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Abstract: This paper presents the real-time implementation of an altitude-embedded flight controller
using proportional, integral, and derivative (PID) control, adaptive PID (APID) control, and adaptive
PID control with a fuzzy compensator (APIDFC) for a micro air vehicle (MAV), specifically, for a
Parrot Mambo Minidrone. In order to obtain robustness against disturbance, the adaptive mechanism,
which was centered on the second-order sliding mode control, was applied to tune the classical
parameters of the PID controller of the altitude controller. Additionally, a fuzzy compensator was
introduced to diminish the existence of the chattering phenomena triggered by the application of the
sliding mode control. Four simulation and experimental scenarios were conducted, which included
hovering, as well as sine, square, and trapezium tracking. Moreover, the controller’s resilience was
tested at 1.1 m above the ground by adding a mass of about 12.5 g, 15 s after the flight launch. The
results demonstrated that all controllers were able to follow the reference altitude, with some spike
or overshoot. Although there were slight overshoots in the control effort, the fuzzy compensator
reduced the chattering phenomenon by about 6%. Moreover, it was found that in the experiment, the
APID and APIDFC controllers consumed 2% and 4% less power, respectively, when compared to the
PID controller used to hover the MAV.

Keywords: adaptive control; sliding mode control; fuzzy compensator; altitude control; micro air
vehicle; quadrotor; pid; external disturbance

1. Introduction

Unmanned Aerial Vehicle (UAV) control is a very challenging area of research, particu-
larly for vertical take-off and landing (VTOL) of aircraft such as the quadrotor. A quadrotor
is an unmanned aerial VTOL vehicle that belongs to the category of aerial vehicles with
rotating wings. Because of its simple structure, quadrotors are a common design for small
UAVs. This aerial aircraft features four motors that transmit electricity to propellers to
produce propulsion thrust. By adjusting the engine rpm, this vehicle may be controlled
and stabilized.

In the last few years, the state-of-the-art for quadrotor control has seen a significant
development. All studies begin with the quadrotor’s fundamental dynamical model,
although more complicated aerodynamic features have also been incorporated [1,2]. As
a small-scale UAV, the minidrone, nano, or micro air vehicle (MAV) has attracted the
attention of educators and researchers due to its dependability and safety in restricted GPS
spaces, such as hallways, schools, and other indoor environments. Thus, various control
strategies, such as PID controllers, LQR controllers, sliding mode controllers, intelligent
controllers, adaptive controllers, and others, have been studied. For instance, numerous
works deal with the modeling and control of the Crazyflie [3–6]. DJI and Parrot are two of
the most well-known manufacturers who have established and commercialized quadrotor
drones which cover most of the types used for educational purposes. For instance, the
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company created the Tello EDU, which supports iOS users, and Scratch 2.0, SDK 2.0, and
Swift Playgrounds for programming, which was been used in the studies in [7–9]. Parrot
recently created the AR Drone 2.0, the Rolling Spider, and the Mambo, all of which allow for
the models to be programmed using MATLAB/Simulink. Researchers have used the AR
Drone reported in [10–13], whereas other researchers have used the Rolling Spider/Parrot
Minidrones, supported by MATLAB’s Simulink, as reported in [14–17].

Due to the advancement of technology, quadrotors can be utilized in performing
various high risk, high intensity tasks which require a high degree of efficiency, such as
military operations, agricultural applications, and express delivery [18]. These applications
exhibit the inescapable issue that if the load is unknown or fluctuating, the quadrotor’s
altitude control will be unstable, making it impossible to maintain stable high-altitude
flight or hover in the air. To maintain the stability of the altitude and track the planned
trajectory, it is crucial to build a strong altitude control system. The linear control technique
is an effort at control, but its effectiveness is limited, and it depends on a number of factors.
Additionally, the linear controller is unable to handle the situations of drift and hover.

Due to its straightforward control architecture and effective control performance,
PID is the most common flight control algorithm used in multirotor systems. PID is
therefore still the favored approach for actual control in a quadrotor UAV [17,19]. However,
troubleshooting the PID controller’s settings is challenging, mainly relying on the expertise
of researchers. In its application to autonomous load carrying and transport, the hovering
vehicles must remain stable and balanced in flight as payload mass is added to the vehicle.
Therefore, [20] investigates the impact of dynamic load disturbances caused by suddenly
increasing the payload mass on a quadrotor operating under PID control. As a result, under
PID control, a quadrotor will successfully reject additional load offset to a relative amount
within a sizable range and allowable load position. Therefore, the control input that has a
wide floating range and a slow convergence rate is deemed to be unstable.

Estimating the mass is another crucial step in altitude control. Altitude control is
quite challenging if the quadrotor mass cannot be precisely approximated, since we cannot
measure it directly while it is in the air. In reference [21], a mass estimation technique was
suggested for estimating the inertial properties of the item being held in order to modify
the controller and enhance performance while in flight. The authors of [22] suggested
an adaptive robust control (ARC) to account for the parametric uncertainty for unknown
payloads. However, the parameter estimate could not get close to its real value when the
required output remained constant.

To track the position of a quadrotor, a linear quadratic regulator (LQR) is examined
in [23–25]. A sliding mode control (SMC) strategy is created for a class of underactuated
systems in [26,27], used to stabilize the position and attitude of a quadrotor UAV. According
to simulation and experiment, the second order SMC may significantly reduce chattering
when compared to regular SMC. A model free-based single dimension fuzzy SMC technique
is created in [28] to enable the finite-time control of a quadrotor’s translational and rotational
movements, despite perturbations. According to numerical simulation on the altitude, the
comprehensive fuzzy adaptive sliding mode control in [29] is able to handle the control
problems of the highly coupled nonlinear fixed-wing UAV model to address the chattering
problem of classic sliding mode control.

The hybrid backstepping-based control techniques also show good performance to
cater to the quadrotor trajectory tracking problem. In order to exhibit the efficacy and
practicability of the suggested control approach, simulation results under several scenarios,
such as parameter uncertainties under Gaussian random disturbances, constant and time-
varying external disturbances are provided, as shown in [30]. In [31], a robust backstepping
super-twisting sliding mode control strategy was tested on the X450 quadrotor, emphasize
the improved proficiencies of the proposed control approach in terms of tracking accuracy
and chattering occurrence reduction.

In a previous study, [32] implemented the control scheme and simulated it on UAV,
while [33] successfully used FPGA to apply the control scheme on a DC motor. This
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paper focuses on the impact of the real-time implementation of PID, adaptive PID (APID),
and adaptive PID with a fuzzy compensator (APIDFC) for an altitude controller on the
embedded flight system of a quadrotor MAV which has a mass less than 0.1kg. Using the
sliding type control as the adaptive mechanism, this technique can suppress the manual
controller’s re-tuning gains in the classical PID controller. Furthermore, the effect of
chattering by the sliding manifolds is removed by a fuzzy compensator. In order to display
the benefits of applying the newly suggested flight control system, MATLAB software
simulation and real-time hardware implementation were performed by redesigning the
Flight Control System in the Simulink Support Package for the Parrot Mambo Minidrone.
In conclusion, the APID and APIDFC control scheme can reduce energy usage and robust
perturbation throughout, compared to PID controller.

2. MAV Quadrotor Modeling

The Parrot Mambo Minidrone is a quadrotor, which falls under the category of a
micro aerial vehicle (MAV). This category is actually comprised of four symmetrically
arranged rotors and, as displayed in Figure 1, is independently fixed on a rigid fuselage.
Rotor 1 and rotor 3 rotate in a clockwise direction, whereas rotor 2 and rotor 4 rotate in a
counterclockwise direction.
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Figure 1. Parrot Mambo minidrone MAV.

The mathematical model of the aforementioned MAV is formed based on 6 degrees of
freedom (DOF) [x, y, z, φ, θ, ψ]T , which is well accepted by the researchers of such systems.
Hence, this particular model can be categorized by two coordinate subsystems. Vector
[x, y, z]T defines the absolute positions, while vector [φ, θ, ψ]T designates the orientation.

According to the general Newton–Euler formulation, quadrotor translational dynam-
ics can be defined as:

m
..
x = −U1(Sin(ψ)Sin(φ) + Cos(ψ)Sin(θ)Cos(φ))

m
..
y = −U1(−Cos(ψ)Sin(φ) + Sin(ψ)Sin(θ)Cos(φ))

m
..
z = mg−U1(Cos(θ)Cos(φ))

(1)

where m represent the mass, g denotes the gravitational coefficient, and U1 symbolize the
total thrust force. Thus, the rotational dynamics are termed as:

Ixx
..
φ =

(
Iyy − Izz

) .
ψ

.
θ − (JrΩd)

.
θ + lU2

Iyy
..
θ = (Izz − Ixx)

.
ψ

.
φ + (JrΩd)

.
φ + lU3

Izz
..
ψ =

(
Ixx − Iyy

) .
θ

.
φ + U4

(2)

where U2, U3, and U4 represent the total torque for the roll, pitch, and yaw, respectively. l,
on the other hand, is the lateral arm length. Meanwhile, Ixx, Iyy and Izz are the moments
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of inertia for the quadrotor. Whereas Jr is the rotor inertia, and Ωd denotes the total rotor
speed generated from the torque related to the control inputs as:

u1 = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
u2 = b

(
Ω2

1 −Ω2
2 −Ω2

3 + Ω2
4

)
u3 = b

(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
u4 = d

(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
Ωd = −Ω1 + Ω2 −Ω3 + Ω4

(3)

where Ωi(i = 1, 2, 3, 4) represents the rotor speed. On the other hand, b and d are the thrust
and drag coefficients, respectively. To summarize, the Parrot Mambo Minidrone parameters
are shown in Table 1.

Table 1. Parrot Mambo Model Physical Parameters [17].

Specification Parameter Unit Value

Quadrotor mass m kg 0.0630
Lateral moment arm l m 0.0624

Thrust coefficient b Ns2 0.0107
Drag coefficient d Nms2 0.7826400× 10−3

Rolling moment of inertia Ixx kgm2 0.0582857× 10−3

Pitching moment of inertia Iyy kgm2 0.0716914× 10−3

Yawing moment of inertia Izz kgm2 0.1000000× 10−3

Rotor moment of inertia Jr kgm2 0.1021× 10−6

Translational and rotational dynamics, as shown in (1) and (2), can be expressed as
second-order state-space equations:

..
x = f (x) + g(x)u (4)

In order to create an orderly control system design method and at the same time,
maintain simple notation, the state vector becomes:

x = [ x1 x2 x3 x4 x5 x6]
T = [x y z φ θ ψ]T (5)

and the input vector u = [u1 u2 u3 u4]
T . The non-linear function f (x) and g(x) can be

rewritten as:

f (x) =



f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)

 =



0
0
g

a1
.
ψ

.
θ − a2Ωd

.
θ

a3
.
ψ

.
φ + a4Ωd

.
φ

a5
.
θ

.
φ


(6)

g(x) =



g1(x) 0 0 0
g2(x) 0 0 0
g3(x) 0 0 0

0 g4(x) 0 0
0 0 g5(x) 0
0 0 0 g6(x)

 =



− 1
m ux 0 0 0
− 1

m uy 0 0 0
− 1

m uz 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b3

 (7)
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where
a1 =

Iyy−Izz
Ixx

, a2 = Jr
Ixx

, a3 = Izz−Ixx
Iyy

a4 = Jr
Iyy

, a5 =
Ixx−Iyy

Izz
, b1 = l

Ixx

b2 = l
Iyy

, b3 = 1
Izz

(8)

and
ux = SψSφ + CψSθCφ
uy = −CψSφ + SψSθCφ
uz = CθCφ

(9)

3. Flight Controller Design

Four controllers were designed to control the minidrone, which consist of the attitude
controller, yaw controller, position controller, and altitude controller, as shown in Figure 2.
The control mixer is an inverse of (3) to convert the rotation speed to force. Thereafter, a
brief description of the controller’s design is mentioned, but in this work, we concentrate
on the altitude controller.
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3.1. Attitude and Yaw Controller

The attitude controller is designed using cascaded PID, where the proportional loop
controls the pitch and roll angle, while the PID controls the angular velocity as:

Ui = ki
Pei + ki

I

∫
ei + ki

D
.
ei (i = φ, θ, ψ) (10)

where ei = id − i and
.
ei =

..
id −

..
i are the error and derivate error between the desired signal

and the actual signal, and ki
P, ki

I , and ki
D are the PID gains parameters (i = φ, θ, ψ). The

yaw controller, on the other hand, used classical PID (10) as well.

3.2. Position Controller

The position controller is designed using cascade PID, where the proportional loop
controls the x-y, while the PI controls the angular velocity as:

Ui = ki
Pei + ki

I

∫
eidt (i = x, y) (11)
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In addition, a position error transformation is introduced for error body (eb) to error
earth (ee) conversion as: [

eb
x

eb
y

]
=

[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

][
ee

x
ee

y

]

3.3. Altitude Control Design

Figure 3 illustrates the block diagram of an adaptive PID scheme applied to the altitude
control systems. In this control system, a PID controller and a fuzzy logic compensator are
combined in the suggested method as:

u1 = upid + u f c (12)

where upid is the PID controller implemented to approach the optimum controller, u∗, and
u f c is the designated fuzzy logic compensator applied to decrease the approximation error
left between both controllers.
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The aim of the system is to determine a certain control law so that x can track the
coveted xd as close as possible. Hence, the tracking error can be defined as:

e = xd − x (13)

Presuming that the optimal controller is created when all the parameters in (4) are
identified, this can be expressed as:

u∗ = g−1(− f +
..
xd + k1

.
e + k2e

)
(14)

where k1 and k2 are chosen as the non-zero positive constants to adhere to the Hurwitz
criterion, indicating lim

t→∞
e = 0 for any initial starting conditions. Substituting (14) into

(4) then yields:
..
e + k1

.
e + k2e = 0 (15)
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Due to the system dynamics that are normally unidentified in real-life implementation,
the optimal controller u∗ in (14) is unable to be precisely acquired. Nevertheless, it is
possible to use the sliding mode controller to address this matter. Before the required
controller is developed, the nominal model (4) can be rephrased as:

..
x = fn(x) + gn(x)u (16)

where fn and gn denote the nominal behavior of f and g, correspondingly. Considering
uncertainties and external disturbances, (16) can be further revised as:

..
x = ( fn + ∆ f ) + (gn + ∆g)u + d = fn + gnu + w (17)

where d is the external disturbance, i.e., wind, ∆ f and ∆g are system uncertainties, w
is lumped with uncertainties and defined as w = ∆ f + ∆gu + d, with the assumption
|w| ≤W, where W is a positive constant.

The significant idea for sliding mode control is to confirm that the system meets the
essential condition and is guaranteed to possess a sliding environment. Thus, a sliding
surface can be stated as:

s =
.
e + k1e + k2

∫
edt (18)

where k1 and k2 are both positive coefficients. The law for sliding-mode control, on the
other hand, is given as:

usc = ueq + uht (19)

where ueq is the comparable controller and can be described as:

ueq = g−1
n
(
− fn +

..
x + k1

.
e + k2e

)
(20)

while the hitting controller, uht is designed to guarantee system stability and is described as:

uht =
W
gn

sgn(s)& where sgn(s)
{
+1 i f s < 0
−1 i f s > 0

(21)

The derivative of (18) gives:

.
s =

..
e + k1

.
e + k2e (22)

Inserting (19–21) into (17) yields:

..
e + k1

.
e + k2e = −w−Wsgn(s) =

.
s (23)

For the purpose of stability, a Lyapunov function is expressed as:

V1 =
1
2

s2 (24)

Differentiating (24) in conjunction with time reads:

.
V1 = s

.
s (25)

For stability
.

V1 ≤ 0, substituting (23) into (25) yields:

.
V1 = −(W − |w|)|s| (26)

In short, the sliding mode control law that is established according to the Lyapunov
theorem will ensure the stability of the system. However, a larger control gain, W, will
cause a chattering effect. Furthermore, the switching function is not easily implementable
because of the existence of physical limitations on the rotor deployed by the MAV.
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3.3.1. PID Controller Design

A conventional PID controller can normally be defined as:

upid = k̂pe + k̂i

∫
edt + k̂d

.
e (27)

where k̂p, k̂i, and k̂d are the value of proportional gain, integral gain, and derivative
gain, respectively.

For stability,
.
s = 0, and by using (14) and (22) it can be obtained that:

.
s =

..
e + k1

.
e + k2e = − f − gu + Ad (28)

where Ad =
..
xd + k1

.
e + k2e, substitute (27) into (28) and multiply by s,

s
.
s = −s

[
g
(

upid

)
+ f − Ad

]
(29)

Applying the methods of gradient and the rule of chain, k̂p, k̂i and k̂d gains are revised
using the rules as in:

.
k̂p = sβpsgn(g)e = βpse
.
k̂i = sβisgn(g)

∫
edt = βis

∫
edt

.
k̂d = sβdsgn(g)

.
e = βds

.
e

(30)

where βp, βi, and βd are the positive learning rates of
.
k̂p,

.
k̂i, and

.
k̂d, respectively. Further-

more, the designed approach necessitates the use of the g value, which can be readily
attained from the physical features of the controlled system [32,33].

3.3.2. Design of Fuzzy Compensator

For the fuzzy compensator, three fuzzy rules are fixed, as outlined in (31), where P is
positive, Z is zero, and N is negative.

Rule 1 : I f s is P, the u f c is P
Rule 2 : I f s is Z, the u f c is Z
Rule 3 : I f s is N, the u f c is N

(31)

where the triangular and singleton functions are applied to describe the input and the
output membership functions. This is shown in Figure 4a,b, correspondingly. Through the
center of gravity approach, the defuzzification is achieved as:

u f c =
∑3

i=1 riwi

∑3
i=1 wi

= r1w1 + r2w2 + r3w3 (32)

where wi (i = 1, 2, 3) refers to the firing strength and restricted to (0 ≤ wi ≤ 1). The total
of wi is less than or equal to one. This condition is unique in the case of the triangle mem-
bership function. In order to reduce the loading of calculations, r1 = r̂, r2 = 0, and r3 = −r̂
settings are made. Hence, only one of the four cases, as mention in [32,33], will occur at
any set value of input s, as in:
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Case 1: Only rule 1 is triggered (s > sa, w1 = 1, w2 = w3 = 0)

u f c = r1 = r̂ (33)

Case 2: Rules 1 and 2 are triggered simultaneously (0 < s ≤ sa, 0 < w1, w2 ≤ 1,
w3 = 0)

u f c = r1w1 = r̂w1 (34)

Case 3: Rules 2 and 3 are triggered simultaneously (sb < s ≤ 0, w1 = 0, 0 < w2,
w3 ≤ 1)

u f c = r3w3 = −r̂w3 (35)

Case 4: Only rule 3 is triggered (s ≤ sb, w1 = w2 = 0, w3 = 1)

u f c = r3 = −r̂ (36)

Then, (33)–(36) can be reproduced as:

u f c = r̂(w1 − w3) (37)

Furthermore, it can be seen from [32,33]

s(w1 − w3) = |s||(w1 − w3)|≥ 0 (38)

3.4. Stability Analysis

By substituting (12) into (4), it is revealed that

..
x = f + g

(
upid + u f c

)
(39)

The error equation representing the system can also be acquired after direct exploita-
tion of (14), (22), and (39), as follows:

..
e + ki

.
e + k2e = g

(
u∗ − upid − u f c

)
=

.
s (40)

In case of any estimation error, the optimal controller equation can be readjusted as:

u∗ = upid

(
k̂p, k̂i, k̂d

)
+ ε (41)

where ε refers to an estimation error and is thought to be restricted by 0 ≤ |ε| ≤ E, where E
is a positive constant. Therefore, (40) is rewritten as:

.
s = g

(
ε− u f c

)
(42)
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A Lyapunov function can then be selected as:

V2 =
1
2

s2 (43)

Differentiating (43) with regard to time, as well as deploying (37) and (42), gives:

.
V2 = −g|s||w1 − w3|

(
r̂− |ε|
|w1 − w3|

)
(44)

If inequality occurs in

r̂ >
|ε|

|w1 − w3|
(45)

then it is probable to fulfil the sliding condition
.

V2 ≤ 0. Having the unknown lumped
uncertainties causes the value r̂ to be unachievable in advance, for practical applications.
Corresponding to (37), in order to attain the minimum sliding value, an optimal r∗ value
needs to be obtained, as follows:

r∗ =
|ε|

|w1 − w3|
+ κ (46)

where κ denotes a positive constant. Thus, a direct adaptive algorithm is used to gauge the
optimal value of r∗, and the expected error can be described as:

r̃ = r∗ − r̂ (47)

where, r̂ is the projected ideal value of r∗. Next, a new Lyapunov function can be outlined as:

V3 =
1
2

s2 +
g

2ηr
r̃2 (48)

where, ηr is a positive constant learning rate, differentiating (48) with regard to time and
deploying (37), (42), and (46), gives:

.
V3 ≤ g|s||ε| − r̃g

[
s(w1 − w3) +

.
r̃
ηr

]
− r∗sg(w1 − w3) (49)

The parameter tuning law is chosen as:

.
r̃ = −

.
r̂ = −ηrs(w1 − w3) (50)

and by (46), (49) becomes:
.

V3 = −gκ|s||w1 − w3| ≤ 0 (51)

Therefore,
.

V3 is negative and semidefinite, where V3(s, r̃, t) ≤ V3(s, r̃, 0). This suggests
that s and r̃ are restricted. Let function Ω(τ) ≡ gκ|s||w1 − w3| ≤ −

.
V3, and Ω(t) is

integrated with respect to time:∫ t

0
Ω(τ)dτ ≤ V3(s, r̃, 0)−V3(s, r̃, t) (52)

Since V3(s, r̃, 0) is restricted, and V3(s, r̃, t) is non-increasing and restricted, the follow-
ing output can be acquired:

lim
t→∞

∫ t

0
Ω(τ)dτ < ∞ (53)
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Furthermore, since
˙

Ω(t) is restricted, as shown by Barbalat’s Lemma [33], lim
t→∞

Ω(t) = 0,

s→ 0 as t→ ∞ . Therefore, the stability of the proposed APIDC system can be assured.
To conclude, if the βp, βi, and βd learning rate or initial k̂p, k̂i, and k̂d of PID gains

are not properly picked, the state of the system will deviate. Hence, the learning rate
can be tuned manually or by applying the optimization technique. Meanwhile, the fuzzy
compensator in (34) plays a vital part, offering additional input for the state reversal. The
algorithm to apply this control method is as described by [32,33]:

1. APIDC system parameter initialization.
2. Utilization of tracking error, e = xd − x, and the sliding surface, s, as denoted in (18)
3. Implementation of the PID controller, upid, as shown in (27), using the gains parameter

k̂p, k̂i and k̂d, as revised by (30).
4. Usage of the fuzzy compensator, as described in (37), with the parameter r̂ is as

projected by (50).
5. Application of the control law, as specified in (12).
6. Return to Step 2

4. Simulation Results

Four simulations and experiments were conducted to show the proposed controller
scheme performance. A comparison with a classical PID plus gravity compensator was
made to show the effectiveness of proposed controller scheme. The proposed APIDC
controller is designed in the Flight Control System of the Quadcopter Flight Simulation
Model for the simulations and then deployed wirelessly through Bluetooth to the embedded
system on the Parrot Mambo Minidrone for real-time implementation, as shown in Figure 5.
The state estimation is declared beforehand in the provided package, with the sensor fusion
algorithm in the Sensor Model designed by a complementary filter and a Kalman filter
to process the already available onboard sensors, such as the ultrasonic sensor, IMU, air
pressure sensor, and optical flow sensor [15]. The Sensor Model and the Environment
Model were the perturbation injected to the Nonlinear Airframe of the Multi-copter Model.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 5. Simulation and experimental setup for the Parrot Mambo Minidrone 

Table 2. PID gains parameter. 

 Position/Angle Control Velocity Control 

Gains

State 
Kp Kp Ki Kd 

�: PID  0.80000 0.24000 0.5000000 

�: P-PI 0.7 0.20000 0.10000  

�: P-PI 0.7 0.20000 0.10000  

�: PID  0.00400 0.00400 0.0012000 

�: P-PID 4 0.00300 0.00600 0.0001200 

�: P-PID 4 0.00243 0.00486 0.0000972 

Table 3. APID and fuzzy compensator gains parameters. 

 Sliding Learning Rate APID Learning Rate Fuzzy Compensator 

State �� �� �� �� �� ��� 

� 0.1 0.5 1 0.1 0.1 −0.001 

4.1. Hovering Test 

The initial condition for the test was set above ground level with the Parrot Mambo 

hovering at a height of 1.1 m for 60 s. The Landing Logic Algorithm will trigger 5 s before 

the simulation ends to let the drone land safely. Figure 6 shows the controller response 

during the simulation, which shows a slight overshoot for the APID and APIDFC com-

pared to the PID controller. We consider that the learning rate takes a few seconds to ad-

just the parameter gains to provide good performance. In this simulation, both APID and 

APIDFC responses overlap with each other, and we cannot yet determine the difference 

between these controllers. Figure 7 shows that all controllers require the same speed of 

around 250 rotations/second to maintain the quadrotor hovering height. 

Figure 5. Simulation and experimental setup for the Parrot Mambo Minidrone.

All the gains parameters of the PID, APID, and the fuzzy compensator are listed in
Tables 2 and 3, respectively. These PID gains were the default setting of the Quadcopter
Flight Simulation Model, and the APID and fuzzy compensator gains were set by trial
and error until we obtained the best results, both for the simulations and the experiments,
which were set to last for 60 s. Four simulations and experiments were conducted to show
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the performance of the altitude quadrotor under various scenarios. The simulation results
and experimental data for each of these scenarios are presented in the following sections.

Table 2. PID gains parameter.

Position/Angle
Control Velocity Control

State
Gains

Kp Kp Ki Kd

Z: PID 0.80000 0.24000 0.5000000
Y: P-PI 0.7 0.20000 0.10000
X: P-PI 0.7 0.20000 0.10000
ψ: PID 0.00400 0.00400 0.0012000

θ: P-PID 4 0.00300 0.00600 0.0001200
φ: P-PID 4 0.00243 0.00486 0.0000972

Table 3. APID and fuzzy compensator gains parameters.

Sliding Learning Rate APID Learning Rate Fuzzy Compensator

State k1 k2 βp βi βd η f z
Z 0.1 0.5 1 0.1 0.1 −0.001

4.1. Hovering Test

The initial condition for the test was set above ground level with the Parrot Mambo
hovering at a height of 1.1 m for 60 s. The Landing Logic Algorithm will trigger 5 s before
the simulation ends to let the drone land safely. Figure 6 shows the controller response
during the simulation, which shows a slight overshoot for the APID and APIDFC compared
to the PID controller. We consider that the learning rate takes a few seconds to adjust the
parameter gains to provide good performance. In this simulation, both APID and APIDFC
responses overlap with each other, and we cannot yet determine the difference between
these controllers. Figure 7 shows that all controllers require the same speed of around
250 rotations/second to maintain the quadrotor hovering height.
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4.2. Altitude Tracking Test

Three simulations were conducted in this tracking; sine wave, square wave, and
trapezium wave tracking. Sine wave tracking is conducted to observe the smoothness
of the quadrotor in following the curve signals, while square wave and trapezium wave
tracking are performed to check the response of the quadrotor when the altitude changes
to a certain level. From the simulations, all controllers can adequately track the desired
responses with minimum error. However, the PID controller produces a slight overshoot
compared to the APID and APIDFC. Both APID and APIDFC still overlap with each other,
and we cannot yet determine which one is better. All the tracking responses are shown in
Figures 8–10.
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4.3. Changing the Mass during the Hovering Test

The final simulation involves altering the mass during the hover test to assess how
resilient the controls are to perturbations. A perturbation of 0.122625 N was injected into
the control signal after 15 s to observe the controllers’ behaviors. From the results shown in
Figures 11 and 12, all the controllers perform well and can restabilize the drone within 5
s to the setting height of 1.1 m. However, the PID controller produces a slight overshoot
compared to the APID and APIDFC. In this simulation, the propellor rotation speeds
overlap, and the performance of the controller cannot be justified.
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5. Experimental Results

The layout and test field is shown in Figure 13. Masking tape on the black surface of
the floor was utilized to create contrast to improve the optical flow sensitivity for altitude
estimation. All the settings and controller designs were followed for the simulation, and the
“Flight Control System—Code Generator” block, highlighted with orange color in Figure 5,
was built and deployed wirelessly to the Parrot Mambo Minidrone. Additionally, the experi-
ments’ index performances were recorded, based on integral square error (ISE) and tabulated
in Table 4 for comparison. In this experiment, the assumptions were as follows:

1. The experiment is conducted in an air conditioning hall.
2. The Parrot Mambo Minidrone structure is assumed to be in a good condition.
3. The propellors are assumed to be in good condition, with no dents.
4. All the motors are assumed to be in good condition.
5. The execution starting point is always the same.
6. The lighting condition is considered fair to good.
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Table 4. Experiment performance index for PID, APID, and APIDFC.

PID APID APIDFC

Hover 1.4586 1.3801 1.2877
Sine 1.6831 1.3675 1.3048

Square 1.6761 1.4327 1.3952
Trapezium 1.5323 1.2611 1.1983

Mass Change 1.4700 0.8003 0.7937

5.1. Hovering Test

Figure 14 shows the transient response of the altitude for 60 s of flight. The desired
altitude is set at −1.1 m, as predefined in the “MATLAB Original Setting”. There was no
overshot produced by the PID controller, but overshot was noted for the APID and APIDC.
The results are still acceptable, since the adaptive mechanism needs time to compute the
controller’s gain parameters, finally settling and stabilizing within 10 s. APIDC produces
a 13.29% overshoot, while APID produces a 14.62% overshoot. Figure 15 shows that the
controller requires the motors to rotate about 380–400 per second to maintain the altitude
at −1.1 m from ground. Then, based on the ISE, Table 4 clearly shows both that the results
for APID (1.3801), and APIDFC (1.2877) were better than for PID (1.4586).
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5.2. Altitude Tracking Test

The experiment continues to show how the Parrot Mambo Minidrone reacts to follow-
ing sine wave, square wave, and trapezium wave tracking. For all cases, the altitude cannot
be set lower than 0.6 m due to the optical sensor and ultrasonic sensor limitations. As a
result, the MAV can follow the dedicated references, as shown in Figures 16–18. However,
we can claim that the APID and APIDFC controllers provided better performance compared
to the PID controller, as proved by the ISE tabulated in Table 4. During the executions,
observations show that the MAV was able to follow the sine, trapezium, and square refer-
ences. Figure 19 shows the motor 1 (M1) speed reactions during this execution. The spike in
the figure shows the immediate change of rotation speed of the motor. Suddenly changing
attitude will immediately reduce the motor speed from higher to lower, which can cause
an error in altitude estimation due to the limits of the optical flow and ultrasonic sensors.
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5.3. Changing Mass during Hovering Test

In this test, a cylindrical type of mass of about 12.5 g was immediately added to the
Parrot Mambo after it had been hovering for about 15 s. For all cases, the PID controller,
APID controller, and APID with fuzzy compensator controller managed to balance the
mass and stabilized within few seconds, as shown in Figure 20. Even though there were
slight spikes that occurred throughout, the steady-state error is small and acceptable for
the case of quadrotor. In addition, the APID and APIDFC controllers show better reactions
to stabilize the drone with less overshoot. Figure 21 shows a comparison for all motor
rotation speeds of the controllers during the experiments. The results clearly show that PID
requires greater speed, about 400 rotation per second, to adapt to the change in mass during
hovering, compared to 300–380 rotation per second for the APID and APIDFC controllers.
This shows the proposed control scheme APID, without or with fuzzy compensator, was
better than the PID controller, with less energy consumption and better performance.

Aerospace 2023, 10, x FOR PEER REVIEW 21 of 25 
 

 

slight spikes that occurred throughout, the steady-state error is small and acceptable for 

the case of quadrotor. In addition, the APID and APIDFC controllers show better reactions 

to stabilize the drone with less overshoot. Figure 21 shows a comparison for all motor 

rotation speeds of the controllers during the experiments. The results clearly show that PID 

requires greater speed, about 400 rotation per second, to adapt to the change in mass during 

hovering, compared to 300–380 rotation per second for the APID and APIDFC controllers. 

This shows the proposed control scheme APID, without or with fuzzy compensator, was 

better than the PID controller, with less energy consumption and better performance. 

The control effort comparison between the controllers on �1 (Figure 22) clearly 

shows that the APID and APIDFC controllers require slightly less effort than the PID. 

Then even though �2, �3, and �4 use the same control technique, the control effort for 

this signal improves significantly when the altitude controller is based on APID and 

APIDFC. Moreover, it was found that in the experiment that the APID and APIDFC con-

sumed 2% and 4% less power, respectively, when compared to the PID when hovering 

the MAV. 

Figure 23 shows that the adaptive gains for both APID and APIDFC can converge to 

a certain point, while Figure 24 shows less chattering produced by the second-order slid-

ing mode, with an integral or sliding manifold for both controllers. By introducing a fuzzy 

compensator, it reduces the occurrence of chattering phenomena on the input signal by 

about 6%. According to Table 4, for the mass change event during hovering, under PID 

control, the MAV produces 1.4700 ISE. The ISE does, however, drop by 45% under APID 

control and 46% while under APIDFC control. Hence, with a fuzzy compensator, the flight 

control system can provide additional improvement to the MAV during flight control. 

Thus, we can claim that both APID and APIDFC were more robust compared to the PID 

control scheme. 

 

Figure 20. Altitude response comparison from the experiment. 
Figure 20. Altitude response comparison from the experiment.



Aerospace 2023, 10, 59 20 of 24Aerospace 2023, 10, x FOR PEER REVIEW 22 of 25 
 

 

 

Figure 21. Motors rotation comparison from the experiment. 

 

Figure 22. Control effort comparison between controllers. 

Figure 21. Motors rotation comparison from the experiment.

The control effort comparison between the controllers on U1 (Figure 22) clearly shows
that the APID and APIDFC controllers require slightly less effort than the PID. Then
even though U2, U3, and U4 use the same control technique, the control effort for this
signal improves significantly when the altitude controller is based on APID and APIDFC.
Moreover, it was found that in the experiment that the APID and APIDFC consumed 2%
and 4% less power, respectively, when compared to the PID when hovering the MAV.
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Figure 23 shows that the adaptive gains for both APID and APIDFC can converge
to a certain point, while Figure 24 shows less chattering produced by the second-order
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sliding mode, with an integral or sliding manifold for both controllers. By introducing a
fuzzy compensator, it reduces the occurrence of chattering phenomena on the input signal
by about 6%. According to Table 4, for the mass change event during hovering, under
PID control, the MAV produces 1.4700 ISE. The ISE does, however, drop by 45% under
APID control and 46% while under APIDFC control. Hence, with a fuzzy compensator, the
flight control system can provide additional improvement to the MAV during flight control.
Thus, we can claim that both APID and APIDFC were more robust compared to the PID
control scheme.
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6. Conclusions

This paper presents the real-time implementation of altitude controllers using PID,
adaptive PID (APID), and APID with a fuzzy compensator (APIDFC) for a MAV, specifically,
for a Parrot Mambo Minidrone. The adaptive mechanism, based on a second-order sliding
mode control, is utilized to alter the classical parameters of the PID controller of the altitude
controller. Four experiments were conducted: hovering, as well as sine, square, and
trapezium tracking. In addition, the robustness of the controller was tested by adding
mass of about 12.5 g, 15 s after flight launch, at 1.1 m altitude above ground. In the
experiment, the propeller rotations were about 30–60 rotations less when using APID and
APIDFC controllers. Then, by introducing a fuzzy compensator, it reduces the occurrence of
chattering phenomena on the input signal by about 6%, which is due to the implementation
of a sliding mode control. Furthermore, both methods also consume 2% and 4% less
power, respectively, when compared to the PID controller used to hover the MAV. Hence,
based on this observation, the APID and APIDFC controllers were significantly robust and
energy-efficient compared to the PID controller.
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