
lb
(

Ω2
1 + Ω2

2 −Ω2
3 −Ω2

4

)
d
(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
 (4)
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where d is the drag factor and l the length of the lever. The four rotational velocities Ωi of
the rotors are the input variables of the real vehicle and the inputs transformation is suitable
with regard to the attained model. Hence, the attained new artificial input variables are:

u1 = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
u2 = b

(
Ω2

1 −Ω2
2 −Ω2

3 + Ω2
4

)
u3 = b

(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
u4 = d

(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

) (5)

Nevertheless, an additional variable is obtained in the previous equations. The ad-
ditional variable also depends on the rotational speeds of the rotors. Thus, it must be
considered as the fifth artificial input:

Ωd = −Ω1 + Ω2 −Ω3 + Ω4 (6)

Assessment of (2) and (3) produces an overall dynamic model which can be divided
to two subsystems; underactuated system, corresponding to the x and y dynamics, and
fully actuated system, which refers to the altitude z, and attitude φ, θ, and ψ dynamics:

underactuated


..
x = −(CφSθCψ + SφSψ)·u1

m
..
y = −(CφSθSψ− SθCψ)·u1

m

(7)

f ully actuated



..
z = −g + (CφCθ)·u1

m
..
φ =

(
Iyy − Izz

Ixx

)
.
θ

.
ψ− JrΩd

Ixx

.
θ + l

Ixx
u2

..
θ =

(
Izz − Ixx

Iyy

)
.
φ

.
ψ +

JrΩd
Iyy

.
φ + l

Iyy
u3

..
ψ =

(
Ixx − Iyy

Izz

)
.
φ

.
θ +

1
Izz

u4

(8)

The parameters for the Parrot Mambo Minidrone, which were provided by MATLAB
in one of the project directory’s m-files, are listed in Table 1.

Table 1. Parrot Mambo MAV Model Physical Parameters [24].

Specification Parameter Unit Value

Quadrotor mass m kg 0.0630
Lateral moment arm l m 0.0624

Thrust coefficient b Ns2 0.0107
Drag coefficient d Nms2 0.7826400× 10−3

Rolling moment of inertia Ixx kgm2 0.0582857× 10−3

Pitching moment of inertia Iyy kgm2 0.0716914× 10−3

Yawing moment of inertia Izz kgm2 0.1000000× 10−3

Rotor moment of inertia Jr kgm2 0.1021× 10−6

3. Flight Controller Design

The dynamics, which are both translational and rotational, as depicted in
Equations (7) and (8), is represented by second-order state-space equations as

..
x = f (x) + g(x)u (9)
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In order to maintain simplicity in notation while creating a systematic control system
design method, the state vector is expressed as:

x = [ x1 x2 x3 x4 x5 x6]
T = [x y z φ θ ψ]T (10)

Defining the input vector as u = [u1 u2 u3 u4]
T , the non-linear functions f (x) and g(x)

can be reformulated as:

f (x) =



f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)

 =



0
0
g

a1
.
ψ

.
θ − a2Ωd

.
θ

a3
.
ψ

.
φ + a4Ωd

.
φ

a5
.
θ

.
φ


(11)

g(x) =



g1(x) 0 0 0
g2(x) 0 0 0
g3(x) 0 0 0

0 g4(x) 0 0
0 0 g5(x) 0
0 0 0 g6(x)

 =



− 1
m ux 0 0 0
− 1

m uy 0 0 0
− 1

m uz 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b3

 (12)

where:

a1 =
Iyy − Izz

Ixx
, a2 =

Jr

Ixx
, a3 =

Izz − Ixx

Iyy

a4 =
Jr

Iyy
, a5 =

Ixx − Iyy

Izz
, b1 =

l
Ixx

b2 =
l

Iyy
, b3 =

1
Izz

(13)

and:
ux = CψSθCφ + SψSφ
uy = SψSθCφ− CψSφ
uz = CθCφ

(14)

Figure 2 displays the four controllers developed for the Parrot Mambo Minidrone. The
controllers are attitude, yaw, position, and altitude controller. These controllers are designed
to enable the drone’s orientation precise control, rotation, position and altitude. The
upcoming section briefly outlines the design of the controller. Nonetheless, our emphasis
in this work is on the position controller.
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3.1. Fully Actuated System

In order to ensure stable and precise control of the MAV, three distinct controllers are
developed. These controllers are designed to manage the attitude, yaw, and altitude of the
MAV, respectively. The attitude controller governs the pitch and roll motion of the MAV,
the yaw controller manages its heading, while the altitude controller regulates its vertical
motion. Together, these controllers work seamlessly to enable smooth and accurate flight
control of the MAV.

3.1.1. Attitude and Yaw Controller

The controller of the attitude is developed by PID control, which is cascaded. This is a
widely used technique in control systems engineering. In this approach, the pitch and roll
angle of the MAV are governed by the proportional loop. Meanwhile, its angular velocity
is managed by the PID loop as:

Ui = ki
Pei + ki

I

∫
ei + ki

D
.
ei (i = φ, θ, ψ) (15)

Here, ei = id − i represents the unwanted deviation amid the coveted and received
signals, while

.
ei =

.
id − i is the derivative of that error. On the other hand, ki

P, ki
I , and ki

D
are the parameters of the PID gains (i = φ, θ, ψ). In the meantime, the yaw controller uses
classical PID control as expressed in (15).

3.1.2. Altitude Control Design

The altitude, z controller is created by the PID with gravity compensation controller,
expressed as:

Ui = ki
Pei + ki

I

∫
ei + ki

D
.
ei (i = φ, θ, ψ) + mg (16)

3.2. Underactuated System

Figure 3 displays the adaptive PID scheme block diagram employed for the position
control systems. The signals produced in this embedded system are relatively small,
enabling them to function as the desired inputs of the attitude controller, φd and θd. Detailed
information on the design procedure for this APID is elaborated on in the following sections.
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The objective of the system is to decide on the control regulation that can make x to
track xd as thoroughly as possible. The tracking error, e, is described as:

e = xd − x (17)

By assuming the optimal controller, u∗, is created once the entire related factors in (9)
are recognized, this can then be stated as:

u∗ = g−1(− f +
..
xd + k1

.
e + k2e

)
(18)

where k1 and k2 are selected as the non-zero positive coefficients to meet the Hurwitz
condition, ensuring that lim

t→∞
e = 0 for any original starting states. Replacing (18) into (9)

will then produces:
..
e + k1

.
e + k2e = 0 (19)

In real-life implementation, the system dynamics are typically unidentified, and
obtaining the optimal controller u∗ in (18) precisely is challenging. However, the sliding
mode controller can be used in addressing this issue. Before the required controller is
developed, the nominal model (9) needs to be reformulated as:

..
x = fn(x) + gn(x)u (20)

where the nominal behavior of f and g is denoted as fn and gn, respectively. To include
uncertainties and external disturbances, (20) is further modified as:

..
x = ( fn + ∆ f ) + (gn + ∆g)u + d = fn + gnu + w (21)

where d represents the external disturbance, such as wind, and ∆ f and ∆g denote the
system uncertainties. The lumped uncertainty w is defined as w = ∆ f +∆gu+ d, assuming
that |w| ≤W, as W is a constant that is positive.

In sliding mode control, the crucial requirement is to establish a sliding condition
that ensures the existence of an environment where sliding action is possible. Therefore, a
sliding facade can be expressed as:

s =
.
e + k1e + k2

∫
e dt (22)

where k1 and k2 are two positive factors. Meanwhile, the rule for sliding-mode control can
be specified as:

usc = ueq + uht (23)

where ueq is the comparative controller and it is stated as:

ueq = g−1
n
(
− fn +

..
x + k1

.
e + k2e

)
(24)

whilst the hitting controller, uht is crated to ensure the stability of the system and can be
expressed as:

uht =
W
gn

sgn(s)& where sgn(s)
{
+1 i f s < 0
−1 i f s > 0

(25)

The derivative of (22) gives:

.
s =

..
e + k1

.
e + k2e (26)

Inserting (23)–(25) into (21) yields:

..
e + k1

.
e + k2e = −w−Wsgn(s) =

.
s (27)
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Hence, the Lyapunov function is given as:

V1 =
1
2

s2 (28)

Differentiating (28) in relation with time states that:
.

V1 = s
.
s (29)

To obtain stability,
.

(V1) ≤ 0, replacing (27) into (29) produces:
.

V1 = −(W − |w|)|s| (30)

In brief, the law of sliding mode control as ascertained corresponding to the Lyapunov
theorem will warrant the system of its stability. Nevertheless, a greater control gain, W,
will trigger a chattering impact. In addition, the switching function will not be as easily
afforded due to the presence of restrictions experienced physically by the rotor, which the
MAV used.

3.3. PID Controller Design

A standard PID controller can be specified as:

upid = k̂pe + k̂i

∫
e dt + k̂d

.
e (31)

where k̂p, k̂i, and k̂d are the denomination of proportional gain, integral gain and derivative
gain, correspondingly. To acquire stability,

.
s = 0, and by combining (18) and (26), it can be

observed that:
.
s =

..
e + k1

.
e + k2e = − f − gu + Ad (32)

where Ad =
..
xd + k1

.
e + k2e, substitute (31) into (32) and multiply by s,

s
.
s = −s[g(upid) + f − Ad] (33)

Utilizing the approaches of gradient and the law of chain, k̂p, k̂i and k̂d gains are
modified by the rules as:

.
k̂p = sβpsgn(g)e = βpse
.
k̂i = sβisgn(g)

∫
edt = βis

∫
edt

.
k̂d = sβdsgn(g)

.
e = βds

.
e

(34)

where βp, βi, and βd are the positive learning levels of
.
k̂p,

.
k̂i, and

.
k̂d correspondingly.

Furthermore, the designed method dictates the usage of g value, that can be immediately
achieved from the physical characteristics of the controlled system [25,26].

In short, if the βp, βi, and βd learning rate or the preliminary k̂p, k̂i, and k̂d of PID gains
are not accurately selected, the condition of the system will differ. Therefore, the learning
rate can be manually adjusted or optimized by applying the optimization technique. The
algorithm to implement this control technique is as explained in [25,26]:

1. APIDC system element preparation.
2. Implementation of error tracking as in (17).
3. Sliding surface, s, as described in (22).
4. Application of the PID controller, upid, as revealed in (31).
5. Manipulating the gains elements, k̂p, k̂i, and k̂d as reviewed in (34).

4. Results

This part provides a comprehensive overview of the results attained from these stud-
ies. We discuss the key findings, limitations, and implications of both simulation and
experimental studies on Parrot Mambo Minidrones.
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4.1. Simulation Results

Performing simulation is vital in this work in order to demonstrate the control scheme
effectiveness before its real-time actual implementation. There are two trajectories path
used in this simulation: Waypoint Follower and Orbit Follower. Both blocks are provided
by MATLAB 2022b in Simulink in UAV Toolbox. These UAV Toolbox are used in the
Simulink Support Package for Parrot Minidrones developed by MIT [4]. The simulation
undergoes for 60 s with set sampling time, Ts = 0.005 s.

For the PID controller the parameters are remain unchanged since had well-tuned
by MATLAB. However, for the Adaptive PID control scheme as proposed, the required
parameters for sliding and learning rate are listed in Table 2. The P-PI for controller x and y
also stated in this table.

Table 2. System Parameters for controller x and y.

Dimension X Y

P-PI
Kp 0.7 0.7

Kp 0.2 0.2
Ki 0.1 0.1

APID

K1 0.1 0.1
K2 0.01 0.02

Bp 0.2 0.2
Bi 0.7 0.8
Bd 2 3

In this study, two cases were simulated to evaluate the proposed approach for control-
ling a drone quadrotor: one without wind disturbance and another with wind disturbance.
The approach, similar to that presented in [27], combines momentum and blade element
theory to determine the aerodynamic forces and moments, and then rewriting the model in
state-space form with control inputs proportional to rotor angular velocities. The thrust
is decomposed, and disturbances are considered as a function of wind signals, control,
and system state. However, unlike previous studies, the wind disturbance in this study is
modelled using a Dryden wind gust model [28,29], which effectively simulates forces of
time-varying aerodynamic in the longitudinal and lateral directions which is due to the
wind disturbances. Figure 4 displays the wind force disturbance in X and Y directions.
These aerodynamics forces are injected into the system 15 s after the flight.
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4.1.1. Waypoint Follower

The simulation begins by typing ‘parrotMinidroneWaypointFollowerStart’ in MAT-
LAB command windows to open project model. For waypoint trajectory, the desired square
shape of 1.5 m × 1.5 m was generated after the parrot mambo hover at 1.1 m. The yaw
reference signal is held at zero, while the pitch and roll reference are produces by the virtual
controller of x and y, respectively.

Figure 5 shows the performance of PID and APID controllers along the x, and y axis,
respectively. In this figure, the red dash line APID followed the desired reference black line
closely, compared to the blue line PID for x and y, respectively. There are many ways to
determine the performance of a system, as mentioned in [30]. However, in this case, we
log the Integral Square Error (ISE) to measure the performance of the proposed control
scheme, as shown in Table 3. Without disturbance, the proposed APID controller scheme
has improved over the PID controller by 21.7% and 24.5% for x and y, respectively. Figure 6
shows the trajectory in Cartesian coordinates for the examined controllers. Both PID and
APID are able to maintain the aircraft on track, especially after performing take-off around
starting point and landing nearly at the same position. However, it can be seen that APID
closely to the reference projection and significantly 20% improve over the PID controller.
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Table 3. Waypoint Tracking error performance index using ISE.

Dimension PID APID

Waypoint X 1.9852 1.5537
Y 2.0254 1.4851

Waypoint (Wind Gust) X 4.8746 2.9054
Y 3.0930 2.2544
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Figures 7 and 8 show transient response along the x and y axes, and the trajectory in
Cartesian coordinates when aerodynamics force injected into the system. Clearly shown
in these figures, both PID and APID still able to keep the drone on track. However, the
performance of each controller can determine by ISE on Table 3, where the error reduced
from 4.8746 (PID) to 2.9054 (APID) on x axis, while 3.0930 (PID) to 2.2544 (APID) on y
axis. Therefore, we can claim that the proposed APID controller scheme is more robust
compared to PID controller against wind disturbance.
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4.1.2. Orbit Follower

Orbit follower simulation begins by typing ‘parrotMinidroneOrbitFollowerStart’ in
MATLAB command windows to open project model. For this orbit simulation, the orbit
radius is fixed as 0.5 m in clockwise orbit direction with 1.1 m altitude. The drone is set to
orbit twice. The yaw reference signal is held at zero, while the pitch and roll reference are
produces by the virtual controller of x and y, respectively.

Figures 9 and 10 show the transient response along the x and y axes, and the trajectory
in Cartesian coordinates. These figures depict that the drone is capable of completing two
orbits by employing either the PID or APID control schemes. However, from Table 3, the
proposed APID controller scheme has improved over the PID controller by 5.5% and 7.4%
for x and y, respectively.

Figures 11 and 12 illustrate the response of the system along the x and y axes, as well
as the trajectory represented in Cartesian coordinates, while the aerodynamic force is being
applied. Figure 11 indicates that both the PID and APID control schemes enabled the
drone to follow the track 15 s before the aerodynamic force was introduced into the system.
However, after the force was introduced, the flight was affected, causing the drone to
deviate slightly from the track. Nonetheless, the controller was able to steer the drone back
on course. Additionally, Figure 12 provides a clear visualization of the drone following the
orbit while overcoming the aerodynamic forces. According to the information presented
in Table 4, we can make the assertion that the APID control scheme demonstrates greater
robustness than PID, with an improvement of approximately 3% to 5%.
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Table 4. Orbit Tracking error performance index using ISE.

Dimension PID APID

Orbit
X 0.8348 0.7885
Y 0.7841 0.7257

Orbit (Wind Gust)
X 0.8774 0.8575
Y 0.9577 0.9079

4.2. Experimental Results

Figure 13 depicts the hardware architecture of the Parrot Mambo Minidrone used in
this experiment. The drone is equipped with two clockwise and two counterclockwise
motors, an ultrasonic sensor, an optical flow sensor, and an MPU6050 3-axis gyroscope
and accelerometer, all of which are controlled by an ARM9 microcontroller. The drone is
powered by a 550 mAh 1S Lithium-Polymer (LiPo) battery, which allows for up to 9 min of
flight time. Figure 14 illustrates the six-stage design and implementation flow for algorithm
deployment, which includes:

1. Design of flight control: For this part, the control algorithms that will be implemented
on the drone are designed using control theory principles to ensure the drone’s
stability and safety while performing the desired flight maneuvers.

2. Simulation: The flight control algorithms are tested in a MATLAB SIMULINK envi-
ronment to identify potential issues and optimize the algorithms before deploying
them on the actual Parrot Mambo Minidrone.

3. Embedded Code Generation: After the flight control algorithms are validated in the
simulation environment, the code that will be embedded into the drone’s flight control
system is generated by MATLAB.

4. Compilation, Built, and Upload: The generated code is compiled and built into the
final firmware, which is uploaded wirelessly via Bluetooth onto the drone’s flight
control system.

5. Data Analysis: Once the drone is flying, data is collected from onboard sensors to
ensure it behaves as expected. The data is downloaded from the internal storage of
the drone’s flight control system and analyzed to identify potential issues and refine
the control algorithms for improvement.

6. Redesign: The control algorithms will be modified based on the data analysis to
achieve desired performance. The design, simulation, and testing cycle is repeated to
ensure the drone is safe, stable, and performs the desired flight maneuvers.
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Figure 14. Design and implementation flow of algorithms deployment.

Figure 15 displays the layout and test field. To enhance optical flow sensitivity for
height approximation, masking tape is applied on the floor black surface to establish visual
differences. Parrot Minidrone is used to initiate its movement in a forward direction,
and a blower is positioned 2 m away from its path. To produce wind gusts during this
experiment, the Dong Cheng (DQF32) blower is utilized. It pulsates every 15 s randomly for
approximately 1 s, generating an estimated gust volume of 1.6 m3/min (at Level 1 setting).
The Parrot Minidrone will start in forward direction and the gust is set 2 m from the path.
Table 5 displays the ISE performance index obtained upon the experiment completion,
which is used to assess the controller performance. In this testing, the following hypotheses
are made:

1. Testing is performed in an air-conditioned hall.
2. Parrot Mambo Minidrone form is presumed to be in a decent state.
3. Propellers are assumed to also be in decent state, devoid of any dents.
4. Motors are presumed to be in a decent state.
5. Execution starting point remains the same.
6. Lighting state is deemed to be in the range of fair to good.
7. Wind gusts are arbitrarily produced.
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Table 5. Error performance index using ISE during experiment with external disturbances.

Dimension PID APID

Waypoint X 2.9155 2.1500
Y 4.1389 2.2719

Orbit
X 0.7560 0.7061
Y 0.8278 0.6142

4.2.1. Waypoint Follower

Figures 16 and 17 depict the behavior of the drone in response to wind gust, show-
casing the transient response along the x and y axes, as well as the trajectory in the xy
coordinate system. Both the PID and APID control schemes are employed in this study,
and these figures demonstrate their effectiveness in maintaining the drone’s trajectory. It is
clear from the visual data that both controllers are capable of keeping the drone on track.

Further analysis, as presented in Table 5, reveals that the APID controller outperforms
the PID controller by 26.2% and 45.1% in the x and y axes, respectively. These findings
strongly suggest that the suggested APID control strategy is significantly more resistant
towards external disruptions when compared to a standard PID controller. Considering
these results, it can be concluded that the implementation of the APID controller can
significantly enhance the overall stability and robustness of the drone system.

4.2.2. Orbit Follower

The impact of a wind gust during orbit following is a critical issue that affects the
stability and performance of drone systems. In this context, Figures 18 and 19 provide a
visual representation of the transient response of the drone system along the x and y axes,
as well as the trajectory in the xy coordinate system. These figures demonstrate that both
the PID and APID controllers can maintain the drone’s trajectory in the presence of external
disturbances.
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To gain further insights, Table 5 presents a detailed comparison between the perfor-
mance of the PID and APID control schemes. The results reveal that the APID control
scheme exhibits a 6.6% improvement in the x-axis and a 25.8% improvement in the y-axis
compared to the PID controller. These findings strongly suggest that the suggested APID
control strategy is more frugal and efficient in mitigating the effects of external disturbances,
thereby enhancing the overall stability and performance of the drone system during orbit
following. It can be concluded that the suggested APID control scheme will significantly
improve the resilience and stability of drone systems, particularly when dealing with
challenging environmental conditions.

Figures 20 and 21 show the adaptation of gain P, I, and D for both the Orbit and Way-
point followers, respectively, recorded during the experiment with external disturbances.
From these figures, the adaptive gain P tends to converge at a specific point. It is clearly
shown that while overcoming wind gusts, the adaptive gain I and adaptive gain D try to
converge and stabilize over time.
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5. Conclusions

This research work presents the real-time execution of position controllers deploy-
ing the APID method, as compared to the standard PID approach, for a Parrot Mambo
Minidrone. A second order sliding mode control with adaptive mechanism is employed to
modify the conventional parameters of the altitude controller. The success of this approach
is evaluated through simulation and experimentation involving a waypoint follower and
an orbit follower, with wind gusts acting as external disturbances. When the parameters
that seemed optimal in simulations do not produce the desired outcomes in actual trials,
the experiment has to be repeated with the parameters changed. The discrepancies might
be caused by a number of factors, such as unaccounted environmental variables or lim-
itations on how accurately the simulation can represent the intricate interactions of the
system. These discrepancies can lead to unforeseen consequences or problems, such as the
activation of a blower, which further complicate the experiment and require additional
modifications to achieve the desired results. Finally in the experiment, it was found that
the APID control scheme exhibited an improvement of more than 5% when compared to
the PID controller. This is as determined by the integral square error. This observation
suggests that the suggested APID control strategy is significantly more frugal against
external interruptions such as wind gusts. Overall, these results highlight the potential
benefits of the APID approach for the development of high-performance control systems
for drones.
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