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ABSTRACT Reliable estimation of solar irradiance is required for many solar energy applications such
as photovoltaics, water heating, cooking, solar microgrids, etc. Deep Learning techniques have shown
outstanding behaviour for analysing complex datasets efficiently with high accuracy. Multi-Layer Perceptron
(MLP), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (RGU) techniques are found to be
the most competitive techniques in the literature for solar irradiance forecasting. Therefore, in this study,
a comparative analysis of those models is carried out using eleven years of NASA satellite data for training
and testing. The grid search technique is used to optimize the networks architectures to ensure the best
performance of the models for forecasting daily global solar irradiance. The results show that all models
have similar accuracy with a mean square error close to 0.017 kWh/m2/day. However, the speed of training
varies between 17 and 208 seconds for each model where GRU has shown higher speed than LSTM despite
of containing more layers due to their computational complexity. The MLP is found to be the most efficient
model due to using a low number of parameters 49,281 as compared to 1,025,793 for GRU. The study is of
importance for reliable solar irradiance forecasting for any location worldwide.

INDEX TERMS Solar energy, solar irradiance, forecasting, machine learning techniques, artificial neural
network.

I. INTRODUCTION

Solar energy is a clean and alternate reliable option to fos-
sil fuels which is being used worldwide. The total energy
that reaches the earth from the sun beams is huge (1 EJ =
lOlSJ) [1] whereas only 5 x 10* EJ is easily harvestable [2].
Several factors like climate, circadian variation, latitude, and
geographic change are responsible for the amount of sunlight
crossing the atmosphere [3]. The earth’s atmosphere receives
about 342 W/m? of solar energy, of which 30% is scattered
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or reflected in space again, leaving around 70% available for
harvesting [4].

The solar irradiance varies due to the earth’s rotation
around the sun along with other parameters like sun ori-
entation, aerosol, temperature, wind speed, direction and
many more variables, thus, solar energy is a non-predictable
resource. The solar irradiance datasets are unavailable for
most locations worldwide due to the lack of meteorological
stations. Therefore, different methods are used to forecast
solar irradiance for locations where no measured data are
available [5]. Recently Artificial intelligence (AI) techniques
are employed extensively to predict solar irradiance and have

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

119851


https://orcid.org/0000-0001-5916-9626
https://orcid.org/0000-0001-6105-7471
https://orcid.org/0000-0002-0085-9734
https://orcid.org/0000-0002-9245-440X
https://orcid.org/0000-0002-8817-9062
https://orcid.org/0000-0002-3966-2584

IEEE Access

S. Tajjour et al.: Short-Term Solar Irradiance Forecasting Using Deep Learning Techniques

been found to give very accurate results [6], [7], in addition,
different climate variables are used to predict solar irradiance
accurately [8].

As aresult of developments in physical modelling (NWP),
statistical modelling, and Al, forecasting skill is still improv-
ing. The future of forecasting for solar energy has a lot of
promise for expanding the kinds and quantities of data utilised
in statistical and physical modelling due to the accessibility
of big data sets and the inclusion of new data sources. Larger
datasets can be utilised to drive newer statistical and machine
learning techniques, and new data assimilation techniques
will enhance forecast accuracy [9].

Advanced technology will also be needed for managing
power systems with significant levels of distributed renew-
able energy output. Effectively managing power systems with
extensive decentralized renewable energy generation neces-
sitates a high level of expertise in forecasting techniques
tailored to these energy sources. This includes ‘‘behind-
the-meter” forecasting and the development of innovative
methods for representing forecast uncertainty. Solar energy
forecasting, in particular, extensively relies on statistical
models and artificial intelligence (AI) [10].

Moreover, the forecasting time horizon is selected based
on the requirement where short-term horizons are used for
integration of the grid with the PV systems, medium-term
horizons are used for system planning and maintenance,
and the long-term horizons are used for planning electric-
ity such as distribution and generation [11]. Multi-horizon
forecasting is also presented in [12] considering 3/6/24 hours
ahead for solar irradiance. Enhancing forecasting accuracy in
this context can be achieved by incorporating supplementary
data sources like cloud imagery, NWP forecast data, radar
information, neighbouring data points, or weather classifi-
cations. Additionally, statistical techniques are applied to
eliminate systematic biases, translate data into power gen-
eration predictions, and precisely measure the degree of
uncertainty [13].

Different machine learning (ML) techniques are explored
in several studies and compared with other techniques to find
the best techniques for further implementation in research
and industry [14]. In this study ‘““grid search”, which is an
efficient technique is used to optimize the architecture and the
training process for ML models, where each hyperparameter
is chosen from a list of values that ensures their optimum
performance.

The novelty and contributions of this paper are to review
the literature and find the most competitive techniques for
solar radiation forecasting and then develop an intelligent
model for forecasting of daily solar irradiance for a remote
location in India, where no weather station is available. Three
DL techniques namely Multi-Layer Perceptron (MLP), Long-
Short Term Memory (LSTM), and Gated Recurrent Unit
(GRU) are found to be the most competitive for global solar
irradiance forecasting (SIF) at any location. the grid search
technique is used to optimize the network architecture to
ensure an unbiased comparison of the models. These models
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are trained and tested using daily satellite solar irradiance
data.

This study is structured as follows: the literature is
reviewed to identify the suitable DL techniques and the eval-
uation metrics in section II. In section III, a case study is
presented in addition to the methodology, followed by the
results and discussion of the study in section IV. Moreover,
the conclusions and follow-up research areas are presented in
section V.

Il. LITERATURE REVIEW

Several techniques are used to predict solar irradiance for
different solar applications like solar photovoltaic (PV) pan-
els, solar concentrating systems, solar cooking systems, etc.
Machine Learning techniques are applied for solar irradiance
forecasting (SIF) due to their unbeatable performance in solv-
ing complex problems. The most important predictors to train
artificial neural networks (ANNS) for SIF are investigated in
[15], which boosts the training time and accuracy. Yadav et
al. [16] 26 locations are studied considering different climatic
regions. The authors used WEKA for feature selection [17].
They also used the rapid miner technique for feature selection
in other research for 76 locations in India [ 18], whereas maxi-
mum/minimum temperature, altitude, and sunshine hours are
found to have a significant impact on the training process.

Voyant et al. [19] reviewed different ML techniques in
addition to statistical methods and found that SVM, Decision
Tree (DT), and Random Forest (RF), are the most convenient
techniques for this task as these are easy to build and perform
similarly as complex techniques as ANN or Autoregressive
integrated moving average (ARIMA). A comparative study
between different hybrid models is presented in [20], in order
to explore their applications and to identify the best models
for SIF. The study is divided based on the ensemble learning
approaches and found that Decomposition-Clustering based
ensemble learning approach (DCELA) is the best combi-
nation technique for SIF. An overview of SIF methods for
different time horizons is presented in [21], whereas solar
irradiance resources, sensor datasets, radiometers, and fore-
cast error metrics are reviewed. In [22] a comparison between
conventional ML techniques and DL techniques for GHI and
diffuse solar irradiance is carried out for four locations in
Nigeria with hourly time horizon forecasts. DL techniques
are found to take more training time but give more accurate
predictions.

Rajagukguk et al. [23] compared some deep learning tech-
niques namely Recurrent Neural Network (RNN), LSTM,
GRU and a hybrid technique of Convolutional Neural
Network CNN and LSTM based on the accuracy, input
parameters, time horizon, training time, and type of season
and weather. CNN-LSTM model is found to outperform the
other models; however, it needs a longer convergence time.
Furthermore, an analysis of different physical, statistical,
ML models, and the hybrid approach, is presented in [24].
The study found that ML techniques are more complicated
than statistical ones, however, ML gives higher accuracy.
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In addition, numerical weather prediction methods are too
sophisticated to be understood. Furthermore, ensemble mod-
els can overcome uncertainty in the data to give more precise
results.

Different types of ML techniques are utilized for predicting
GHI on horizontal surfaces such as, SVM, REF, linear regres-
sion (LR), DT, polynomial regression (PR), and K-Nearest
neighbour (K-NN) [25], [26], [27]. More deep neural net-
works like CNN, RNN, and Radial basis function neural
network (RBFNN) are adopted for this problem [28], [29],
[30], [31], [32].

A Bayesian model averaging (BMA) for monthly SIF
in Turkey is presented in [33]. BMA is found to be more
accurate than Weight Agnostic Neural Networks (WANN),
Weighted extreme learning machine (WELM) and wavelet
transform based on RBFNN. Moreover, ANN is found to
be superior to DL, SVM, KNN to find daily solar irra-
diance forecasts in Turkey [34]. Moreover, six different
techniques (multilayer perceptron (MLP), gradient boosting
tree (GBT), two types of adaptive neuro-fuzzy inference
systems (ANFIS), Multivariate adaptive regression spline
(MARS), classification and regression tree (CART)) are used
for daily SIF whereas GBT is performed the best [35]. LSTM
is compared to ARIMA, SVR, BPNN and RNN models in
[36] and found that LSTM is the best model among them
especially in the cloudy and mixed days. Furthermore, RNN,
LSTM, FFNN, and GRU are compared to traditional tech-
niques like RFR and SVR in [37]. LSTM and GRU are found
to be the best among the other techniques.

Decomposition techniques are also used to analyse solar
irradiance data as it is non-stationary and non-linear data.
Therefore, techniques like Wavelet Decomposition, Ensem-
ble Empirical Mode Decomposition and Mode Decom-
position are used to split the source data into many
components [38].

Researchers also used satellite data for solar irradiance
analysis and prediction for places at which measured datasets
are not available [39]. Both measured and satellite data are
used to predict the GHI in Iran [40]. Angstrom exponent,
aerosol optical depth, cloud optical depth, cloud fraction, and
precipitable water vapour amount are taken from Moderate
Resolution Imaging Spectroradiometer (MODIS) instru-
ments in addition to the daily pyrheliometer measurements
GHI. They found that using cloud fraction added valuable
parameters to slightly increase the accuracy of the used
models (ANN and LR). Images are also used for cloud
tracking because its significant impact on climate studies.
Therefore, satellite images are used for tracking the clouds in
particular regions [41]. In addition, ground-based sky images
are used for intra-hours forecasts where satellite images are
not suitable [42].

Hybrid techniques, which utilize different techniques like
ML, DL, metaheuristics, etc., to achieve more reliable and
accurate models [43]. For instance, particle swarm optimiza-
tion (PSO) is combined with extreme learning machine is
proposed in [44]. In [45] self-organizing maps (SOM) is used
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for clustering the dataset into similar regions, SVR is used
for modelling each cluster and PSO techniques is used to
optimize the SVR parameters. Another hybrid spatiotemporal
method is proposed in [46] and [46] for day-ahead SIF. This
technique uses discrete Fourier transform to extract frequency
features from the data, principal component analysis for
feature selection and Elman-based neural network for fore-
casting. A fuzzy regression functions combined with SVM
are compared to an ANFIS and a coplot supported-genetic
programming approach [47]. In addition, a Hidden Markov
Model combined with Generalized Fuzzy technique is com-
pared to ANFIS and ANN for SIF in [48] and found to be
more efficient. Evolutionary techniques are used frequently
in the literature either by optimizing other techniques’ param-
eters or as hybrid techniques. In [49] Extreme Gradient
Boosting (XGB) combined with Genetic Algorithm (GA) and
used to forecast solar irradiation using measured data from
three different locations in USA.

However, a critical challenge in forecasting lies in
instances where the trained model exhibits enduring error
patterns, which can be seen as a bias reduction function. This
error data can be leveraged for constructing a bias correc-
tion model, which can take the form of a straightforward
mathematical function or even a complex machine learning
algorithm. This developed model is subsequently employed
to mitigate the identified bias from the forecasts, resulting in
an augmented level of forecasting precision.

Table 1 presents the highlights and the results of the latest
publications that used ML techniques for SIF. As shown in
the table, DL techniques such as MLP, LSTM, and GRU
networks are frequently used in literature and achieved a very
good performance; therefore, these techniques will be chosen
for more investigations and validation.

A. IDENTIFIED RESEARCH GAPS
Based on the available state-of-the-art, the following research
gaps have been identified:

a) Optimal architecture for models is as important as opti-
mizing the weights, and most of the previous studies
did not consider that before comparing between net-
works.

b) Hybrid models are sophisticated and difficult to imple-
ment and most of these require more time than the
stand-alone models as more computations are required.
Therefore, optimizing the stand-alone model’s archi-
tecture could increase the accuracy to match the hybrid
model’s accuracy but with less complexity.

¢) The models are sensitive to sudden fluctuations in
environmental conditions due to the lack of data pre-
processing in addition to the volatility of the solar data
which already exists.

Ill. CASE STUDY SOLAR IRRADIANCE FORECASTING FOR
A LOCATION IN INDIA

In this section, a location in Bajhol, Solan, Himachal Pradesh,
India, is presented as a case study because the authors are
conducting research related to solar applications in this part
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TABLE 1. Main highlights of the recent publications on solar irradiance

forecasting.

TABLE 1. (Continued.) Main highlights of the recent publications on solar

irradiance forecasting.

LSTM in term of
results and speed

[38] e WD, EEMD and EMD are used e Found that using
to build different components and wavelet
residuals from the source data decomposition
e Actual 1-hour sampled data in boosted the
France is used performance
e Techniques: AR and NN are used significantly
for forecasting
[45] e Hourly GSI forecasting done e ARIMA, SES, LES,

Hybrid model of self-organizing
maps, SVR and PSO techniques
is proposed

Colorado, USA and Singapore.

and RW are
compared to the
hybrid model

Hybrid model is

Ref Highlights Results
[22] e Daily forecasting of GSI is Metrics used: R,
presented RMSE, NMBE,
e Actual Data for four locations in MAE, MBE, MABE,
Turkey are used t-stat, MAPE
e Parameters: minimum/maximum KNN behaves the
temperature, Cloud, worst
extraterrestrial solar irradiance, ANN is found the
Day length, Solar irradiance. best fitting algorithm
e Techniques: SVM, ANN, k-NN,
DL
[34] e Daily forecasting of GSI is Metrics used:
presented RMSE, R, MAE,
e Locations in Turkey, and USA Nash Sutcliffe
are studied efficiency coefficient
e Parameters: wind speed, (NS)
maximum/ minimum GBT model
temperature, relative humidity performed better
e Techniques: GBT, ANFIS-SC, than other models
ANFIS-FCM, MARS, MLPNN,
CART
[35] e Daily forecasting of GSI and PV Metrics used: MAE,
power generation discussed RRMSE, NS
e Seven stations in China are PSO-ELM provided
studied more accurate
e Parameters: full climatic data forecasts
e Techniques: PSO-ELM, ELM,
M5 model, SVM, generalized
regression neural networks, tree,
and autoencoder
[44] o Daily forecasting of GSI is Metrics used: R,
presented RMSE, NMBE,
e Actual Data for four locations in MAE, MBE, MABE,
Turkey are used t-stat, MAPE
e Parameters: minimum/maximum KNN behaves the
temperature, Cloud, worst
extraterrestrial solar irradiance, ANN is found the
Day length, Solar irradiance. best fitting algorithm
e Techniques: SVM, ANN, k-NN,
DL
[46] e Day-ahead SIF presented Proposed model is
e Hybrid spatiotemporal method is compared to the
proposed. persistence method,
e Frequency features are extracted ARIMA, PCA-BP-
using DFT and then feature NN, DFT-PCA-BP
selection using PCA. The most accurate
o Techniques: Elman-based neural method is found to be
network for forecasting. DFT-PCA-Elman
[36] e Daily and hourly SIF is proposed K-NN is used to
e Techniques: LSTM is compared divide data into
to ARIMA, SVR, BPNN and cloudy, sunny, and
RNN mixed days
e Dataset are collected from LSTM is the best
Atlanta, New York, and Hawaii model among the
others especially in
cloudy and mixed
days
[37] e Hourly and daily SIF is proposed DL is found to
for one year ahead always outperform
e Techniques: a comparison of the traditional
FFNN, RNN, LSTM, and GRU techniques
with traditional techniques like LSTM and GRU are
RFR and SVR found to be the best
among the other DL
techniques
GRU achieved
slightly better
performance  than
119854

found to outperform
than other models

TABLE 2. Evaluation metrics used.

Metric Equation
MAE 1
§Z|Pred(j) — Act() |
=1
MSE 1S
EZ(Pred(j) — Act() )?
=1
RMSE .
1
EZ(Pred(j) — Act() )?
=
nRMSE Tos _ _
\/3 ijl(Pred(/) — Act(j) )?
Act
MBE

S
%Z(Pred () — Act(D)
=1

of India, where no measured data are available at present, and
the forecast of solar irradiance is required for research and
different solar applications.

A. EVALUATION METRICS

The selected metrics (MAE, MBE, MSE, RMSE, nRMSE)
are mostly used to evaluate ML models especially in regres-
sion problems where, mean absolute error (MAE) measures
the prediction error average using the absolute value. Mean
biased error (MBE) measure the average bias in the prediction
to underestimate/overestimate the measurement. Moreover,
root mean square error (RMSE) measures how much predic-
tions differ from measurements. This study follows the same
evaluation metrics which are shown in table 2 where S is the
number of samples, Pred (j) is the prediction j, Act (j) the real
data point j, and Act = % Zle Act ().

B. MATERIAL AND METHODS

The methodology followed is explained in the flow chart
shown in figure 1. Three different Deep Learning networks
are chosen from the literature as the most reliable and
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Reviewing the literature

!

Selecting the most
competitive DNN

v

Optimizing the networks’ architectures
using grid search technique

v

Training the optimized networks for
forecasting solar irradiance

'

Comparing the forecasting results of
all networks with the actual data

{

Drawing conclusions based on the
evaluation metrices

FIGURE 1. Flow chart of the study.
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FIGURE 2. The feature correlation heat map of the inputs.

accurate methods for time series problems and especially
for solar irradiance prediction. These algorithms are inves-
tigated to find the competitive model to forecast the daily
GHI. The networks architectures are optimized using the grid
search technique. Google Collaboration platform is used for
programming purposes of all models using python language.
Actual datasets taken from the site are most likely to achieve
higher accuracy with a minimum of one year of training sam-
ples. However, in this location there are no meteorological
data are available so that the satellite data for the last eleven
years are utilized. Then the performance of the state-of-the-
art ML techniques is investigated and compared.
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TABLE 3. Statistical description of the input parameters.

Symbol PARA:I ETE Ar{l Max Al;a Std Unit

WS10M Wind 08 7.1 2.6 0.7 ms!
Speed 7
(WS) at
10m
WS at 50 1.1 92 3.5
m
Minimum 0.0 6.7 1.6
WS at 50 2
Meters
WS50M _MA  Maximum 2.1 15 52
X WS at 50
Meters,
Minimum 0.0 381 1.1
WS at 10 2
Meters,
WS10M_MA Maximum 1.6 11.8 44
X WS at 10 5
Meters,
WS10M_RA WS Range 0.6 108 3.3
NGE at 10 7
Meters
s Earth 1.3 351 191 7.7 °C
Skin
Temperat
ure
Dew/Fros - 237 9 85 °C
t Point at 92 2
2 Meters 1
Wet Bulb - 23.6 9.1 84 °C
Temperat 8.5 3
ure at 2 5
Meters
T2M_RANG Temperat 2 21 11 34 °C
E ure Range
at 2
Meters
2M Current 3.8 33 198 6.6 °C
Temperat
ure at 2
Meters
Maximum 7.3 416 26 6.5 °C
Temperat
ure at 2
Meters
Minimum - 28 15 6.3 °C
Temperat 1.3
ure at 2
Meters
Precipitat 0 120. 3.5 82
ion 7
Specific 2.1 21 94 53 glhkg
Humidity
at2
Meters
KT Insolation 0.0 0.8 0.56 0.1 dimensionl
Clearness 4 5 ess
Index
PS Surface 87.  90.2 892 05 kPa
Pressure 9

WS50M 1.1 ms”!

WS50M_MIN 1.1 m.s™
1.6 ms”!
WS10M MIN 1.1 ms?!

1.4 ms”!

1.1 ms”!

T2MDEW

T2MWET

T2M_MAX

T2M MIN

PRECTOT mm.day™”’

ovaMm

C. DATASET USED

Eleven years of satellite data are used for the location Bajhol,
Solan, Himachal Pradesh (Latitude 30.8644N, Longitude
77.1184E) for the period from 2010/05/01 to 2021/05/01.
Table 3 represents the parameters used in the data set with
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Rolling Mean & Standard Deviation for Solar Radiation daily dataset

—— original
—— Rolling Mean
— Rolling std

FIGURE 3. Rolling (mean and standard deviation) of the solar irradiance
daily measurements combined with the original measurements.
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FIGURE 4. Decomposition of the original solar irradiance data into trend,
seasonal and residual.

Seasonal

Reside

the statistical description of each one including the minimum,
maximum, mean and standard deviation.

Pearson correlation coefficient is applied in order to find
how variables are correlated to each other’s. Figure 2 displays
the heatmap of the correlations for all parameters. Clear-
ness index and temperature are most correlated inputs that
have significant impact to find the value of solar irradiance,
whereas less impact is found for the pressure and humidity.

The original dataset is plotted in figure 3 in addition to
the rolling mean and std to give good inspiration for under-
standing the problem. The daily solar irradiance fluctuates
during the time of the year which makes it difficult to predict.
By visually checking the dataset it can be observed that the
mean and the variance are not constant which means the data
is not stationary, and the data obviously has a seasonality
trend where the same pattern repeats itself every year with
a little difference from the previous year. This has been ver-
ified computationally by decomposing the data into trends,
seasonal trends and residuals as shown in figure 4.

D. GRID SEARCH TECHNIQUE

The procedure of training for all the proposed networks will
follow the same strategy to ensure getting the maximum
outcome from every network and for that the size of the
window is fixed to consider only the very last 5 samples in
the data. As choosing the optimal architecture is a tough task
for most of the problems, many techniques are used to find
the optimal architecture automatically due to the problem
itself. One of the techniques is called grid search which is
a useful technique that can search automatically through a
limited range of possible choices (grid) and then it converges
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FIGURE 5. Grid search strategy.
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Weights Weights

Output
Layer

Input
‘ Layer

FIGURE 6. MLP architecture.

on the best architecture, among the other options, at which
the network gives the maximum accuracy. This grid search
technique is explained in figure 5 where the algorithm tries
to change the parameters values within the specified range to
converge on the best solution that gives the least error. In this
study, grid search is used to optimize the layers’ number (set
form 1 to 4), the nodes’ number in each layer (set from 32 to
512 for each layer), the learning rate chosen from the list (1e-
2, 1e-3, le-4), the dropout factor should be less than 0.9 and
the activation functions for each layer which could be ‘Relu’,
‘tanh’ or ‘sigmoid’ except the last layer which has linear
activation function. For evaluation purposes the last year’s
data are held for testing and evaluating of the model.

E. MULTI-LAYER PERCEPTRON
The main concept behind ANNSs is to mimic the behaviour
of the brain whenever it wants to understand or recognize
anything and the way it makes reasonable decisions. MLP
architecture, shown in figure 6, contains multiple layers, these
layers have nodes, the nodes relate to each others using
weighted paths represent the way of the thinking where those
weights will be trained, and their values will be optimized to
deal with the dedicated problems [50], [51]. _
The feed forward calculations are shown in (1) where h’,
is the output of the j-th node at time t, 6 is the activation

VOLUME 11, 2023



S. Tajjour et al.: Short-Term Solar Irradiance Forecasting Using Deep Learning Techniques

IEEE Access

yit)

LSTM cell

Forward S(t)
Clt-1) N - ct)
W @
Input Gate tanh
v 3 >
5 CJ CJ
fe L3 [ 0, S(t)
Forget Gate Update Gate Output Gate
Sigmoid Sigmoid tanh Sigmoid
Sft-1)
Wy w; w, w,
— LSTM

*(t) cell

FIGURE 7. LSTM architecture.

function, W,j is the weights, X{ is the inputs, B; is the biases.
i, = oW « X! + B)) (1

F. LONG SHORT-TERM MEMORY

LSTM is a special network built out of RNN which is similar
to MLP, however, it has memory that gives the ability to such
networks to remember previous data. The aforementioned
feature of LSTM makes it suitable for time series problems
where the current observation is strongly dependent on the
previous ones. LSTM architecture, as shown in figure 7, con-
tains cells which are able to remember previous observations
over arbitrary time intervals. Input, output and forget gates
control the data flow in and out the cell [52].

The feed forward calculations are shown in (2)-(7) for the
j-th LSTM unit, §/ is the output, O; is the output gate, C/
is the memory, f; the forget gate, i the input gate, o is the
sigmoid function, C’{ is the updated memory, Vo, V; and V;
the diagonal matrices

S{ = 0’, tanh (C{) 2
d =0 (Wox; + UoS;_1 + VoCyY 3
cl=slcl, v @
C‘t’ = tanh Wex; + UyS;_1 Y o)
£l =0 (Wi + UpSiz1 + VG Y ©)
il =0 (Wix, + UiSi_1 + V,Cr_yY ™

G. GATED RECURRENT UNITS

GRU is similar to LSTM but with a smaller number of
hyperparameters as it contains only reset and update gates as
shown in figure 8. Reset gate decides if the information from
previous state have to be included or not, whereas Update
gate determines the information to be passed to the current
state. If the Reset gate value is “0”’ then the current hidden
state will ignore the information from the previous state [53].
The feed forward calculations are shown in (8)-(11), where
7 is the update gate, r/ is the reset gate, © element wise
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FIGURE 8. Gated Recurrent Unit architecture.

multiplication, and o sigmoid function.

cl=(1-4)c_, +d¢ ®)
d =0 (W, + U.C_1Y )
] = tanh (Wx; + roUC, _,Y (10)
¥ =0 (Wex + U.Cr_yY (11)

IV. RESULTS AND DISCUSSION

MLP, LSTM and GRU results comparison is presented in this
section where Google Collabs platform is used for developing
all the models using Python. The forecasting results based on
the 11 years of daily solar irradiance data that is divided into
10 years for training and 1 year for testing. Before training
the data is normalised between 0 and 1 using minmax scaler.
The networks are trained after optimizing their architectures
using the grid search strategy and the results are discussed in
this section.

MLP best architecture is found to contain one layer
only with 352 number of neurons and the model achieved
0.0171 MSE and 0.095 MAE. On the other hand, LSTM
network best architecture is found to have two layers with
[64, 256] units which makes the number of hyperparame-
ters of this network is high and achieved 0.0173 MSE and
0.092 MAE. Moreover, the optimum architecture of the GRU
network is found to be the deepest with three layers including
[192, 256, 320] units respectively which makes the number of
hyperparameters of this network high. The model achieved
0.0172 MSE and 0.091 MAE. In terms of complexity, MLP
is the simplest network amongst all of three networks as
the total number of parameters is 49281 which is 7 times
less than LSTM and 20 times less than GRU. The number
of parameters of LSTM is about 7 times more than that of
MLP, and for GRU its about 21 times more than MLP. This
is because of the number of layers and units used in each of
them.

The behaviours of MLP, LSTM and GRU are displayed in
figures 9,10, 11 respectively, where the actual dataset is shown
in orange and the predictions are shown in blue colours.
This is done for the last year of the dataset, and it could be
estimated visually that all networks behave the same and the
average prediction is less than the actual data. However, the
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FIGURE 9. Measured output (orange) and the predicted (blue) values by
MLP.
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LSTM.

14
»

KWhim2/day

0.2

- predictions
Actual_Output

0.0

2020-10-03 2020-11-22 2021-01-11 2021-03-02 2021-04-21
date

FIGURE 11. Measured output (orange) and the predicted (blue) values
using GRU.

TABLE 4. Evaluation results of the three networks.

Metrices and indicators MLP LSTM GRU
No. of neurons in each layer [352] gé’] [19322’ 02]56’
No. of parameters 49,281 351,489 1,025,793
No. of training epochs 81 514 44
Training time 178 208 S 218
MSE (kWh/m2/day) 0.0171 0.0173 0.0172
RMSE (kWh/m2/day) 0.13 0.132 0.131
nRMSE (kWh/m2/day) 0.156 0.157 0.156
MBE (kWh/m2/day) -0.012 -0.0058 -0.0056
MAE (kWh/m2/day) 0.095 0.092 0.091

models can follow the pattern of the original data with minor
fluctuations.

R value which shows the relation between predictions and
actual values are found to be 0.61, 0.65, and 0.7 for the
models LSTM, GRU, and MLP respectively. This shows that
MLP is the most accurate model. Figures 12,13,14 show
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FIGURE 12. Scatter plot and the R-value of LSTM predictions and actual
values with linear regression line.
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FIGURE 13. Scatter plot and the R-value of GRU predictions and actual
values with linear regression line.

the predictions and real values of the daily solar irradiance
considering the test set only which also show how accurate
are the models.

As shown in table 4, all the three networks achieved around
0.017 MSE, 0.13 RMSE, 0.16 nRMSE and 0.09 MAE; how-
ever, MLP achieved slightly more MBE (0.01) than (0.006)
for LSTM and GRU. The value of MBE is always negative
for all these methods which shows that the solar irradiance is
usually underestimated. MLP is the fastest network to con-
verge within only 17 seconds and 81 epochs. However, it is
important to mention that GRU shows interesting behaviour
as it has the largest number of parameters yet there are only
5 seconds difference to MLP convergence time and still faster
than LSTM due to a smaller number of gates which means
less matrix multiplications. By considering all parameters,
MLP is the best network because it gives the same accuracy
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FIGURE 15. Taylor diagram of all models’ predictions compared to the
reference data.

within less time. Furthermore, MLP can be implemented in
an embedded systems with low configuration as it does not
require high storage and the computational complexity is less.

Figure 15 represents Taylor diagram which displays the
difference between the models based on three metrics includ-
ing CC, STD, and cantered RMSE. As shown in the figure,
all models have similar behaviour in term of CC and RMSEc
however, MLP model has closer STD to the reference one
than other models.

The low number of layers found in all networks can be
due to the dataset size which might not be enough to train
deeper networks. On the other hand, simple tasks or tasks with
short-range dependencies may not require the complexity of
deep recurrent architectures. This may make the MLP shallow
network, with feedforward connections, suffice for tasks that
do not involve capturing complex sequential patterns.

Data preprocessing and feature engineering also play a
crucial role in the performance of deep neural networks.
A shallow MLP might be more forgiving when it comes to
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TABLE 5. A comparison of present study results with other studies from
the literature.

Time RMSE
Ref Parameters horizon Model (W/m2)
e Temperature .
(54] o DewPoint " sioility Day  LSTM 76.245
o e Wind Speed
o Humidity
e GHI e Relative
[55] e Solar zenith humidity Hour LSTM * 66.57
GRU e 67.29
angle e Temperature
e Temperature .
(56] o Humidity ~° vndspeed o 1STM 6254
e Pressure
e Cloud cover
e Temperature e Wind speed
[57] o Humidity and direction Day LSTM 60.31
o Precipitation e Cloud cover
5-min e 18.85
e 20.75
0-min  ory - 42
[58] e Solar irradiance e 152
GRU 3386
20-min :
e 29.58
. e 58
30-min . 5520
e Wind speed
This Z‘T“e‘:nd'::tt“;z . ;P o ¢« LSTM o 12
Wor clezr—skl}l/ . ]1;‘:\?\5117?01311 Day e GRU e 119
k index Point * MLP e 118
o Humidity

the quality of input features, whereas deeper networks may
require more carefully engineered inputs.
Table 5 shows a comparison of the present study results
with other research studies in the literature. All models are
compared using RMSE values (after converting it to W/m?).
Inputs considered in each study are similar however, time
horizons are different. It is noted that the error increases when
the time span increases. Moreover, the LSTM is found to be
better for very short time horizons while GRU achieved better
results for longer time horizons. The trained models presented
in this study give less error than the other models as more
inputs are considered and the efficiency of the followed train-
ing strategy. Although this study used satellite data which
might deviate from the real measured data at the site; it shows
the efficiency of the proposed models for forecasting the daily
solar irradiance. However, further investigation can be carried
out by comparing the results to actual meteorological data to

get the exact error of the models which are not available in
the present case.

V. CONCLUSION

Deep Learning Techniques are investigated in this study
for solar irradiance forecasting problem, and the results are
validated using data from a hilly location in India. A compar-
ative analysis and validation of three reliable deep learning
techniqu es, MLP, LSTM and GRU are presented. The DL
techniques are implemented to find the most competitive one
to forecast daily GHI accurately for any location. The models
are trained and tested using satellite solar irradiance data, and
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the grid search technique is followed to find the optimum
architectures. The main conclusions are as follows:

o Based on the literature review, the best three architec-
tures with high accuracy are identified as MLP, LSTM,
GRU networks.

« Grid search technique is used efficiently to optimize the
models’ architectures that meet the complexity of the
problem.

o By optimizing the model architecture, the three net-
works are able to achieve similar forecasting accuracy
of the daily global solar irradiance.

« MLP is found to be the simplest network with the least
number of hyperparameters and the fastest training time.

« Different parameters such as direct normal irradiance or
diffuse solar irradiance can also be predicted in the same
manner.

The proposed networks can also be used for different time
horizon forecasting to be applied for demand and supply
balancing or for energy management purposes. Moreover, the
results can be compared to the meteorological data to assess
the proposed models and identify the real models’ accuracy
based on measured data. Further follow-up research can be
undertaken for solar radiation forecasting for any location
worldwide using NASA data. Finally, grid search technology
may not be effective when a high number of parameters
is taken, therefore, metaheuristic techniques can be used to
optimize the DL techniques’ architectures.

Moreover, as energy generation, storage, and consumption
become more integrated, forecasting systems will evolve to
manage these interconnections effectively. Given the uncer-
tainty associated with climate change, future models may
focus on adaptability and resilience, helping systems cope up
with extreme weather events. The future trends in short-term
solar irradiance forecasting using deep learning techniques
are expected to focus on accuracy, real-time capabili-
ties, and adaptability to changing environmental conditions.
Additionally, there will be a growing emphasis on trans-
parency and understanding the models’ decision-making pro-
cesses, especially in applications affecting energy grids and
infrastructure.
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