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ABSTRACT Human-object interaction (HOI) detection is an advanced task in the field of computer vision
and is crucial for deep scene understanding. However, current HOI detection models face serious challenges
in the following aspects: first, they overly rely on appearance features and neglect the local details of human-
object interactions; second, the training cost of the existing detection model is quite high. To overcome
these challenges, this study proposes a Parallel Multi-Head Graph Attention Network (PMGAT) model for
detecting human-object interaction correlations. First, the close relationship between facial landmarks and
body keypoints with objects is recognized, thereby introducing a local featuremodule to construct a relational
graph model between facial keypoints, body keypoints, and objects. A multi-head graph attention network
was utilized to accurately capture the interaction correlations between keypoints, addressing the issue of
neglecting local details. Furthermore, the global feature module is designed to extract absolute spatial pose
features and relative spatial pose features based on the positions of human keypoints relative to objects,
enabling a more in-depth extraction of interactions between humans and objects. To reduce the training cost
of the model, it adopts a multi-branch parallel structure and employs a multi-threaded multi-GPU scheme
for parallel training acceleration. The empirical results demonstrate that the PMGAT model outperforms the
current state-of-the-art ViPLO method in terms of mAP on the V-COCO and HICO-DET datasets. On V-
COCO, it exhibits a notable improvement of up to 0.8% mAP over ViPLO, while on the more demanding
HICO-DET, the improvement reaches up to 1.47% mAP. Furthermore, PMGAT stands out for its minimal
training time compared to existing approaches. Overall, these results corroborate the dual augmentation of
PMGAT in accuracy and training efficiency.

INDEX TERMS Human–object interaction, graph attention network, local feature, deep learning.

I. INTRODUCTION
Research has shown that people often rely on analyzing
interactions involving humans and objects in an image
to interpret the connotations of the image, and that such
interactions include both interpersonal interactions and
interactions between objects [1], [2], [3]. The recognition
of these interaction relationships is of great significance for
advancing the computer-based understanding of image and
video content [4], generating descriptions of image and video
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scenes automatically [5], and enabling automatic questioning
of image and video scenes [6].

In earlier research, the fusion of multiple features for
human-object interaction (HOI) detection, including visual
and spatial features, was a major trend [7], [8]. These
studies are significant for the development of HOI detection.
However, as research has progressed, more emphasis on
interaction details has become important. To address this,
various methods have been introduced, such as attention
mechanisms [9], [10], [11], [12], context information [13],
[14], graph convolutional neural networks [15], [16], [17],
[18], [19], body parts, and poses [20], [21], [22], [23], [24] to
enhance the focus on local details within images. Specifically,
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the construction of context appearance features has become
crucial, in addition to the visual and spatial features of
humans and objects. These methods construct attention maps
that concentrate on regions relevant to interactions between
people and objects, and regions that may contain information
about interactions [19], [25], [26].

Moreover, earlier research has often treated the human
body as a whole and allocated the same attention to the
entire body region. However, this overlooks the fact that
humans typically use only a portion of their bodies to interact
with objects. Therefore, some studies introduced information
about human body parts and poses to improve the accuracy
of HOI detection [11], [20], [23]. Furthermore, graph models
and graph convolutional neural networks have become
essential approaches for addressing HOI detection problems.
Previous research combined these network structures with
graphical models [27], [28], achieving significant progress
in applications such as scene understanding [29], [30], [31],
object detection and parsing [32], [33], and Visual Question
Answering (VQA) [15]. When conducting human–object
interaction detection (HOI detection), the central concept
of a graph model is to utilize nodes to represent humans
and objects while using edges to denote the interactive
relationships between humans and objects. By introducing
feature processing networks with attention mechanisms,
contextual information from images is integrated into the
feature representations of the graph nodes. When there
is a stronger level of interaction between humans and
objects, the associated weights for the corresponding edges
increase [18], [34].

The field of HOI detection has been further enriched by
recent advances in the neural heuristic analysis of video
content, with the application of graph neural networks
becoming increasingly compelling, from the initial generic
approach evolved to a nuanced analysis that takes into
account specific body parts and poses, while utilizing graph
models and attentional mechanisms to improve accuracy.
In recent years, the research community has introduced
innovative frameworks to address multifaceted challenges
that address the problem of modeling interactions at different
levels of granularity [35], [36], overcoming the challenges
posed by label skew [37], and the complexities of effectively
integrating multimodal data [38]. These innovations have
significantly advanced application areas such as scene
understanding and VQA. These advances mark a crucial
role for graph neural networks in HOI detection in video,
opening up new possibilities for more accurate and dynamic
interpretation of human-object interactions in video.

Although existing HOI detection methods perform well in
most cases, the performance of graph-based HOI detection
methods may not be satisfactory in certain action contexts.
To gain a deeper understanding of this issue, we centered
our study around action categories, encompassing a total
of 117 different action categories. The sourced images
were selected from the HICO-DET dataset as our test
dataset [39]. State-of-the-art and widely accepted HOI

detection techniques were evaluated under identical hardware
conditions. The performances of different action categories
were compared using the recall rate of true-positive samples
and visualizing these results, as shown in Figure 1. Vari-
ous methods, including Instance-centric Attention Network
(iCAN) [10], Transferable Interactiveness Knowledge (TIN)
[21], Dual Relation Graph (DRG) [19], Spatially Conditioned
Graphs (SCG) [40], Translational Model for Human-Object
Interaction Detection (TMHOI) [41], and Vision Transformer
based Pose-Conditioned Self-Loop Graph (ViPLO) [42],
have been applied to HOI detection on the HICO-DET
dataset, and the recorded recall rates have been documented.

A common problem has detection is insufficient attention
to local information, leading to a decrease in detection
accuracy. To gain a deeper understanding of this issue,
three action categories (watch, inspect, and ride) with the
lowest recall rates were focused explicitly on, and represen-
tative misclassified samples for observation were selected,
as shown in Figure 2. In Figure 2, the red text represents
incorrect interactions, while the black text represents correct
interaction results.

For example, in Figure 2 (a-b), it can be observed
that the human in the red bounding box partially overlaps
with the bicycle in the green bounding box. Because the
red bounding box was situated above the green bounding
box, it was misclassified as the ‘‘ride’’ action. In addition,
in Figure 2 (c), when the human in the red bounding box
was positioned at the front of the bicycle, it was also
misclassified as the ‘‘Hold’’ action. These misclassification
cases highlight the importance of considering human body
posture and body part spatial relationships in reasoning about
human-object interactions. In Figures 2 (d-g), despite the
detection of the presence of a human and a television, they
were misclassified as the ‘‘watch’’ action. In Figure 2 (h),
although three people stood around a bicycle, there was
no physical interaction between humans and the object.
However, it was still misclassified as having no interactive
action. These misclassifications were due to the neglect of
local facial details, which could indicate possible interactions
with objects.

FIGURE 1. Recall rates for 117 different actions.

To address these issues, we believe that integrating human
body posture and body part spatial information, as well
as local facial details, into embedding a graph provides
more interpretable information. While previous graph-based
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FIGURE 2. Misclassified samples.

methods have attempted to encode human body posture and
body part spatial information into node embeddings [14],
[18], [43], [44], [45], insufficient attention has been paid
to body parts and posture features for interacting objects.
In addition, facial part information was not encoded into the
nodes of the graph.

Considering the constraints mentioned earlier, this study
presents a model for HOI detection utilizing graph structures
called the parallel multi-head graph attention network
(PMGAT)model for human–object interaction detection. The
model architecture, as depicted in Figure 3, primarily consists
of five modules: the human–object interaction proposal
module, feature extraction module, local feature module,
global feature module, and semantic feature module.

Module 1: Human-Object Interaction Proposal Mod-
ule: This module’s main task is to sift out potential
human-object pairs that might interact with the images. Its
output consists of a set of possible human-object interaction
proposals, laying the foundation for subsequent feature
extraction and graph modeling.

Module 2: Feature Extraction Module: This module
extracts the appearance features of humans and objects,
facial part features, and keypoint features of the human body
from the images. These features are crucial for identifying
interactions between humans and objects. They are passed
on to the subsequent graph model to construct a relationship
graph between humans and objects.

Module 3: Local Feature Module: In this module
Unlike previous methods of feature fusion in graph-based
models, our approach integrates fine-grained facial details
into graph embeddings. This aids the model in understanding
interactions related to faces. Simultaneously, human body
part features are embedded into the graph nodes, and a
multi-head attention network is employed to update the rela-
tionship weights between nodes and aggregate features from
neighboring nodes. This directs the model’s attention more

towards important local details that influence interaction
detection.

Module 4: Global Feature Module: In the global feature
component Relative spatial poses and absolute spatial poses
of human subjects were employed as contextual global
features to enhance the semantic understanding of the image.

Module 5: Semantic Feature Module: Finally, semantic
features are introduced to further strengthen the semantic
comprehension of images.

The key innovation lies in the fusion of facial fine-grained
details and human body part features into the node encoding
process of the graph, coupled with a multi-head attention
network to provide supplementary insights to the graphmodel
and enhance the focus on local details. Regarding the model
architecture, we designed the local, global, and semantic
features as three independent parallel modules. By leveraging
this structural characteristic, a parallel training method was
adopted to enhance the training efficiency of the model.
In summary, our contributions encompass three main aspects:
incorporation of facial and body part details, parallel graph
attention networks, and experimental validation.

(1) Incorporated facial and body part details into the graph
node encoding process, enhancing the focus of the model on
local features.

(2) Developed a multi-branch parallel structure that
employs multi-threading and multi-GPU techniques to sig-
nificantly accelerate the training process.

(3) Conducted experimentation on the V-COCO and
HICO-DET datasets, validating the superior performance of
the model over existing methods with significant enhance-
ments in detection accuracy and training efficiency.

II. RELATED WORK
The primary objective is to localize both human sub-
jects and objects while simultaneously recognizing their
interaction relationships during Human-Object Interaction

131710 VOLUME 11, 2023



J. Zhang et al.: PMGAT Model for Human-Object Interaction Detection

(HOI) detection. Over the past few years, there has been
a significant proliferation of deep learning architectures in
the field of HOI, with numerous HOI detection models
currently dependent on neural network frameworks. For
instance, Chao et al. [7] introduced HO-RCNN, which
is a multi-stream network structure comprising three
streams: one for humans, one for objects, and one for
pairs. The human and object streams encode the visual
attributes of humans and objects, whereas the pair stream
represents the spatial connections between humans and
objects. This classic multi-stream network structure serves
as a benchmark and source of inspiration for subsequent
research.

A. ATTENTION MECHANISM
Building upon the HO-RCNN, Gao et al. [10] introduced
a model named ICAN. ICAN integrates an attention mod-
ule focused on individual instances to extract contextual
attributes that complement the appearance features within
local regions (i.e., bounding boxes for humans and objects).
This integration augments the effectiveness of HOI detection.
The instance-centric attention map provides the model with
greater flexibility, as it allows for focus on different regions
of the image based on different object instances. This
innovation improves the model’s understanding of human-
object interactions in complex scenes.

B. MULTI-FEATURE FUSION
However, ICAN relied solely on the visual and spatial
features of humans and objects for inference without incor-
porating additional information, leaving significant room
for improvement in terms of accuracy. To address this
challenge, Li et al. [21] introduced the TIN model, which
incorporates spatial positioning and human pose information
to enhance HOI reasoning. TIN is independent of the HOI
classification task, has excellent generalization properties,
can be transferred across datasets, and has flexible portability.
Nevertheless, the model overlooks the substantial differences
between human and object appearances and spatial positions,
as well as the subtle distinctions between similar relation-
ships. These differences may have a significant impact on the
accuracy of reasoning in certain scenarios.

C. TRANSFORMER
Owing to the growing concern over the homogenization of
external features, researchers have started to pay more atten-
tion to subtle differences among local features. To address
this challenge, deep learning models that leverage self-
attention mechanisms, known as transformer technologies,
have emerged. Initially, Transformer technology achieved
tremendous success in natural language processing tasks.
However, in recent years, it has been successfully applied to
the field of HOI detection [46], [47]. Transformer models
have demonstrated remarkable performance in HOI detec-
tion, leading to improved comprehension of human-object

interactions within images. Consequently, this advancement
has enhanced the accuracy and efficiency of the HOI
detection. The introduction of this technology provides a
new approach for addressing the homogenization of external
features in HOI detection.

D. GRAPH MODELS
While the Transformer has achieved good results in HOI
detection, it requires significant computational resources,
posing challenges for subsequent inference tasks. However,
alternatives to the transformer, such as graph-based tech-
niques, have been suggested to tackle its limitations and can
be considered a viable approach [19], [40], [41], [42].

The core idea of graph models is to construct a graph in
which humans and objects in the image are represented as
nodes and connected by edges based on their interaction rela-
tionships. Each node contains feature information regarding
the corresponding human or object, and the edges represent
the associations between humans and objects. Using graph
algorithms, graph models leverage this information from
nodes and edges to detect and classify interactions between
humans and objects.

In recent years, graph model-based HOI detection methods
have been developed. There are four popular models based
on this graph: DRG, SCG, TMHOI, and ViPLO, as described
below.

DRG: Gao et al. [19] first adopted an abstract spatial
semantic representation to characterize every individual
person-object pair. Subsequently, they introduced DRG to
consolidate contextual details derived from the surrounding
environment. The DRG model consists of two parts, one
focusing on the person and the other on the object.
It effectively captures diverse information from a scene
to address ambiguities in local predictions. Unlike other
methods, DRG leverages the relationships between different
HOIs to refine predictions.

SCG: Zhang et al. [40] proposed an SCG and creatively
applied spatial relations to information propagation between
pairs of nodes. Through a multi-branch fusion mechanism,
SCG utilizes the spatial arrangement of person-object pairs to
adjust appearance features, improve edge computations, and
thereby enhance the quality of HOI detection.

TMHOI: Zhu et al. [41] proposed TMHOI, a method that
utilizes a knowledge graph embedding model as a translation
model. The purpose is to incorporate relationship features
into node embeddings through embedding and integration.
This approach not only enhances the representation of
nodes but also improves the consistency between node
embeddings and edge embeddings, thus enhancing the
detection performance.

ViPLO: Park et al. [42] introduced ViPLO, which com-
bines a novel feature extraction method with a two-stage HOI
detector assisted by pose-conditioned graphs. ViPLO has the
benefits of minimal complexity and ease of application in
practical scenarios.
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The advantages of graph models in effectively extracting
inter-node relationship features have led to significant
advancements in human-object interaction (HOI) detection,
thereby improving the HOI accuracy. However, existing
methods are limited to the visual features of humans and
objects, along with human body parts or pose features, with-
out providing fine-grained feature information. In response
to this challenge, we propose a parallel multi-head graph
attention network (PMGAT) for human-object interaction
detection. This model starts by refining the local features,
focusing primarily on the local features of faces and human
bodies, and encoding them into a graph model for fine-
grained graph computations. These further extract subtle
features, aiding in mapping the associations between human-
object interactions. With the introduction of PMGAT, we can
gain a more comprehensive understanding of the interactions
between humans and objects, thereby achieving more precise
and efficient HOI detection.

III. THE PROPOSED PMGAT MODEL
In this study, a Parallel Multi-head Graph Attention Net-
work (PMGAT) is employed for detecting human-object
interaction relationships. The model structure of PMGAT
is primarily divided into the following modules: human
and object interaction proposal module (HOIPM), feature
extraction module (FEM), local features module (LFM),
global features module (GFM), and semantic features module
(SFM). The five modules of the proposed PMGAT model are
shown in Figure 3.

The operation of PMGAT is as follows: First, an input
image is provided, and as the backbone network, we utilize
the ResNet-50 architecture to extract the initial image features
denoted as F imorg from the image. Here, (batch, w/16, h/16,
d) denotes the scale size, where ‘‘batch’’ refers to the
batch size for each iteration, (w, h) represents the width
and height of the input image, 16 indicates the stride of
ResNet-50, and d represents the depth of the feature map.
Next, the Human and Object Interaction Proposal Module
is utilized to detect effective human-object interaction pairs,
simultaneously providing the positional information Lobj and
Lh for the individuals and interacting objects, as well as the
features of the interacting object Fobjinst . Subsequently, L

obj,
Lh and F imorg are passed into the Feature Extraction Module

to extract facial keypoint features F fpinst and the location
coordinate L fp, as well as human body part features Fhpinst and
location coordinate Lhp. Subsequently, these features were
separately fed into the Local Feature Module (LFM) and
Global Feature Module (GFM) for the extraction of local
and global features in parallel. By utilizing fully connected
neural network (FCN) layers, we obtained interaction scores
S fp based on local facial features, interaction scores Shp based
on local human body part features, and interaction scores
Sp based on global features related to human body spatial
poses. The word pair <person, book> is processed in the
Semantic FeatureModule (SFM) to extract semantic features,

and the interaction scores Ssemantic are obtained through FCN
layers. Finally, the interaction scores from multiple modules
are fused to calculate the interaction score, Sinter between the
person and object.

A. MODULE 1: HUMAN AND OBJECT INTERACTION
PROPOSAL MODULE (HOIPM)
In the HOI task, there are a large number of negative samples,
indicating combinations of individuals and objects where no
interaction occurs. This can lead to significant computational
resources and time consumption when filtering for valid
interacting objects. The main reason for this is the substantial
quantity of negative samples, which far exceeds the number
of samples where actual interactions occur [21]. This can
adversely affect the precision and effectiveness of HOI
detection [34]. Detecting the object with which a person
effectively interacts is a formidable challenge in the field of
computer vision. The primary goal of HOIPM is to provide
boundary box information for individuals and interacting
objects, as it plays a crucial role in detecting a limited number
of valid interacting objects within the object regions in the
image. The boundary box information for individuals and
interacting objects is defined as L ih and L jobj, as shown in
Equations (1) and (2), respectively.

L ih = (x ih, y
i
h,w

i
h, h

i
h) (1)

L jobj = (x jobj, y
j
obj,w

j
obj, h

j
obj) (2)

In this context, i represents the i−th person, j represents
the j−th interacting object, x i,h and yih represent the central
coordinates of the person’s location, wih and h

i
h represent the

width and height values of the person’s bounding box, x iobj
and yjobj represent the central coordinates of the interacting

object’s location, and wjobj and h
j
obj represent the width and

height values of the interacting object bounding box.
In the HOIPM, we employed IR-GNN [48] to perform this

task. The IR-GNN model employs a graph-based structure,
enabling the effective estimation of interaction probabilities
between humans and a multitude of objects. This helps filter
out the objects that are most likely to be involved in the inter-
action. Additionally, IR-GNN utilizes a versatile architecture
that seamlessly integrates various network configurations.
This allows the detection of relevant interacting objects,
which are then passed on to the next stage of the network
for interaction classification. Performance evaluation and
comparison were conducted using the experimental results
on the HICO-DET [39] and V-COCO [49] datasets. The
results indicated a substantial enhancement in the detection of
interactions between humans and objects [48]. In this process,
the IR-GNN identifies the positions L ih and h

i
h of the human

and interacting object in the image, and the features Fhinst
and Fobjinst of the human and interacting objects. This position
information and features are subsequently fed into the next
stages: the Local Feature Module (LFM) and the Global
Feature Module (GFM).
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FIGURE 3. Structure of the proposed PMGAT model.

B. MODULE 2: FEATURE EXTRACTION MODULE (FEM)
To accurately extract human body part and facial keypoints,
we utilized open-source pre-trained models to extract rel-
evant keypoint information. In this study, we employed
the pre-trained models openpose_body_estimation [50] and
face_landmark_localization [51] to extract the human body
part keypoints (18 keypoints) and facial keypoints (68 key-
points), denoted as Numhp for the number of human body
part keypoints and Numfp for the number of facial keypoints.
The sets of human body parts and facial keypoints are repre-
sented asNhp={nhpi },i∈0,1,· · ·,17 andNfp={nfpj },j∈0,1,· · ·,67,
respectively. We define the set of interacting objects as
Nobj={nobjk },k∈N. The positions of the human body parts and
facial keypoints are denoted as Lhp and Lfp, respectively, and
are defined in Equations (3) and (4).

Lhp = {lihp = (x ihp, y
i
hp)}, i ∈ 0, 1, · · · ,Numhp − 1 (3)

Lfp = {ljfp = (x jfp, y
j
fp)}, j ∈ 0, 1, · · · ,Numfp − 1 (4)

where (xihp, y
i
hp) represents the position coordinates of the

i−th human body part keypoints, and (xjfp, y
j
fp) represents the

position coordinates of the j−th facial keypoints.
Next, we computed the dimensions of both the bounding

box for human body parts and the bounding box for facial
features. These coefficients are denoted by α and β. Construct
the bounding box around the human body part keypoints as

Bhp and the bounding box around the facial keypoints as Bfp,
as defined by Equations (5) and (6):

Bhp = αL ih (5)

Bfp = βL ih (6)

The influence of the values of the coefficients, denoted as
α and β, on the performance of the HOI detection model is
explored in later sections.

Bounding boxes Bhp and Bfp are then constructed based on
the center coordinates of the body part keypoints and facial
keypoints, respectively. Then, the RoI pooling [52] operation
is used to obtain the instance features for the body and facial
parts, denoted as Fhpinst and F

fp
inst , respectively. The size of the

featuremaps is (batch,w, h, d),where batch refers to the batch
size for each iteration; w and h represent the width and height
of the feature maps, respectively; and d represents the depth
of the feature maps.

C. MODULE 3: LOCAL FEATURE MODULE (LFM)
To enhance the attention on the features within the region
where persons and objects interact, a local feature module
that incorporates facial key features and local body part
features was designed. The graph is constructed by utilizing
image feature data from interacting objects in conjunction
with bounding boxes outlining human body parts and facial
keypoints, all of which serve as nodes. The relationships
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between nodes and interaction objects are considered edges,
and these relationships are stored in an adjacency matrix
to construct a graph model. Additionally, an attention
mechanism was introduced to prioritize the local body parts
involved in effective human-object interactions. To achieve
this, the local feature module consisted of two parallel
graph attention network branches. These two branches focus
on the facial regions and human body parts, respectively.
Therefore, the face–object interaction perception branch and
the human body part–object interaction perception branch
were designed.

1) FACE-OBJECT INTERACTION PERCEPTION BRANCH (FOI)
Facial features are effective in revealing a person’s emotions
and intentions [53]. In particular, there is a close relationship
between the interaction behavior categories related to the face
and facial keypoints. To delve deeper into this relationship,
this study proposes a face-object interaction multi-head GAT.
In this research, facial keypoints are first detected, and
the image features within the bounding box of the facial
keypoints and the object bounding box are employed as nodes
in the graph neural network. Then, by connecting the facial
keypoints to the object center, edges are formed in the graph.
In this way, we constructed a multi-head graph attention
network to describe the interactions between the face and
objects.

Inspired by the literature [54], Graph Attention Networks
(GAT) [55] have been effective in learning information
between facial keypoints and objects. The GAT updates node
representations using an attention mechanism. In each layer’s
computation, the GAT dynamically assigns different attention
weights to nodes and their neighboring nodes based on their
relationships, allowing it to focusmore on important neighbor
nodes. This mechanism enables the GAT to concentrate on
neighbor nodes with higher relevance to a given node and
effectively utilize information within the graph structure.

Given a graph Gfpo=(Vfpo,Efpo), where Vfpo=Vfp∪Vobj is
the set of nodes representing facial keypoints and object
features, Efpo is the set of edges representing the relationships
between nodes of image features, vfpoi ∈Vfpo is the i−th node,
ε
fpo
ij =(vfpoi ,vfpoj )∈Efpo is the edge connecting nodes vfpoi and

vfpoj , and graph Gfpo is a complete graph. The features of vfpoi
and vfpoj are denoted as f fpoi and f fpoj , where f fpoi and f fpoj are

flattened feature vectors of F fpinst and F
obj
inst with dimensions

of m×1. First, the features of nodes vfpoi and vfpoj in layer

l, denoted as f fpo(l)i and f fpo(l)j , are enhanced by a shared
linear transformation, resulting in embedded vectors zfpo(ℓ)i

and zfpo(ℓ)j , as obtained from Equation (9) and initialized with

a weight matrixW . The attention coefficients ε
fpo(l)
ij between

nodes vfpoi and vfpoj in layer l are computed using Equation (7),
as shown in Figure 4.

ε
fpo(l)
ij = LeakyReLu(ϕ(l)T (zfpo(l)i ||zfpo(l)j )) (7)

LeakyReLu(x) =

{
x, x > 0
λx, x ⩽ 0

(8)

zfpo(l)i = W (l)f fpo(l)i (9)

W∈Rd(M )×d(m), where d(M) represents the dimensionality
of output features. ϕ(l)(·) is a single-layer feedforward
neural network represented by a weight vector that maps
concatenated high-dimensional features to a real number.
T represents the transpose, and LeakyReLu(·) [56] in
Equation (8) is the activation function, where || represents the
concatenation operation and λ is equal to 0.01.

FIGURE 4. Attention coefficient.

To facilitate the comparison of attention coefficients
between different entities, the attention coefficients are
normalized to obtain the normalized attention coefficients in
layer l, denoted as α

(l)
ij , ensuring that the sum of the edge

weights between node vi and all neighboring nodes is equal to
1. Normalization Equation (10) is as follows: This Equation
is referred to [18].

a(l)ij = soft max(ReLu(εfpo(l)ij ))

=
exp(εfpo(l)ij )∑

k∈N (i) exp(ε
fpo(l)
ik )

(10)

where k∈N(i) represents the set of first-order neighboring
nodes of node vfpoi , including the node itself in vfpoi .

The features of neighboring nodes are aggregated and
scaled based on attention coefficients a(l)ij , as obtained from

Equation (11), resulting in node vfpoi obtaining the new feature
f fpo(l+1)
i by aggregating the features of neighboring nodes.
Equation (11) is based on a few studies by [17].

f fpo(l+1)
i = δ(

∑
j∈N (i)

a(l)ij z
fpo(l)
j ) (11)

where δ(·) represents a nonlinear activation function,
a(l)ij represents the attention coefficients normalized using

Equation (10), and zfpo(l)j represents the embedding vector of

node vfpoi .
To ensure the stability of the learning process for

single-head attention and mitigate the risk of overfitting,
we employed a multi-head attention mechanism. Figure 5
shows the results of the multi-head graph attention output.
Let head=3 be the number of heads and the different layers
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represent independent attention outputs. These independent
attention outputs are summed and averaged, followed by an
activation function to yield the ultimate output, as illustrated
in Equation (12), which is based on [17].

f̂ fpo(l+1)
i = δ(

1
K

K∑
k=1

∑
j∈N (i)

akijW
k f fpo(l)j ) (12)

where K represents the number of heads in multi-head
attention, akij represents the normalized attention coefficients
obtained from Equation (10) of the k−th graph attention
network, W k represents the weight matrix for the linear
transformation of the k−th graph attention network, and
f̂ fpo(l+1)
i is the new feature obtained by aggregating the
outputs of the multi-head graph attention.

Then, the features of node vfpoi are updated using f̂ fpo(l+1)
i .

Finally, we obtained the human-object interaction score based
on facial local features through the FCN layer, denoted as S fp.

FIGURE 5. Multi-head graph attention output model.

2) HUMAN BODY PART-OBJECT INTERACTION PERCEPTION
BRANCH (HBPOI)
Body parts that come into contact with objects often have
a strong connection with interaction classification [57].
This branch mainly extracts human body keypoints, where
the bounding boxes of the keypoints represent different
body parts. The image features of the human body parts
are extracted as nodes using a feature extraction model.
Spatial distances were established between these features
and the object features to create edges. There are two steps
in constructing the body part-object interaction multi-head
GAT, as described below.

(1) Spatial distance between human body parts and
interacting objects

Using human body part keypoints to establish spatial
distances with interacting objects, we first calculate the
distances between keypoints on human body parts and then
determine the distances between these keypoints and the
central point of the object. Define Lhpo=Lobj∪Lhp as the set of
coordinates representing the object’s center point and human
body part positions, where the i−th position coordinate is
denoted as lhpoi ∈Lhpo. The distance between the two points,
represented as Di,j=d(l

hpo
i ,lhpoj ) and computed using the

Euclidean formula [58], is given by Equation (13). Because
images have different resolutions and the dimensional scale

of distances between two points can vary significantly owing
to resolution differences, z-score normalization cannot be
applied to distance data because maintaining the graph’s
structure is crucial. Therefore, the spatial distances must be
normalized. Following the method in [59], we normalized the
spatial distances between each keypoint using Equations (14).

Di,j = d(lhpoi , lhpoj ) =

√√√√ n∑
i=1

(lhpoi − lhpoj )
2

(13)

D̂i,j = Norm(Di,j) =
Di,j − µ

σ
(14)

where D̂i,j represents the normalized spatial distances and
li and lj denote the positions of the two different keypoints.
µ is the mean of the spatial distances between human body
parts keypoints and objects, σ is the standard deviation of the
spatial distances between human body parts keypoints and
objects.

The Equations forµ and σ are as follows and are described
by Equations (15) and (16):

µ =

∑
Di,j

Numhp
(15)

σ =

√
1

Numhp

∑
(Di,j − µ)2 (16)

(2) Body Part–object Interaction GAT.
Inspired by [60], the close correlation between human

body keypoints and objects can be effectively extracted
using GAT. Consider the graph Ghpo=(Vhpo, Ehpo), where
Vhpo=Vhp∪Vobj represents a set of nodes for human body part
features and interaction object features, and Ehpo represents
a set of edges between nodes, depicting relationships
between image feature nodes. Here, vhpoi ∈Vhpo represents
the i−th node, and ε

hpo
ij =(vhpoi ,vhpoj )∈Ehpo represents an edge

connecting nodes vhpoi and vhpoj . The graph Ghpo is complete.

The features of vhpoi and vhpoj are denoted as f hpoi and

f hpoj , where f hpoi and f hpoj are flattened feature vectors of

Fhpinst and F
obj
inst with dimensions of m×1. First, the features

of nodes vhpoi and vhpoj in layer l are denoted by f hpo(l)i

and f hpo(l)j , respectively. They are enhanced through shared

linear transformations, yielding embedding vectors zhpo(l)i
and zhpo(l)j , which are initialized with the weight matrix W ,
as expressed by Equation (9). Subsequently, the attention
coefficients ε

hpo(l)
ij between nodes vhpoi and vhpoj in layer l can

be obtained using Equation (7).
In the interactions between humans and objects, there

is a greater likelihood of interaction between a person
and nearby objects. Similarly, there is an approximate
negative correlation between the distance between body
parts and objects and whether they engage in interaction.
Furthermore, the connection between distinct body parts and
different categories of interaction behaviors varies, and their
contributions in determining the interaction between humans
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and objects also diverge. Therefore, assigning weights to
body part features according to the spatial proximity between
the body parts and objects represents a rational strategy. Its
definition is given in Equations (17) and (18) below.

wdistij =
Fdist (i, j)∑M
j=1 Fdist (i, j)

(17)

Fdist (i, j) =
1

D̂i,j
(18)

where wdistij represents the distance coefficient, which is
involved in the calculation of attention coefficients for
edges in the body part-object interaction multi-head GAT
network. Fdist (·) represents the negative correlation between
the distance between body parts and objects and whether they
engage in interaction.

In the node update of the graph attention network,
we incorporate the distance coefficient wdistij into the node
update formula, and after modifying Equation (10), we obtain
Equation (19). This allowed us to normalize ε

hpo
ij to obtain the

attention coefficients a(l)ij .

a(l)ij = soft max(ReLu(εhpo(l)ij ))

=
exp(εhpo(l)ij ) + wdistij∑

k∈N (i) exp(ε
hpo(l)
ik ) + wdistij

(19)

To better control the weights of the node updates, we intro-
duced the distance coefficient wdistij into the calculation
formula of the attention coefficients. This distance coefficient
is added to both the numerator and denominator of the
attention coefficient. By considering the distance between
nodes, we can adjust the attention coefficients, resulting in
a greater influence on neighboring nodes and nodes with
smaller distances in the node update process.

The multi-head graph attention output f̂ hpo(l+1)
i is then

obtained using Equation (12). f̂ hpo(l+1)
i is used to update the

features of the existing node vhpoi . Finally, the interaction
score between a person and an object based on the local
features of the body part is obtained through an FCN layer
and is denoted as Shp.

D. MODULE 4: GLOBAL FEATURE MODULE (GFM)
To comprehensively consider both the local details of human-
object interactions and global context information, this study
drew inspiration from Gao et al. work [19]. To enhance the
performance of themodel, an aggregation of features between
local and global context features was executed. In this study,
both the absolute spatial pose features and relative spatial
pose features of the human body were utilized as global
context features. By considering the spatial information
between a person and an object, we could capture the relative
position and pose relationships between them. Additionally,
we considered the relationships between joints within the
pose of the human body, as these relationships are closely
associated with interaction behaviors [22].

Inspired by [22], the human body poses itself, and the
relative spatial information between individual body joints
and target objects provides valuable cues for detecting
interactions between humans and objects. Especially in
densely populated scenes, this information can significantly
enhance the HOI detection performance. A relative spatial
pose graph (as shown in Figure 6(a)) was used to capture
the relative positions and postures between individual body
joints and target objects. Through this figure, it becomes
clear how the human body’s posture aligns with the objects,
facilitating a better comprehension of the spatial alignment
between the human body and objects during interaction
actions. The absolute spatial pose graph (Figure 6(b))
was used to represent the relationships between the joints
within the human body. It illustrates the overall structure
of the human body posture and the relative positional
relationships between joints, thereby enhancing the rep-
resentation of the shape and posture information of the
human body.

FIGURE 6. Human spatial pose features.

1) RELATIVE SPATIAL POSE FEATURES
Spatial features play a crucial role in the inference of human
interaction actions as they provide important information. For
instance, when a person’s bounding box is positioned above
a soccer ball, it indicates a higher likelihood of interaction
actions like ‘‘kick’’ or ‘‘inspect.’’ To construct more refined
spatial features, this study delves into the use of human key
points. Specifically, based on the relative distance features
between human keypoints (comprising 18 keypoints) and
the center of the object, this study builds relative spatial
pose features. Given that the coordinates of the i−th human
keypoints are represented as (x ihp, y

i
hp) (as per Equation 3), and

the center coordinates of the interacting object are denoted as
(xobj, yobj) (as per Equation 2), the relative spatial pose feature
f irp is defined as in Equation (20) below.

f irp =

(
x ihp − xobj

W
,
yihp − yobj

H

)
(20)

where (W, H) is the size of the image. All relative spatial
pose features for the keypoints are collectively defined
as f rp∈R18×2.
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2) ABSOLUTE SPATIAL POSE FEATURES
Usually, different actions lead to variations in the human
pose. For example, in the cases of <human, ride, bicycle>
and <human, push, bicycle>, the pose of the human will
clearly differ. However, sometimes even when interacting
with different objects, a person may exhibit similar poses
while performing the same action, as seen in <human, ride,
horse> and <human, ride, bicycle>. These observations
suggest that the internal attributes of a human pose play a role
in facilitating the detection of interaction actions. Therefore,
this study introduces absolute spatial pose features to leverage
the relationships between keypoints within the human pose,
thereby improving the effectiveness of HOI detection.

Absolute spatial pose features were obtained by normal-
izing the coordinates of each keypoint using the center of
the human bounding box. The Equation is described in
Equation (21) below.

f iap = (
x ihp
xh

,
yihp
yh

) (21)

where (xh, yh) is the center coordinate of the human obtained
from Equation (1). The absolute spatial pose features of all
keypoints are denoted as fap∈R18×2.

3) POSE FEATURE NEURAL NETWORK MODULE
Figure 7 illustrates the structure of the Pose Feature Neural
NetworkModule proposed in this study. This module consists
of four layers and includes two branches: the Relative
Spatial Pose Feature Network and the Absolute Spatial Pose
Feature Network. These two branches are used to map
the relative and absolute spatial poses to high-dimensional
features, encode features through multiple fully connected
layers, and ultimately generate part-level spatial information
features.

In Layer 1, the Relative Spatial Pose and Absolute
Spatial Pose branches handle the input features frp and
fap, respectively, through the FC-36 fully connected layer.
In this context, the fully connected layer comprises 36 input
nodes, generating 128 sets of feature data that are sub-
sequently transmitted to the following fully connected
layer, denoted as FC-128. Subsequently, a ReLU activation
function was applied for non-linear transformation, and
the features were normalized using Batch Normalization
(BN). To minimize the computational parameters and prevent
overfitting, Dropout was utilized to randomly drop the
neurons.

After feature extraction in layer 1, a fully connected layer
comprising 64 nodes was designed to perform additional
feature extraction in layer 2. Subsequently, the relative
spatial pose and absolute spatial pose were concatenated,
and the features were integrated through two additional fully
connected layers in layers 3 and 4. Finally, the interaction
score, denoted as Sp, which represents the interaction between
the person and object, is derived using the fully connected
neural network layer (FCN layer).

FIGURE 7. The structure of the pose feature neural network module.

E. MODULE 5: SEMANTIC FEATURE MODULE (SFM)
This module primarily focuses on capturing semantic
information from textual data for the subsequent stage of
human-object reasoning. In this study, a word embedding-
based approach was employed to map words into continuous
vector representations. These representations are then trans-
formed into semantic representations through multiple fully
connected layers.

In this study, word2vec [61] encodes features as semantic
features for objects. The Word2vec model is a widely
used feature representation method in the field of Natural
Language Processing (NLP). It converts input text into vector
representations that capture latent semantic or syntactic
similarities. The key feature of this model is that a similar
vocabulary is assigned similar feature representations.

Specifically, the word2vec model, which is trained on the
Google News dataset consisting of approximately 100 billion
words, is our foundational model. This model generates 300-
dimensional vector representations covering three million
words. In the case of the HICO-DET and V-COCO datasets,
the object categories they encompass are aligned with
the 80 categories established within the COCO dataset.
To conduct the experiments, the semantic features of these
categories were first saved offline using a pre-trained
word2vec model. During the training, we retrieved and
obtained the semantic features of the corresponding object
categories based on the object detection results for each
image. Finally, the human-object interaction scores Ssemantic
were obtained using a fully connected neural network (FCN)
layer.

By utilizing word2vec encoding features, semantic infor-
mation about objects can be effectively extracted, which can
then be utilized for various tasks in this study, including
the construction of semantic scene graphs. This approach
offers an advantage in that similar object categories will have
similar feature representations, which aids in better handling
the semantic relationships between them.

F. INTEGRATION OF INTERACTION SCORES AND LOSS
FUNCTIONS
Through the processes mentioned above, we obtained
interaction scores based on local facial features Sfp, inter-
action scores based on local body part features Shp, inter-
action scores based on global body pose features Sp, and
interaction scores based on semantic features Ssemantic.
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These scores were then fused to obtain the final interaction
relationship score between a person and an object Sinter . This
is defined in Equation (22). The Equation is based on a few
studies by [34] and [41].

Sint er = Sfp + Shp + Sp + Ssemantic (22)

During the model training phase, because HOI detection
is a multi-label and multi-class classification problem,
we employed binary cross-entropy loss functions BCE(·) for
each action category. As shown in Equation (23), our training
objective function uses the common loss function used
in [18].

Loss =
1
k

k∑
j=1

BCE(sj, ylabelj ) (23)

where k represents the total number of possible actions,
sj∈Sinter the probability of a specific action, and ylabelj the
corresponding true label.

IV. EXPERIMENTS
A. EXPERIMENTAL DATASET
In this study, evaluations were conducted on two signif-
icant benchmarks for human-object interaction detection:
V-COCO and HICO-DET. The V-COCO dataset comprised
10,633 images, encompassing 16,100 person instances and
spanning 26 interaction categories. It serves as an evaluation
benchmark for models in the context of a relatively small-
scale human-object interaction detection task. However,
the HICO-DET dataset offers a more extensive dataset,
with 47,776 images that involve 80 object categories and
117 action categories, resulting in a total of 600 human-
object interaction categories. The complexity and large-scale
complexity of the HICO-DET dataset makes it a suitable
benchmark for evaluating models for more comprehensive
and intricate human-object interaction detection tasks.

In the HICO-DET dataset, there are three different sets of
human-object interaction categories: Full Set: This includes
all 600 human-object interaction categories and is used
to evaluate the overall performance of models over the
entire range of human-object interactions. Rare Set: This
set comprises 138 human-object interaction categories with
fewer than ten training instances. It was used to assess the
performance of the models on rare interaction categories.
Non-Rare Set: This set includes 462 human-object interaction
categories with more than ten training instances. It is used
to evaluate the performance of the models in non-rare
interaction categories.

In the experiments, as the original HICO-DET and V-
COCO datasets did not provide a predefined training and
validation split, this study employed a common method
for such a split. A random approach is used to ensure
data randomness and repeatability. Specifically, 80% of the
samples from the original dataset were randomly selected as
the training set, whereas the remaining 20% were used as the
validation set.

B. EVALUATION METRICS
According to previous studies [3], [8], [30], our evaluation
metric of choice is mean Average Precision (mAP). A correct
triplet prediction is defined as having an IOU greater than
0.5 between the human box and object box, along with
accurate predictions of both the object category and verb
category. In the case of HICO-DET, the mAP results are
presented for full, rare, and non-rare settings. For V-COCO,
we computed AP#1role and AP

#2
role to represent mAP for scenario

#1 (including objects) and scenario #2 (ignoring objects)
separately. This differentiation allows us to account for
objects that might have been missed because of occlusion.
In scenario #1, an empty object box is expected to be
predicted when the occlusion aligns with the corresponding
ground truth, whereas in scenario #2, object boxes are always
assumed to match under such circumstances.

C. IMPLEMENTATION DETAILS
This study utilized a deep learning framework based
on PyTorch. For experimental details, a parallel training
approachwas employed, where the fourmodules were trained
separately, and parallelization was achieved using the Dis-
tributedDataParallel technique [62] provided by the PyTorch
framework. The learning rate was set as 0.0025 during the
training process for each module. As the training progressed,
when the total number of iterations reached 600 K, a learning
rate decay strategy was applied to adjust the learning rate
to 0.0001. Learning rate decay is an effective optimization
strategy that gradually reduces the learning rate during
training, helping the model converge more stably towards
the optimal solution in later stages. To prevent overfitting,
Dropout techniques [63] were incorporated into the model at
a dropout rate of 0.5. The training process for all branches
was conducted using 6 NVIDIA Tesla V100 graphics cards.
The setting of coefficients α=0.1 for human body part
keypoints and coefficients β=0.06 for facial keypoints were
also utilized.

D. DATA PROCESSING
The HICO-DET and V-COCO datasets undergo essential
data preprocessing steps. Considering the diverse sizes of
the original image sets and the prerequisite of model for
uniformly sized images, the resolution of each image is
initially standardized to 512 × 512 pixels. This standard-
ization guarantees consistent geometric features across all
dataset images. The primary aim of this adjustment is to
minimize potential geometric distortions stemming from
varied resolutions, thereby mitigating the risk of the wedge
effect.

V. RESULT AND DISCUSSION
In this section, a series of experiments aimed at assessing the
outstanding performance of our approach is presented. These
experiments covered the following aspects of investigation:
HOI detection accuracy, training efficiency, the impact of
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bounding box sizes on body parts and facial keypoints
on detection performance, the influence of the number of
heads in the multi-head attention mechanism on detection
performance, ablation experiments, and qualitative analysis.
These results contribute to a better understanding of the
potential applicability of our method.

A. COMPARISON WITH STATE-OF-THE-ART
To demonstrate the effectiveness of our approach in HOI
detection, experiments were conducted on the HICO-DET
and V-COCO datasets by comparing our method with current
state-of-the-art HOI detection methods. These methods
include the iCAN, TIN, DRG, SCG, TMHOI, and ViPLO.
To ensure fair comparisons and showcase each model’s
optimal performance, iCAN and TIN utilize ResNet-50 as
their backbone networks, DRG, SCG, and TMHOI employ
ResNet-50-FPN as the backbone network, and ViPLO uses
ViT-B/ 16 as the backbone network. Our approach utilizes
ResNet-50 and ResNet-101 as the backbone networks. The
experimental results are listed in Table 1.

Regarding the HICO-DET dataset, our findings indicate
that our method performs better than all the existing methods.
In both modes (full and non-rare) of data using ResNet50
as the backbone network, the mAP performance of our
method was, on average, 0.6% higher than that of ViPLO.
Owing to the diversity of rare categories in the rare mode
of the HICO-DET dataset, with each category having a
small number of instances, the dataset exhibits a long-
tail distribution. Therefore, in the Rare mode, our HOI
detection results are lower than the state-of-the-art ViPLO
performance. ViPLO, which uses ViT as the backbone
network and introduces a new feature extraction method,
the MOA module, to address spatial quantization issues,
achieves an advanced detection performance. In comparison,
our method selects fine-grained features, combines them
with graph models to thoroughly extract feature relationships
between granularities, and provides a deeper understanding
of the image, achieving performance similar to ViPLO, and
evenmore significant improvements in the Full andNon-Rare
modes.

To further optimize the method, the ViPLO idea was
applied, and ViT-B/16 was employed as the backbone
network. Next, the self-attention mechanism was used to
capture the global information in the image. Therefore,
it enhances the interpretability of pixels. The experimental
results show that in the rare mode of the Default Situation,
the method significantly improved the mAP value from
33.21% to 35.54% (2.33%). Meanwhile, for the rare mode
of the Default Situation for ViTB/16, the mAP value of
ViPLO compared to the proposed PMGAT improved from
35.45% to 35.54% (0.09%). Similarly, for the rare mode of
Known Object Situation, the mAP value of the proposed
PMGAT has improved from 37.63% to 38.86% (1.23%),
while for ViTB/16, the mAP value of ViPLO compared to
the proposed PMGAT, the mAP value has improved from
38.82 to 38.86 (0.04%).

TABLE 1. The mAP(%) value on the HICO-DET dataset.

The experimental results for the V-COCO dataset are listed
in Table 2. Similarly, PMGAT was tested using ResNet-
50 and ViT-B/16 as the backbone networks for comparison
with ViPLO. In PMGAT, the AP#1role value was improved
from 60.6% to 62.7%, and the AP#2role value was improved
from 65.9% to 68.8% compared to using the ViT-B/16
backbone network and ResNet-50 backbone network, which
were 2.1% and 2.9%, respectively. PMGAT achieves optimal
performance with the ViT-B/16 backbone, improving AP#1role
values from 62.2% to 62.7% and AP#2role values from 68.0% to
68.8% compared with the existing state-of-the-art ViPLO by
0.5% and 0.8%, respectively. It should be noted that PMGAT
also achieves state-of-the-art performance and outperforms
existing state-of-the-art approaches when using the same
backbone network support as ViPLO.

TABLE 2. The mAP(%) value on the V-COCO dataset.

For the four different backbone networks, the performance
of the proposed PMGAT was tested on the HICO-DET
dataset, and the results are presented in Table 3. The test
results indicate that as the depth of the ResNet backbone
increases from 18 to 34, and then to 50 and 101, there
is a significant overall performance improvement for both
situations. From ResNets 18 to 34, there is a significant
improvement in the mAP value, while from RestNet to 50-
101, there are small changes. For example, in the full mode
of a default situation, from ResNet 18 to 34, the improvement
in mAP value is large, from 19.75% to 27.58% (7.83%),
while from ResNet 50 to 101, the improvement is small, from
37.43% to 37.46% (0.03%). Because extracting features is
important as input in the interaction classifier, HOI detection
performance can vary significantly based on the performance
differences of the backbone network. As can be seen in
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Tables 1 and 2, PMGAT, which uses the ViT-B/16 backbone
network, achieved a significant enhancement compared to the
use of ResNet-50.

TABLE 3. Model detection results with different networks backbone.

B. COMPARISON OF TRAINING MODEL CONVERGENCE
TIME WITH EXISTING METHODS
Owing to the parallel structure design of PMGAT, where
each module is trained in parallel using multi-threading
and multi-GPU, the model training convergence speed is
significantly better than that of existing methods of the same
kind. To ensure fairness in testing, the models were trained on
both the HICO-DET and V-COCO datasets, utilizing Nvidia
Tesla V100 GPUs (6 GPUs in total), a batch size of 50,
an AdamW optimizer [64], a weight decay of 0.0001, and
10 epochs. Figure 8 shows the time until model convergence
for PMGAT, iCAN, TIN, DGR, SCG, TMHOI, and ViPLO
trained on the HICO-DET (red) andV-COCO (cyan) datasets.
As can be seen from the figure, PMGAT requires only 30 and
18 min to train the model on both datasets. Obviously, our
PMGAT method outperforms the other methods in terms
of training time owing to the model’s parallel structure and
parallel training approach.

FIGURE 8. Illustrates the training times of different models on the
HICO-DET and V-COCO datasets.

C. THE HOI DETECTION IMPACT OF VARIOUS BOUNDING
BOX SIZES
To compare the impact of using different bounding box
sizes for feature extraction on body part keypoints and facial
keypoints, the coefficient sets values as follows, based on
Equations (5) and (6):

α ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

β ∈ {0.035, 0.04, 0.045, 0.05, 0.055,

0.06, 0.065, 0.07, 0.075, 0.08}

Because determining the optimal values for coefficients α

and β in the bounding box formulas for body part keypoints
and facial keypoints requires experimentation, this study
conducted multiple experiments in the same experimental
environment to find the best coefficients.

Figure 9 shows the experimental results of the proposed
method using a heat map. The values in the heat map
represent the experimental results mAP of PMGAT for HOI
detection using different coefficients on the V-COCO dataset,
and the x- and y-axes indicate the values of coefficients α and
β, respectively. From a Visualization perspective, in the heat
map, the colors of each cell fade from red to blue, with redder
representing higher mAP and bluer representing lower mAP.

In scenario #2, the mAP obtained the highest 0.68 when
using α=0.1 and β=0.06, indicating that α=0.1 and
β=0.06 are the most suitable numerical ratios for body part
keypoints and facial part keypoints bounding box sizes.

The coefficients α and β starting from 0.1 and 0.06,
respectively, show an overall decreasing trend in detection
performance, whether increased or decreased. The worst
case occurred at α=0.5 and β=0.08 and mAP=0.07. It can
be observed that overly large bounding boxes for body
parts keypoints and facial keypoints may extract redundant
features from the surrounding areas and background, whereas
bounding boxes that are too small may not capture enough
features, leading to model learning in the wrong direction.
This not only does not improve the detection performance,
but also adds too many redundant parameters or results in
parameter scarcity, thus reducing the model’s performance.

FIGURE 9. The heat map of results for the coefficients α and β on the HOI
detection performance mAP of our method on the V-COCO dataset.

D. THE IMPACT OF THE NUMBER OF HEADS IN THE
MULTI-HEAD ATTENTION MECHANISM
A series of experiments was conducted to evaluate the impact
of the number of heads (NoH) in the graph attention network
on attention effectiveness. The experimental results showed
that the number of heads had a significant influence on
the attention effectiveness. In a single-head attention model,
attention is primarily focused on each position, leading to
uneven weight allocation. However, increasing the number of
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heads can enhance the model’s expressive power, resulting in
more reasonable attention weight allocation.

Specifically, three sets of experiments are designed using
different numbers of attention heads (head=1, head=2,
head=3). Figure 10 visualizes the attention weight distribu-
tion generated on body parts. In Figure 10, the relationships
between the body parts form a graph model. A matrix is used
to store the graph structure, where the x- and y-axes represent
the body parts, and the matrix cells represent the weights of
the relationships between the body parts. Because this matrix
is symmetric, we only show the lower triangular matrix.

For example, in Figure 10(a), the cell value of the
intersection of the r-shoulder on the x-axis and r-wrist on
the y-axis is 0.03, which indicates that there is a certain
connection between the two body parts when inferring
interaction behavior. The larger the cell value, the greater the
possibility of proving a connection between body parts and
the redder the color of the cell. If the cell value is smaller,
it is less likely that there is a connection between body parts,
and the color is lighter red.

From the experimental results, when head= 1, the value on
the diagonal is larger; for example, for l-elbow on the x-axis
and l-elbow on the y-axis, in the cell surrounded by the red
box in Figure 10(a), only the diagonal cell has a value, and
the color is the reddest; the other cells do not have a value
assigned to them, meaning that the l-elbow is not associated
with any other body part. However, on the x-axis of the l-hip
and y-axis of the l-hip, the cell area is enclosed using a green
box where (x=l-hip,y=l-wrist)=0.1, indicating that there is
some connection between the l-hip and l-wrist. Because the
assignment of the weight values is normalized, the sum of the
values of the cells in the region enclosed by the green box is
equal to 1. However, as shown in Figure 10(a), most of the
values are concentrated on the diagonal, which means that
the final attentional weight matrix is mainly focused on the
self-localization of each position.

In the comparison of Figure 10 (a) and (b), it can be
seen that the original (x=r-elbow, y=r-elbow) = 0.82 is
reduced to 0.17, which assigns the weight values to r-shoulder
and r-wrist, with values of 0.31 and 0.52, respectively.
The other parts start to be assigned weight values among
themselves, but the distribution is not well distributed. It can
be concluded that if head = 2, another attention weight
matrix with a slightly more reasonable weight distribution is
obtained.

As shown in Figure 10(c), when head = 3, the weight
values, which were initially concentrated on the diagonal,
were reasonably distributed to other positions.

Thus, it can be concluded that as the number of heads
increases, the attention weight allocation gradually becomes
more reasonable and is no longer overly focused on
self-locations. This indicates that a multi-head attention
network helps the model better understand the interaction
relationships in the image, thereby improving the accuracy
and uniformity of attention effectiveness. This is crucial for
human-object interaction detection tasks.

FIGURE 10. Visualized attention weight distribution on body parts for
different NoH.

E. ABLATION EXPERIMENT
To assess the influence of each component in the module
within the PMGAT, ablation experiments were conducted
by comparing various variants of the PMGAT structure on
both the V-COCO in scenario #1(AP#1role) and HICO-DET
datasets in the default situation of full mode(Default/Full).
The results of the HOI detection performance for various
PMGAT variants are presented in Table 4.

The base model is a basic model that does not employ any
neural network structure that uses the backbone and semantic
features derived from Module 5 without any further neural
network for feature extraction. These backbone and semantic
features were directly passed to the FCN for the classification
output. Only the variant structure of the base model was
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named as m0 (Base). Next, different modules were gradually
added to the base model, variant structures were made, and
changes in HOI performance were observed.

First, HBPOI was added to m0 to compose m1
(Base+HBPOI), which significantly improved the overall
performance; the HOI detection performance improved from
47.8% and 17.93% to 57.1% and 27.64% on the V-COCO
(AP#1role) and HICO-DET (Default/Full) datasets, respectively.
This improvement was attributed to the detailed features
of the body parts, which provided important supplementary
information for the interaction detection.

Then, the FOI is added to m1 to compose m2
(Base+HBPOI+FOI), which further enhances the perfor-
mance of the HOI detection model with the assistance of
facial features, resulting in an improvement of 3.2% and
5.05% in the m2 HOI detection performance over that of m1.

Next, the GFM is added to m2 to compose m3
(Base+HBPOI+FOI+GFM), which uses both relative and
absolute human spatial pose information to strengthen the
recognition of human poses and interacting objects based on
spatial structures and human poses. This resulted in 1.6% and
3.88% performance improvements in the m3 HOI detection
performance over m2.

Finally, by incorporating the HOIPM to obtain m4
(Base + HBPOI + FOI + GFM + HOIPM), the final model
PMGAT is formed, and the inclusion of this module leads
to performance improvements in all metrics, achieving the
highest performance.

TABLE 4. Performance of various modules in PMGAT.

F. QUALITATIVE RESULTS
This section presents the results from two different methods,
namely SCG and heatmaps. In the SCG method, the results
are compared with those of the proposed PMGAT, while the
heatmap results show the visualization result of the heatmap
with attention.

1) THE HOI DETECTION EFFECT OF SCG AND PMGAT
It is difficult to recognize and compare the HOI recognition
performance of the proposed method with that of the SCG
method. As shown in Figure 11, these visual examples
illustrate the effectiveness of our model in improving the
handling of misclassified cases. Our method considers local
details in more detail and combines them with context
and semantic features for inference. It can consider global
features while also paying attention to local details, resulting
in more accurate HOI category detection.

For example, in Figure 11(a), the red box represents a
human, whereas the green box represents an object. The
intersection of the red and green boxes indicates HOI.
Previous work used SCG to detect HOI, and the result
was a hold-bicycle, but in the proposed method, it detected
the image as a ride-bicycle. The correct interaction of the
image was a bicycle ride. Therefore, the proposed method
detects the correct interactions. Similarly, in Figure 11(b-f),
the correct interaction of the image has been detected by
the proposed method, whereas the previous SCG pethood
incorrectly detected the interaction.

FIGURE 11. Demonstrates the HOI detection performance of PMGAT on
misclassified samples.

2) HEATMAP EFFECT OF ATTENTION
Figure 12 shows the attention maps of the proposed method.
The attention map for facial parts helps eliminate ambiguity
in predicting the actions of the subject. The pose attention
map for body keypoints highlights rich information about
body parts.
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FIGURE 12. Visualization of the image before and after the attention
map.

For example, in the first row of images, our method focuses
on local facial features and captures information regarding
key facial parts. In the second row of images, a pedestrian
walking on the street looks at a bicycle on the roadside. Our
method focuses on the local facial features of a pedestrian
and accurately identifies the bicycle being looked at. In the
third row of images, it is clear that the proposed method
captures the body keypoints of the person and emphasizes
the body parts of the person interacting with the object.
Because our method incorporates a local feature module
specifically designed to perceive local facial and body part
features, the visualized attention heatmaps demonstrate that
our method pays more attention to the local parts of the
interaction between people and objects, effectively utilizing
local information to improve the overall performance of the
HOI detection in the model.

VI. CONCLUSION AND FUTURE WORK
This study introduces a novel model for human-object
interaction (HOI) detection by combining a parallel multi-
head graph attention network. The model utilizes facial
and body keypoints features along with the relationships
between interacting objects to construct a graph-basedmodel,
extracting the interaction correlations between keypoints.
It then combines spatial pose and semantic features to explain
the interactions between humans and objects. A parallel
multi-head graph attention network was introduced with
detailed design aspects. This research aims to address the
challenge of existing methods in overlooking the local details

of human-object interactions, while mitigating the high
computational cost associated with training existingmethods.
The model demonstrated impressive results on the V-COCO
and HICO-DET public datasets.

In our comparative experiments with state-of-the-art
methods, as shown in Tables 1 and 2, our proposed
method achieved a performance on par with the state-
of-the-art ViPLO on the HICO-DET dataset. In fact, our
method outperformed ViPLO in both the Full and Non-
Rare scenarios. Different backbone networks affect the HOI
detection performance of the PMGAT. As shown in Table 3,
the choice of backbone network significantly affects the HOI
detection performance, as the extracted features serve as input
to the interaction classifier. The parallel structure of themodel
and parallel training method contributed to the accelerated
training efficiency of the model. As shown in Figure 8, our
approach significantly reduces the training time compared
with the other methods.

The size of the bounding boxes for the body parts and
facial keypoints has a significant impact on the detection per-
formance in terms of selecting keypoints feature extraction
areas. As shown in Figure 9, it is evident that only when
the feature areas with the appropriate bounding box sizes
for keypoints are selected can the model achieve optimal
detection performance. In a single-head attention model,
when encoding information at the current position, attention
tends to be overly concentrated at its own position. However,
as the number of attention heads in the network increased,
the overall expressive power of the model improved, leading
to a more reasonable allocation of attention weights across
the network. The branches in our approach, including the
HBPOI, FOI, GFM, HOIPM, all played a positive role in
improving the performance of the model. The results in
Table 4 clearly indicate that the introduction of these branches
led to significant performance improvements in the ablation
experiments conducted on the HICO-DET and V-COCO
datasets.

In conclusion, a parallel multi-head graph attention net-
work is proposed for detecting interactions between humans
and objects, which is excellent in capturing fine-grained
human-object interactions and improves the accuracy of
HOI detection. Another significant advantage is the use
of a multi-branch parallel structure, which greatly speeds
up the training process. Through a series of experiments
and comparisons, the proposed PMGAT exhibited superior
performance, which is validated on the V-COCO and HICO-
DET datasets. However, despite the significant performance
advantages achieved by the PMGAT, there are still some
limitations. Particularly, the complex structure of the network
model leads to a large amount of computation. Future work
will focus on addressing these limitations to enhance our
approach further.
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