
lEEEAxess
Multidisciplinary • Rapid Review • Open Access Journal

Received 12 February 2023, accepted 5 March 2023, date of publication 14 March 2023,
date of current version 19 December 2023.
Digital Object Identifier 10.1109/ACCESS.2023.3256979

H i H TOPICAL REVIEW]
m i i i i i i ________________________________j

Machine Learning Algorithm for Malware
Detection: Taxonomy, Current Challenges,
and Future Directions
NOR ZAKIAH GORMENT 12, (Member, IEEE), ALI SELAMAT 13'4'5, (Member, IEEE),
LIM KOK CHENG2, (Member, IEEE), AND ONDREJ KREJCAR 15
1Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 50088, Malaysia
2College of Computing and Informatics, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, Selangor 43000, Malaysia
3School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Baru, Johor 80000, Malaysia
4Media and Games Center of Excellence (MagicX), Universiti Teknologi Malaysia, Johor Baru, Johor 80000, Malaysia
5Center for Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 050003 Hradec Kralove, Czech Republic

Corresponding authors: Ali Selamat (aselamat@utm.my), Ondrej Krejcar (ondrej.krejcar@uhk.cz), and Nor Zakiah Gorment
(zaagorment@gmail.com)

This work was supported in part by the Fundamental Research Grant Scheme (FRGS) through the Ministry of Education under Grant
FRGS/1/2022/ICT08/UTM/01/1; and in part by the Faculty of Informatics and Management, University of Hradec Kralove, through the
Specific Research Project (SPEV) under Grant 2102/2023. The authors are also grateful for the support of student Michal Dobrovolny in
consultations regarding application aspects.

; ABSTRACT Malware has emerged as a cyber security threat that continuously changes to target computer
systems, smart devices, and extensive networks with the development of information technologies. As a
result, malware detection has always been a major worry and a difficult issue, owing to shortcomings in
performance accuracy, analysis type, and malware detection approaches that fail to identify unexpected mal
ware attacks. This paper seeks to conduct a thorough systematic literature review (SLR) and offer a taxonomy
of machine learning methods for malware detection that considers these problems by analyzing 77 chosen
research works related to malware detection using machine learning algorithm. The research investigates
malware and machine learning in the context of cybersecurity, including malware detection taxonomy and
machine learning algorithm classification into numerous categories. Furthermore, the taxonomy was used
to evaluate the most recent machine learning algorithm and analysis. The paper also examines the obstacles
and associated concerns encountered in malware detection and potential remedies. Finally, to address the
related issues that would motivate researchers in their future work, an empirical study was utilized to assess
the performance of several machine learning algorithms.

J INDEX TERMS Malware detection, machine learning algorithms, state-of-the-art.

I. INTRODUCTION
Malware is still a primary concern worldwide, and the nature
of malware is continually changing as technology advances.
This happens because computer system usage and internet
connection are highly in demand. Thus, malware attacks have
caused a severe threat to computer software and smart devices
and have become a real challenge [1] to secure the data for
professional or personal uses.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jemal H. Abawajy .

VOLUME 11, 2023

A. RESEARCH MOTIVATION
Several research articles that explicitly employ machine
learning algorithms to identify malware have been published;
however, none of the studies contain a comparative analy
sis of several machine learning methodologies. Furthermore,
although malware detection approaches are widely explored,
there is a lack of information on machine learning algorithms’
effectiveness in detection rates, accuracy rates, analysis type,
and classification methods. This scenario has led to insuffi
cient evidence restricting malware detection usage in related
research areas. The current challenges and future directions
on machine learning algorithms to detect malware also need
to be highlighted.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 141045

https://orcid.org/0000-0001-5596-6599
https://orcid.org/0000-0001-9746-8459
https://orcid.org/0000-0002-5992-2574
mailto:aselamat@utm.my
mailto:ondrej.krejcar@uhk.cz
mailto:zaagorment@gmail.com
https://orcid.org/0000-0001-8962-1222
https://creativecommons.org/licenses/by-nc-nd/4.0/

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

B. RESEARCH CONTRIBUTION
The comparison studies between our research work and
existing related research initiatives are shown in TABLE 1,
and their abbreviations are explained in TABLE 2. From
2017 through 2022, we present the most recent research on
ten types of machine-learning algorithms for malware detec
tion. We thoroughly examine machine learning algorithms for
identifying malware utilizing a systematic literature review
(SLR) methodology, which sets us apart from past work.
Our research also contains cutting-edge machine-learning

TABLE 1. Existing studies' limitations and the novelty of this research.

No. Type of MLA Remark References
1 DT, RF,

k-NN, GNB,
BNB, ADB,
LR, SVM

Compare the performance
of 8 types of MLA.
There is no discussion of
existing MLA technology
or the current obstacles for
future directions.

[6]

2 NB, Bayesian,
Hybrid, Ada
grad

The studies were
conducted from the Year
2016 to 2017.
There is no info on the
state-of-the-art MLA.

[5]

3 NB, ADB,
DT, Bagging,
SMO

The studies were
conducted from the Year
2013 to 2017.
There is no discussion on
the current challenges for
future research works.

[3]

4 SVM, NB,
DT, RF, LR,
and k-NN

Compare the performance
of 6 types of MLA
There is no discussion on
the current challenges for
future research works.

[4]

5 SVM, DT, FR
andNB

The studies were
conducted from the Year
2013 to 2019.
Compare the performance
of 4 types of MLA
There is no discussion of
existing MLA technology
or the current obstacles for
future directions.

[2]

6 K-means, DT,
NB, SVM, k-
NN, RF

The studies were
conducted from the Year
2016 to 2021.
Compare the performance
of 6 types of MLA
There is no discussion on
the current challenges for
future research works.

[7]

7 DT, NB,
SVM, RF,
ADB

The studies were
conducted from the Year
2016 to 2017.
Compare the performance
of 5 types of MLA.

[8]

Meta
heuristic,
Neuro-fuzzy,
K-means,
Gaussian, DT,
Bayesian, NB,
SVM, k-NN,
n-grams

The studies were
conducted from the Year
2017 to 2022.
Compare the performance
of 10 types of MLA.
The most up-to-date MLA
is shown.
Discuss current issues and
future research activities.

Our
research

work

techniques and examines existing limitations and future
research directions in machine learning for malware
detection.

This study employs an SLR to provide the research
community with extensive research on a machine learning
approach motivated by a lack of research efforts. The fol
lowing are the significant contributions made by this research
study.

1) A complete review of machine learning methods for
malware detection was provided.

2) We offered a malware detection taxonomy and a
machine-learning approach for categorizing malware
into various classifications.

3) We addressed the challenges and related issues faced
in malware detection, highlighting to propose suitable
solutions.

4) We conducted an empirical study to evaluate the effi
cacy of numerous machine learning algorithms and
address related difficulties that might motivate future
research.

TABLE 2. List of acronyms for the machine learning algorithm.

Abbreviation Explanation
SLR Systematic Literature Review
ML Machine Learning

MLA Machine Learning Algorithm
NB Naive Bayes

SVM Support Vector Machine
DT Decision Tree
GB Gaussian Bayes
NF Neuro-fuzzy

KNN K-Nearest Neighbour
RF Random Forest

GNB Gaussian Nave Bays Classifier
BNB Bernoulli Naive Bays Classifier
ADB AdaBoost Classifier
LR Logistic Regression

SMO Sequential Minimal Optimization
TPR True Positive Rate
FPR False Positive Rate
FNR False Negative Rate
ROC Receiver Characteristic Operator
RQ Research Question
IoT Internet of Thing

The following is how the rest of the research is organized:
Section II provides the research methodology while a back
ground study of malware, malware attacks, machine learn
ing algorithms for malware detection, and previous research
works for malware detection using machine learning algo
rithms represented in Section III. Section IV provides a
taxonomy of malware detection using a machine-learning
algorithm to categorize them based on several classifica
tions. Section V discusses the current concerns and obstacles
that machine learning faces in the fight against malware.
Section IV analyses any potential study gaps and makes rec
ommendations for further research. An empirical analysis and
a mapping of current challenges with the present research gap
are included in Section VII. Finally, Section VIII summarizes
the study’s findings and recommends further research.

141046 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

II. RESEARCH METHODOLOGY
This part is divided into two primary sub-sections, each
providing a comprehensive understanding of the research
domain. The first sub-section introduces the SLR method
used in this research investigation. The second sub-section
examines malware’s history, machine learning, and machine
learning methods to identify malware.

FIGURE 1. SLR process in selecting the relevant studies.

A. SYSTEMATIC LITERATURE REVIEW
The SLR guidelines were adopted from Kitchenham [9],
and the selection process by PRISMA guidelines [10]. The
starting process is the formulation of review questions. The
following step is to create and validate a review methodol
ogy, after which we will search for primary screen studies
using the review protocol’s criteria. The whole text of the
chosen papers was identified utilizing the review technique to
determine their quality. Finally, the result was extracted from
the review, where data was analyzed and synthesized [123].
FIGURE 1 illustrates the process of selecting the relevant
studies. The reviewing method can be seen in the following
subsections.

1) RESEARCH QUESTION
This study aims to examine and evaluate a variety of malware
detection machine-learning techniques. To be highlighted in
this SLR, a list of research questions (RQs) has been created.
The following are the review’s research questions:

RQ1:What kind of machine learning algorithm was used?
RQ2:What is the mechanism of the machine learning

algorithm?
RQ3:How is the algorithm’s performance measured?
RQ4:What categorization method was used?
RQ5:What kind of analysis was used?

RQ6:What restrictions and obstacles were found while
running the algorithm?

2) REVIEW PROTOCOL
The review processes are based on the SLR standards derived
by Kitchenham [9], [10]: search strategy, inclusion and exclu
sion criteria, quality evaluation, data extraction, and data
analysis.

a: STRATEGY OF SEARCH
An automatic search strategy was built based on the study
questions. The syntax and search methods from numerous
digital libraries have been used in database searching to
address the query string. Meanwhile, the search scope and
query strings are as follows:

• Query String - (‘‘malware detection’’ or ‘‘anti
malware’’ OR ‘‘malicious detection’’) AND (‘‘machine
learning algorithm’’ OR ‘‘machine learning approach’’)
AND (‘‘K-means’’ OR ‘‘NaC/ve Bayes’’ or ‘‘Sup
port Vector Machine’’ OR ‘‘Decision Tree’’ OR
‘‘Meta-heuristic’’ OR ‘‘Neuro-Fuzzy’’ OR ‘‘Bayesian’’
OR ‘‘Gaussian’’ OR ‘‘K-Nearest Neighbour’’ OR
‘‘N-grams’’)

• The timespan to gather the studies is from 2017 to 2022.
• The medium of writing the survey is using the English

language.
• Different reference sources, including journals, sympo

siums, conferences, workshops, and book chapters, are
referred.

IEEE Explore and Mendeley were chosen as digital
libraries, which gathered papers from Scopus, SpringerLink,
ACM Digital, Science Direct, and Web of Science. Both dig
ital libraries were used to undertake snowballing and identify
intended research papers during the search phase. All articles
that fulfilled the inclusion and exclusion criteria were sorted
for further examination. Furthermore, the starting timeframe
is from 2017 to 2022, with only the most recent and up-to-
date papers included in this SLR.

b: CRITERIA OF INCLUSION AND EXCLUSION
Based on the research objectives, inclusion and exclusion
criteria were developed to narrow down the relevant literature
for this SLR. TABLE 3 shows the shortlisted studies for
inclusion and exclusion based on their ability to satisfy the
criteria.

The selection procedure was divided into three steps. The
first of which was the search for all potential primary studies.
The following step was viewing and reading the titles and
abstracts of all papers found in the search results. Then we
found all the research that satisfied the criteria for inclusion
and exclusion. Finally, all the discovered studies were read in
their entirety before being shortlisted for final selection.

The selection procedure was divided into three steps. The
first of which was the search for all potential primary studies.
The following step was viewing and reading the titles and
abstracts of all papers found in the search results. Then we

VOLUME 11, 2023 141047

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

found all the research that satisfied the criteria for inclusion
and exclusion. Finally, all the discovered studies were read in
their entirety before being shortlisted for final selection.

c: ASSESSMENT OF QUALITY
The quality of the research studies that satisfied the inclusion
and exclusion criteria was assessed using the ten criteria used
to evaluate the studies’ credibility, relevance, rigorousness,
and independence. Meanwhile, the entire text of each paper
VOLUME XX, 2022 9 was examined, and the assessment
criteria were applied to rate its quality. The quality evaluation
question criteria derived from the checklists published by [11]
and [12] are shown in TABLE 5. Each question had four
possible scores, as shown in TABLE 4. All primary studies
were sorted out based on their score, as shown in TABLE 12
in Appendix A .

TABLE 3. Criteria for inclusion and exclusion.

No. Inclusion Criteria Exclusion Criteria
The study either described or
applied a machine-learning
algorithm to support malware
detection activities, including
the related processes

If the study was a review
paper, the studies were
summarized, and each
publication was given its
treatment
The study was deemed the
latest version among other
studies in the same field. Only
the latest version is selected

The study described the
machine learning algorithm.
However, the machine
learning algorithm was not
implemented or used for
malware detection
The study was identical to the
existing selected paper or
considered as duplicate paper

The study was not used
English as a medium for
writing the research works

d: DATA EXTRACTION
An in-depth analysis was conducted to illustrate the research
questions, and the necessary data was gathered. Based on the
selected primary studies, the following data were extracted to
be included in a predefined extraction form.

• Type, bibliographic information, and reference ID
• Name of publication
• Country of institution
• Discipline of research
• The type of machine learning technique used to detect

malware
• Algorithms, models, and ideas that are fundamental
• Identification of machine learning algorithm with a

specific classification approach and analysis type

• Tools were used to support the malware detection
process.

e: DATA ANALYSIS
After extracting data from each main study, in-depth data
analysis was conducted to address each research question.
To answer RQ1, the machine learning algorithms imple
mented were identified, and to answer RQ2, the machine
learning algorithms were evaluated to see how they worked.
For each category, related ideas or models were discovered.
Meanwhile, the algorithm’s outputs were assessed in terms of
performance to answer RQ3. RQ5 has the same classification
methods and analysis type as RQ4. Finally, to answer RQ6,
any limitations and challenges found during the execution of
the machine learning algorithm were identified.

TABLE 5. Quality assessment criteria.

No. Criteria
Problem Statement:
Is the objective o f the research adequately defined and well-
motivated?

Qi

Research Design:
Q2 Is the machine learning algorithm's performance sufficient to

assist the malware detection process?
Q3 Are the machine learning algorithms' categorization method

______ and analysis type well stated?___________________________

Q4

Q5

Q6
Q7a
Q7b
Q8

Q9

Q10

Data Collection:
Is the data collecting and measurement process sufficiently
explained?
Do the constructs and measures represent the best appropriate
methodologies for answering the research question/issue?
Data Analysis:
Is the data analysis used appropriately explained?
Is the proof explanation given clearly? (Qualitative study)
Has the data's relevance been assessed? (Quantitative study)
Is it clear how machine learning algorithm function and how
they're implemented?
Conclusion:
Are the study's findings reported and supported by the data?
Has the study's validity or limitations been discussed?

3) VALIDITY THREAT
Using keywords and terminology relevant to malware detec
tion, the selected papers that were evaluated in the literature
review will be obtained. The obtained studies will then be
manually filtered using selection criteria. However, there is
a chance that the studies chosen do not accurately reflect the
research. Thus, four common types of validity threats have
been considered: internal validity, external validity, construct
ing validity, and conclusion validity.

TABLE 4. The score for assessment of quality.

No. Description Score
1 Thoroughly addressed 3
2 Discussed adequately 2
3 Little mentioned 1
4 Not mentioned at all 0

a: INTERNAL VALIDITY
To conduct the automatic search, there are six online
databases utilized. However, they still covered some
top-ranking journals with high-impact factors. Furthermore,
a snowballing strategy was used for the manual search to limit
the risk of missing necessary research and ensure that the
paper selection process was fair.

141048 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

1986 1987 1988 1989 1990 1991 1992 1993
The B ra in V irus Stoned M orris W orm Yankee W hale Am oeba Leandro

Yale Jerusalem FuM anchu Frodo Tequila 1 M ichelangelo Strange
VfrDem Vienne HI.COM Da ta t rim e D iskK lller O lygom orphlsm Virus PM BS

1994 1996 1997 1998 1998 2000
ILOVEYOU

Pikachu

2001
Onehalf 199S Laroux AOL Tro jan Autostart ExploreZip Nim da W orm

Phantom 1 W M /Concept OS2 AEP m lRC W orm Cross Happy99 W orm Sadm ind W orm
Shifter 1 W in9S .Boza Esperanto V iru s C1H M elissa Siroam W orm

2002 2003 2004 2005 2006
B rontok V irus

Stration W orm

2007
Storm W orm
ZeuS Trojan

2008 2009
KLEZ SQL Slam m er 1 M ydoom W orm Com m w arrior Conficker TDL3

1 M ylife W orm Sobig W orm 1 Bagie W orm Zotob W orm M oom ex Trojan Kenzero V irus
1 Beast Trojan Blaste r W orm 1 Santy W orm Zlob Trojan Koobface W orm W 32. Dozer

2010
Stuxnet

Paybot W orm
W aledac Botnet

2011
Kelihos
Duqu

M orto W orm

2012
M edre
Flam e

Shamoon

2013
Hesperbot

CryptoLocker

2014
W indigo

Region Tro jan

2015
Bashlite

L inux W ifatcK

2016
Locky

R antom w are
M irai

2017
W anna Cry

Xafecopy Trojan

2018
Tanatos

Rantom w are

2019
T itan ium APT
Sw arm V irus

2020
Shlayer
Ghost
Snugy

2022
Onyx
Reas

FIGURE 2. Evolution of malware from 1986 to 2022.

b: EXTERNAL VALIDITY
The validity threat was minimized to generalize the research’s
findings by finding published papers between 2017 and 2021.
The number of documents collected for this SLR increased
in parallel with the number of research papers produced
each year in the related areas, which indicates that this SLR
might remain a generalized report according to the research’s
external validity requirement.

c: CONSTRUCTING VALIDITY
Constructing a validity process can be ensured through auto
mated and manual searches to obtain the gathered data.
In addition to the present study objectives, article inspection,
quality evaluation, inclusion, and exclusion criteria were uti
lized to restrict the possibility of validity threat.

d: CONCLUSION VALIDITY
Based on the guidelines adopted from different authors [13],
[14], conclusion validity was managed by implementing the
techniques. Thus, there is a possibility to repeat each proce
dure in this SLR, and the same results can still be produced.

III. BACKGROUND
This section briefly introduces malware attacks and machine
learning algorithms, including their definition and evolution
over the years. Besides, this section compares the machine
learning algorithm with other malware detection techniques
to highlight its advantages. Grasp, why machine learning
has grown as a possible answer for future research direction
requires a basic understanding of malware’s history and how
it was created.

A. MALWARE
Malware (short for ‘‘malicious software’’) is designed to
obtain unauthorized access to our systems. It can slow down
your computer’s performance and an internet connection,

steal or gather sensitive data, access private computer
systems, transmit spam from your computer, attack other
computers, and upload your files to criminal entities. Its def
inition is continually expanding since new exploits continue
to evolve. Furthermore, malware threats continue to grow by
volumes, categories, and features caused by the opportuni
ties offered by technological advances. IoT devices, smart
devices, social networks, internet connections, smartphones,
etc., allow malware to create smart, sophisticated, and more
advanced malware.

If we look at the history of malware, it can be divided
into five categories [15]. The early variation of malware is
when the first malware comes to life. This is considered the
first category of malware. The second category of malware is
when Windows come to ease our daily tasks. It is described as
the first malware that attacks Windows, including mail worms
and macro worms. The third category of malware is the evo
lution of worms that attacks our network. This malware has
become famous as the internet has become widely used. The
fourth category of malware is when rootkits and ransomwares
take over the digital world to attack our computer system.
This malware was the most dangerous malware before 2010.
Then, the fifth category of malware came as virtual espionage
and sabotage, where the secret services of some countries cre
ated this malware. Other than those five malware categories,
currently, there is more advanced malware for the modern era
with artificial intelligence [16] technology. FIGURE 2 shows
the evolution of malware from 1986 to 2022 [16], [17] with
the top highlighted malware.

1) MALWARE TYPES
The malware appears in many names and variations [18],
as seen in FIGURE 2, while the description of each
malware with its threat strategies [122] is represented in
APPENDIX A, TABLE 11. Meanwhile, TABLE 6 shows the
various type of malware which recently found and can be

VOLUME 11, 2023 141049

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

l l l l l l l | [] | | | [|] | | | | |] | | | | !] | | | | |] | | | []] | | | [] | 1324.25 _n._
l 1312.63

1139.24 1,2021
lllllllllllli 1001.52 .2020

M I N N l [J N I L I I I . III. 1 I M I I 1 1 III III! Ill] 719.15 2019

0 200 400 600 800 1000 1200 1400 • 2017
Malware Distribution (million)

FIGURE 3. Total distribution of malware from 2017 to 2022.

TABLE 6. Type of malware with description.

Type Description
Virus A virus is a piece of code that may duplicate itself and spread to other programs on the system. Viruses often propagate by attaching

themselves to a variety o f applications, then executing code whenever a user runs a particular program. Viruses spread across the system
through documents, script files, and web application vulnerabilities. |"181

Worms A worm is a computer program that can replicate itself and spread from device to device over a network without human involvement.
Worms can carry "payloads," which use bandwidth and cause congestion on web servers to harm the host device and ruin host networks.
[18]

Trojans A Trojan is a form of malware that disguises itself as an innocuous program to entice users to download and install malware. This form of
malware allows attackers to get remote access to steal data, and money, remove and edit files, develop malware versions, and monitor user
actions such as monitoring screens and logs, among other things. [18]

Spyware A sort o f virus that monitors user activity without the user's knowledge or agreement. Collecting key logging, screen monitoring, and
stealing account information are examples of their actions. Spyware causes network settings to be disrupted by altering security processes.
Spyware hides in legitimate software or Trojans to take advantage o f flaws. Examples o f smartphone spyware programs such as Acallno
andFlaxiSpy. [181

Botnets A bot is a software application that allows an attacker to get remote access and control over the infected device's activities without the
user's consent. Bots are part of botnets, which are a collection of computers controlled by a botmaster. Bonnets launch distributed denial
of service (DDoS) attacks, web spiders that hack server data, malware masquerading as well-known sites, and spam bots that collect
information, making it a serious security threat. [181

Ransomware A kind of malware that holds computer resources hostage until the victim pays a ransom. Ransomware locks down a computer, restrict
access, encrypts files, and displays messages to push users to pay money. The ransomware malware will unlock the machine after payment.
[181

Adware It is ad-supported malware that is specially intended to serve advertisements to users on an ad-hoc basis. Adware is software that displays
adverts and pop-up ads on websites. Adware is typically delivered for free, with advertising corporations sponsoring it and generating cash
in some circumstances. Adware is solely meant to offer an ad; when a user clicks on an ad, adware activates and steals information or
records user actions. T181

Rootkits A rootkit is a form of malware that exploits consumers by gaining remote access and controlling a device. A rootkit comprises a dropper,
loader, and rootkit to perform destructive acts. It acquires administrator access to carry out harmful actions such as stealing data, disrupting
the system's regular operations, making changes to the system, causing system configuration changes, etc. When a rootkit is placed on a
computer, it runs every time the machine boots up. [181

Keylogger As users write on the system, the virus records everything to collect their log-in data and other sensitive information, which it then sends
to the key-logging application. Many groups commonly use keyloggers to acquire information about computer activity. [18]

Backdoor Backdoors are a kind of malware that opens a backdoor onto a device in order to provide the groundwork for subsequent infections. It
assists other malicious operations by providing a network connection via which they may enter and snip information. [18]

used to classify each malware. These malware variants are
not distinct from one another, and a single malware variant
might develop multiple new characteristics simultaneously.
As a result, malware is one of the most severe digital threats
to cyber security. According to the McAfee Labs [19] report,
the average number of malware attacks per minute was 588 in
the third quarter of 2020 and grew to 648 in the fourth quarter
of 2020.

Meanwhile, AV-TEST institute [20] reported that when
this paper was written, over 450000 potentially unwanted
applications and new malware were registered every day.
Furthermore, for the last six years, malware increased

significantly from 2017, with 719.15 million to 1324.25 mil
lion malware in 2022, as shown in FIGURE 3. This scenario
indicates that further action should be taken to curb malware
attacks.

2) MALWARE BEHAVIOR
Ilker kara [21] investigates malware’s capacity to see the
damage it can do to the target system, recover from that
damage, and, if possible, detect specific information about
the attacker. He suggested a method for analyzing malware,
including behavior, memory, and code analysis using digital

141050 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

material and an actual malware attack. It was shown that
malware might be tracked by looking at the Whois informa
tion of the server to which it connects and studying its typical
behavior. Therefore, understanding the malware’s behavior,
including camouflage and obfuscation techniques [22], might
help researchers plan and generate an efficient algorithm for
malware detection.

Camouflage [22] approach refers to concealing malware
for as long as possible to avoid detection by malware detec
tors. Malware developers employ various strategies, ranging
from simple techniques like encryption to more complicated
techniques like oligomorphic, polymorphic, and advanced
ones like metamorphic.

Encryption is used when malware programmers want their
malware to go unnoticed and undetectable by malware detec
tors [22]. Encryption is the most basic method 2 of conceal
ment that they employ. It is the first approach for malware
concealing [23]. It is made up of two modules: encryption
and decryption. Encryption is performed with a separate key,
whereas decryption is performed with the same key. Their
detection is feasible since the decryption mechanism does not
offer uniqueness.

Oligomorphic virus, Whale was the first of its kind
to arrive in 1990. It turned out to be a DOS virus [22].
This is seen as a step forward in virus concealment and
semi-polymorphic encryption. The decryptor, like encryp
tion, remains the same for each infection, whereas oligo-
morphic uses a different decryptor for each condition. Even
though oligomorphic selects different decryptors for each
new attack, antivirus may still detect it by inspecting all of the
decryptors.

Polymorphic was first used in the Polymorphic virus,
1260, which Mark Washburn created in 1990 [22]. Poly
morphic viruses are more sophisticated than ordinary
viruses because they combine encryption and oligomorphic.
Antiviruses are difficult to identify since each copy has a
different look. They have no limit on the number of decryp-
tors they may create. To disguise itself, this virus employs a
variety of obfuscation techniques. A mutation engine carries
out this technique of alteration.

Metamorphism is not incorporated in encryption; instead,
the malware’s content changes [22]. As a result, a decryptor
isn’t required. In 1998, the first metamorphic virus, ACG,
was created for DOS. It also uses polymorphism similar to
that of a mutation engine, but it changes the entire body
instead of just changing the decryption. The core concept
is that the syntax changes with each new copy while the
semantics remain the same, i.e., the visible virus changes with
each infection. Still, the meaning or functionality remains the
same.

Obfuscation [22], on the other hand, is a method used by
malware programmers to make malware challenging to read
and interpret. The main goal of this technique is to conceal
malware’s destructive activities. Various researchers classify
obfuscation techniques [124] in different ways. The six most
prevalent obfuscation techniques are dead code insertion,

instruction replacement, register reassignment, subroutine
reordering, code transposition, and code integration [23].

Dead Code Insertion is the simplest method for chang
ing code without changing its meaning [22]. By using NOP
instructions and pushing, followed by popping, garbage code
or statements are added to the code. These statements are
utilized so that the code semantics are unaffected.

Instruction Replacement is replacing the existing instruc
tion with comparable instructions, making detection difficult.
Like synonyms in natural languages, this technique substi
tutes instructions with others that create the same mean
ing [22].

Register Reassignment re-assigns the register in each
copy without affecting the virus’s semantics [22]. It is the
most basic approach but may be difficult to detect when used
in conjunction with other methods.

Subroutine Reordering is permuting a series of instruc
tions in a piece of code so that the look of the code changes,
but the behavior remains the same [22].

Code Transposition is where the original code’s sequence
of instructions is reorganized so that its meanings do not
change [24]. Code transposition can be accomplished in two
ways. The first way is to reorder the instructions at random
to retrieve the original code. The second way is more diffi
cult to adopt than the first, but it is far more effective. The
unconditional statements and jumps are employed in one way,
while the instructions independent of the other are picked and
reordered in another.

Code Integration is where the malicious code is integrated
or embedded within the software that needs to be affected.
This is a viable approach in which the original software
is disassembled, and malicious code is inserted, making it
difficult to detect [25].

3) THE STAGES OF MALWARE ATTACK
The phases of a malware attack aren’t always the same, but
they follow a similar pattern every time one is launched.
One of the examples of a malware attack lifecycle [26] can
be seen in FIGURE 4. The malware attack starts with the
entry point stage, where potential targets will be identified
and discover any defenses that have been implemented. Then,
the most suitable attack method will be set. The next stage is
breaking in, where malware bypasses the perimeter defenses
and accesses the intended attack area. Then, malware will
start its activities of command and control. Once they have
established a connection to the deliberate attack area, the
infection stage will be implemented. Finally, the execution
stage will be considered to profit and fulfill their attack
objectives, including stealing sensitive data, corrupting the
critical system, and disrupting the operations of the intended
targeted business.

B. MACHINE LEARNING
In 1956, a group of computer scientists suggested that com
puters might be programmed to think and reason so that

VOLUME 11, 2023 141051

lEEEAxess' N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

FIGURE 4. Five stages of malware attack.

FIGURE 5. The connection of AI, ML and DL.

any part of the learning or any other aspect of intelligence
could theoretically be specified so precisely that a machine
could imitate it. Their idea is known as artificial intelligence
(AI) [27]. AI is a field focused on automating intellectual
processes that humans typically handle. Machine learning
(ML) and deep learning (DL) are specialized ways to reach
this aim [28]. FIGURE 5 depicts AI, machine learning, and
deep learning.

Machine learning has positively impacted real-world
problem-solving from 1950 to 2021 [29], as highlighted in
FIGURE 6. With each sort of learning, there are success
stories of firms that have made significant progress and added
value to their businesses. Each kind of machine learning
offers a strategic and competitive advantage, but the avail
ability of high-quality data is considerably more important
than the approach employed. It’s important to understand the
different types of machine learning algorithms and when to
employ them. Any machine learning task, and everything else
being done in the area, aims to break down a real problem into
design forms for machine learning systems. Understanding
the different types of machine learning algorithms and when
to utilize them is essential.

1) MACHINE LEARNING ALGORITHM
It’s challenging to design a general system that allows for the
efficient distribution of regular ML since each method has its
communication pattern [30]. As indicated in FIGURE 7, the
challenge of machine learning can be divided into two parts:

training and prediction. The training process encompasses
feeding a large body of training data to a machine learning
model and updating it with an ML algorithm. The learned
model is implemented in practice during the prediction phase.
The trained model takes raw data as input and produces
predictions as output. While the model’s training phase is
often computationally costly and requires substantial data
sets, the inference step may be done with minimal processing
resources. The phases of training and prediction are not mutu
ally exclusive. Incremental learning combines the training
and inference stages and uses new data from the prediction,
phase to constantly train the model.

Every effective machine learning algorithm requires a
mechanism that drives the system to increase its accuracy
by forcing it to improve itself based on new input data. The
most frequent algorithms for a range of ML models, which
can be implemented for malware detection, are listed in the
following.

Support Vector Machine (SVM) [31] assembles a hyper
plane or group of hyperplanes for configuration in a high or
unbounded dimensional space. When everything is said and
done, the hyperplane uses a sensible partition with the biggest
partition to the nearest getting ready data motive behind any
class (called useful edge), since a bigger edge means a smaller
characterizer speculation error.

K-Nearest Neighbour (KNN) [32] is generally used for
classification approaches. Still, many terminally argue that
in malware detection, its assessment is also based on ‘‘easy
of interpretation output, computation speed, and prediction
capacity,’’ according to our study. KNN is possible to use
to help with planning and relapse concerns. However, it is
utilized to categorize malware in our problem set because
k prepares models or instances in the majority regarding
the input, i.e., which class it is closely related with. The
information can only connect to one of two classes: whether
or not malware has been discovered.

Naive Bayes (NB) [33] is an algorithm for analyzing vari
ables’ connection using an estimator classification technique.
The NB classification uses a series of computations based on

141052 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

FIGURE 6. Evolution of machine learning techniques from 1950 to 2021.

FIGURE 7. General phases in ML algorithm.

probability concepts to identify the class or category of data
supplied to the system. The system is given a specific set of
data in the NB categorization. For the training stage, a class of
data must be supplied. New test data provided to the system
is generated using the previously acquired probability values.
It is attempted to determine which category the given test
data belongs to using probability operations on the trained
data.

Decision Tree (DT) [34] is a root hub; branches and
leaf hubs are all grouped in this configuration. Each hub
represents a test quality, each branch represents a test
result, and each leaf hub represents a class name. DT does
not need any area learning, but it uses the concept of
data entropy, which is simple to grasp, and the choice
tree's learning and characterization phases are simple and
fast.

The N-gram is a valuable tool in the field of Natural Lan
guage Processing. N-grams [35] can learn binary code and
code region information, which correlate to greater entropy
levels. The strategy relies on statistical learning and isn’t
entirely reliant on specific viruses. The N-gram approach
divides a given text or audio sequence into N different size
combinations. When N is 1,2, or 3, it is sometimes referred to
as a “unigram,” ‘‘bi-gram,’’ or “trigram.” . N-gram considers
what comes before and after the words to capture the most
critical attribute.

Bayesian [36] algorithm is a distributed function that inte
grates classification and characteristics and computes the
joint probability of the training set to estimate sample classifi
cation. The Bayesian model is based on classical mathemat
ics theory and offers a high level of classification accuracy.

However, because the posterior probability is determined by
determining the preliminary data, the classification decision
has a specific mistake rate, and the procedure is sensitive to
the input data expression form.

Gaussian [37] applies Lazy learning, and Laplace approx
imation is used in this procedure, which implies data gener
alization is deferred until a query is performed, as opposed
to eager learning, which generalizes training data before a
query is made to the system. It’s prolonged, but it gets the job
done.

Meta-Heuristic [38] algorithm is a self-learning method
for solving complex optimization problems up to the optimal
solution. An accurate optimization approach cannot tackle
several real-world optimization issues. Heuristics and meta
heuristics are two types of approximate algorithms that are
used to address such problems. Heuristics algorithms are
problem-specific and based on experience, whereas meta
heuristics algorithms serve as a foundation for optimization
and guide heuristics design.

Neuro-Fuzzy (NF) [39] when systems combine the ben
efits of fuzzy logic and artificial neural networks, neural
networks’ potential is expanded. The growing neuro-fuzzy
systems combine a neural network’s adaptive and evolving
learning power with the estimated reasoning and substantial
interpretation of fuzzy rules. These are recent breakthroughs
in neuro-fuzzy approaches. The capacity of the rule base
to evolve with adaptive parameters is a crucial feature of
developing neuro-fuzzy systems.

K-Means [40] is a cluster analysis approach in which
the defined ‘k’ separates the clusters, and all the grouped
items share a center value. However, the K-Means clustering
technique isolates the temporal period between normal and
anomalous data in the same training dataset from a data
mining standpoint. As a result, the clustering approach groups
objects based on their data point characteristics. Each data
point in a cluster is identical to those in the same cluster but
distinct from those in other clusters.

Meanwhile, malware detection was accomplished by
categorizing via different machine learning algorithms,
as described in the previous paragraphs. According to
research conducted in system calls on Android [4], the
Random Forest approach could offer the most outstanding

VOLUME 11, 2023 141053

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

accuracy value of 76%. Compared to other approaches, the
True Positive Rate (TPR) is 76%, while the False Posi
tive Rate (FPR) is 13.3%. However, the KNN approach has
the fastest or least minimum calculation time, followed by
Random Forest and Naive Bayes. On the other hand, log
regression takes the longest to compute, followed by SVM
and DT. This happens because the three approaches have
more parameters, corresponding to a longer computation
time. Furthermore, based on these findings, it can be con
cluded that high recall values will follow high accuracy
results but lower precision numbers.

On the other hand, various machine learning algo
rithms [41] are utilized to identify the app as benign or
malicious. Various performance metrics are used to evaluate
each algorithm to determine which ones are best for detect
ing harmful software. The results demonstrate that Random
Forest delivers the most significant result, with an accuracy
of 90.63%, making it the most successful malware detection
tool. Regarding the area under the operating curve (AUROC),
the support vector machines (SVM) are second best and
perform well in other areas. It has a lower False Positive Rate
than Random Forest. Meanwhile, while Nave Bayes has the
best (lowest) False Positive Rate, it has a poor True Positive
Rate and poorly in other criteria.

Furthermore, to overcome the difficulties faced by con
ventional methods to detect unknown and zero-day Android
malware apps, an empirical study and performance com
parison [42] of six supervised machine learning algorithms,
including KNN, Decision Tree, SVM, Random Forest, Nave
Bayes, and Logistic Regression, which are commonly used
in the literature for detecting malware applications, was
conducted. The results of the experiments revealed that all
six machine-learning algorithms performed well in detect
ing Android malware. Random Forest, for instance, had the
highest detection accuracy of 99%, while Nave Bayes had
the lowest detection accuracy of 95.59% in detecting Android
malware.

IV. TAXONOMY
This section discusses each result received from the SLR,
including the machine learning algorithm used, how the
algorithm works, the performance result, the classification
method, and the selected analysis type employed to answer
RQ1 through RQ5.

A. CLASSIFICATION OF MACHINE LEARNING
Machine Learning is divided into four categories, as indicated
in FIGURE 8 [27], based on the nature of the learning and
learning system, including unsupervised, supervised, semi
supervised, and reinforcement learning.

Unsupervised learning is machine learning that searches
a data set for previously uncovered patterns with no
pre-existing labels and minimal human supervision [27].
Clustering and Dimensionality Reduction are the two basic
unsupervised learning methods, while an example of an algo
rithm for clustering is K-Means.

Supervised learning is learning a function that maps an
input to an output using machine learning based on sample
input-output pairs [27]. It uses labeled training data and
training examples to infer a function. Classification and
regression are the two main supervised learning techniques.
Meanwhile, KNN, SVM, DT, RF, and NB are classification
methods, while linear and logistic regression is examples of
regression methods.

Semi-supervised learning is a machine learning method
that combines the benefits of both supervised and unsu
pervised learning [27]. A semi-supervised learning strategy
comes in handy when we only have a small amount of labeled
data but a vast number of unlabeled data to train with. The
small amount of label data can be exploited using supervised
learning characteristics. On the other hand, unsupervised
learning characteristics can let you take advantage of a large
amount of unlabeled data.

Reinforcement learning is one of the most common
machine learning techniques to determine the best agent
actions to maximize reward in each environment [27]. The
agent learns to refine its activities to maximize the total
reward. Agent, environment, action, and reward are the four
main components of reinforcement learning.

Agent is a trainable program that performs the duties given
to it.

Environment is the physical or virtual environment in
which the agent performs its tasks.

Action is a change in status in the environment that occurs
when an agent moves.

Reward is the action that determines whether a negative
or positive recompense is given.

B. MALWARE DETECTION
Malware is a global issue, and malware detection tools are
the first line of protection against it. The approaches that a
malware detection tool employs determine its effectiveness.
For malware detection, various mechanisms exist, such as
Data Mining [43], Deep Learning [44], Hypothesis Explo
ration [45], and so on. However, one of the most well-known
methods for detecting malware is the Machine Learning
algorithm (MLA).

Ten machine learning algorithms for malware detection
were discovered, as shown in FIGURE 9, based on the
analysis of 77 selected studies using the SLR technique to
assess their performance in detecting malware. We found
that SVM is the most widespread malware detection algo
rithm, with 24%, followed by DT, with a percentage of 15%.
N-grams and Naive Bayes were almost equivalent distri
bution with 14% and 12%, respectively. Besides, KNN,
Bayesian, and K-Means have 10%, 8%, and 6%, respectively.
Gaussian and NF contributed the same portion of 5%, while
Meta-heuristic is the least contribution with a percentage
of 1%.

SVM [119], DT [88], and N-grams [96] have the highest
detection accuracy rate, at 100%, while NB [81] has the

141054 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

Unsupervised Learning

Machine Learning

Clustering

Dimensionality Reduction

Classification

Supervised Learning

K-Mearest Neighbor (KNN)

Support Vector Machine (SVM)

Decision Trees (DT)

Random Forest (RF)

Naive Bayes (NB)

Labeled & unlabeled data
Some feedback

Semi-supervised Learning

Direct feedback

Reinforcement Learning

FIGURE 8. Taxonomy of machine learning techniques.

Regression

Classification

Regression

Q-Leaming

Deep Q Network (DQN)

24%

l K-Means
I Naive Bayes
i Support Vector Machine (SVM)
Decision Tree

l Meta-Heuristic
l Neuro-fuzzy
I Bayesian
I Gaussian
l K-Nearest Neighbour (KNN)
l N-Grams

15%

FIGURE 9. Distribution of MLA.

lowest detection accuracy rate, at 64.7%. However, only a
limited dataset was used to examine the performance of DT
and, N-grams for malware detection. Therefore, there is a
risk of biased analysis because not all attributes may have
been incorporated due to the limited number of samples; as
suggested by the authors, future research will require a larger
dataset. TABLE 7 shows a summary of malware detection
accuracy rates.

Meanwhile, each algorithm’s average detection accuracy
rate has been obtained, and SVM continues to perform
well, with a 90.55% accuracy rate. N-grams have the great
est average detection accuracy rate of 97.80%, followed
by KNN 92.72%, DT 92.23%, K-Means 89%, Bayesian
89.08%, Gaussian 87.42%, NB 86.45%, NF 83.48%, and
Meta-Heuristic with 81.23%. FIGURE 10 shows the details
of the average detection accuracy rate.

VOLUME 11, 2023 141055

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 7. The following is a summary of the SLR-based malware detection accuracy rate.

Related Works Range of Detection
Accuracy Rate

K-Means [51], [52] 88% - > 90%
NB [29], [38], [39], [40], [4], [52], [55], [56], [57], [58], [37], [36],[79], [86], [92], [95] 73.01% - 98%

SVM [36], [39], [40], [4], [43], [44], [45], [46], [49], [53], [37], [61], [62], [71], [40], [74], [75], [76],
[77], [78], [79], [80], [81], [89], [90], [33], [94], [95]

64.7% -100%

DT [29], [33], [34], [35], [36], [4], [46], [48], [49], [58], [65], [66], [69], [70], [79], [81], [84], [85],
[86], [92], [94]

78.62% -100%

Meta-Heuristic [30] 81.23%-99.91%

NF [82], [87], [88] 69.44% - 91%

Bayesian [32], [47], [63], [64], [83] 80% - > 97%

Gaussian [32], [36], [50], [67], [89] 80% ->91.1%

KNN [28], [29], [37], [46], [49], [53], [58], [66], [68], [69], [70], [36], [80], [91], [33], [94] 80.50% - 99.2%
N-grams [30], [31], [41], [42], [27], [54], [59], [60], [72], [73], [93] 81.23% -100%

1) MALWARE DETECTION PROCESS
The overall process of malware detection can be seen
in FIGURE 11. Malware detection can be broken down
into two stages: malware analysis and malware detec
tion. The malware analysis focuses on gathering data
from previously identified malware to generate and extract
its features. Following that, an algorithm will be cre
ated based on those features. Malware analysis approaches
also assist analysts in comprehending the risks and intents
connected with a malicious code sample. The knowl
edge gained can react to new malware development pat
terns or take preventative measures to deal with future
threats. Furthermore, unknown malware can be grouped
into existing families using features gained from malware
analysis.

On the other hand, the malware detection phase use mal
ware detector ‘D’ specified as a function whose scope and
range are the set of executable program ‘P’ and the set {mali
cious, benign} [46]. A malware detector, in other words, can
be defined as indicated below.

D(p) =
if p contains malicious code
otherwise

malicious
benign

The detector examines the program ‘p’ e P to determine
whether it is benign or malicious. Testing aims to deter
mine the percentage of false positives, false negatives, and
hit ratio. The malware is detected by the malware detector
using malware signatures. A signature is a binary pattern
in the machine code of a particular malware. Anti-malware
technologies compare their malware signature database to
files on the hard disc, removable media (including boot sec
tors), and RAM. The anti-malware provider routinely updates
the signatures and makes them accessible to clients via
the Web.

False Positive occurs when a malware scanner discovers
‘malware’ in a non-infected file [46]. False positives result

when the signature used to detect a specific infection is not
unique to the malware and appears in legitimate, non-infected
software.

False Negative when a malware scanner unsuccessfully
detects malware in a compromised file [46]. Due to new
malware and the lack of a signature, the anti-malware scanner
may fail to detect malware because of configuration settings
or even erroneous signatures.

Hit ratio occurs when a malware detector identifies the
malware [44]. This happened because the malware signature
matches the signatures contained in signature databases. The
formula is shown below.

Hit ratio = D(p)/Number of detected malware

2) MALWARE DETECTION TECHNIQUES
Malware detection techniques are classified into four
types: signature-based, behavior-based, heuristic-based, and
specification-based. These approaches are used to identify
and detect malware and countermeasures against it to protect
computer systems from data and resource loss.

a: SIGNATURE-BASED
Most antivirus applications use signature-based detection
techniques. The antivirus program disassembles the code
of the infected file and searches for a malware family pat
tern [18]. A sequence of bits known as a signature is embed
ded in the code when malware is produced, which can be
used to determine which malware family it belongs to [46].
Meanwhile, malware signatures are stored in a database and
compared during detection. This kind of detection is some
times called string, pattern scanning, or pattern matching.
It might be static, dynamic, or a combination of the two,
called a hybrid.

141056 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

N-Grams
K-Nearest Neighbour (KNN)

Gaussian
Bayesian

Neuro-fuzzy
Meta-Heuristic

Decision Tree
Support Vector Machine (SVM)

Naive Bayes
K-Means

0% 20% 40% 60% 80%
Average Percentage of Accuracy

100% 120%

FIGURE 10. Average of detection accuracy rate.

b: BEHAVIOR-BASED
Behavior-based detection is conducted based on malware
behavior [50]. A behavior-based technique is used to over
come the limitation of the signature-based technique. The
main advantage of this technique is that zero-day malware
can be detected. However, if all malware scenarios are not
thoroughly investigated, this technique can result in many
false positives.

c: HEURISTIC-BASED
Heuristic-based detection detects or distinguishes between
a system’s normal and unusual activity, allowing for the
identification and resolution of known and undiscovered mal
ware attacks [46]. There are two steps to the heuristic-based
detection method. In the first step, the system’s behavior is
watched in the absence of an attack, and a record of vital
information is kept that may be confirmed and checked in
the event of an attack. In the second step, this difference
is monitored to detect malware from certain family. The
behavior detector employed in the heuristic-based technique,
as illustrated in FIGURE 12, consists of three fundamental
components: data collection, interpretation, and a match
ing algorithm. The behavior detector [22] is depicted in
FIGURE 12, describing how these components interact.

Data collection is concerned with the collection of either
static or dynamic data.

Interpretation will analyze and convert data from the data
collection component into an intermediate format.

Matching algorithm is where the behavior signature will
be compared to the converted data in the interpretation
component.

d: SPECIFICATION-BASED
Specification-based detection approaches, in which appli
cations are monitored and examined for normal and
deviant behavior [44] in accordance with their specifica
tions. The main difference between specification-based and
heuristic-based detection is that heuristic-based detection
techniques use machine learning and artificial intelligence

methods to detect a legitimate program’s valid and invalid
activity. In contrast, specification-based detection is based on
analyzing the behavior described in the system specification.
This method is essentially a manual comparison of some
systems’ typical actions. Lowering the

false positive rate and raising the false negative rate over
comes the limitations of heuristic-based approaches.

According to the SLR results, as seen in TABLE 8, most
studies with a percentage of 48.5% use behavior-based clas
sification methods, including two studies that used DT [88]
and SVM [119] that achieved 100% accuracy rate in detecting
the malware. On the other hand, signature-based contributed
43.6%, followed by permission-based and images-based,
with 5.9% and 2.0%, respectively. It shows that the behavior-
based classification method is more relevant and effective in
detecting malware. The comparative studies for classification
methods are represented in Appendix A, TABLE 13.

3) MALWARE DETECTION ANALYSIS
Malware analysis is the first step in detecting malware [47].
To identify malware, we must first understand how it works
and why it was created so malware detector developers
can easily integrate protective capabilities. Based on the
time and technique used to perform the analysis, malware
analysis techniques are classified into static, dynamic, or
hybrid.

a: STATIC ANALYSIS
Static analysis, often known as code analysis [48], is the
process of analyzing software or a piece of code without
running it. Static information is collected from the code
to assess whether the software contains harmful code. The
malware is reverse-engineered using various tools, and the
malicious code’s structure is evaluated to determine how it
operates. Debuggers, dissemblers, de-compilers, and source
code analyzers are some of the tools used to perform static
analysis. Meanwhile, File Format Inspection, String Extrac
tion, Fingerprinting, AV scanning, and Disassembly are some
of the methods utilized in static analysis.

VOLUME 11, 2023 141057

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

FIGURE 11. The overall process of malware detection.

FIGURE 12. The overall process of malware detection.

TABLE 8. Distribution of MLA based on the classification method use.

Classification
Method

Number of studies
No Reference KNN DT NB SVM N-grams K-Means Gaussian Bayesian NF Meta

heuristic
1 [73], [84], [93], [117] Image-based 2 1 0 2 0 0 1 0 0 0
2 [33] Permission-

based
1 0 1 0 0 0 0 0 0 0

3 [51], [53], [56], [57], Behavior- 6 10 8 12 3 2 1 3 3 1
[59], [60], [62], [65],
[69], [70], [36], [71],
[40], [74], [75], [77],
[81], [86], [87], [88],
[90], [92], [97], [98],
[100], [101], [102],
[104], [105], [106],
[108], [39], [110],
[111], [39], [113],
[115], [116], [119]

based

[52], [54], [55], [58],
[37], [61], [63], [64],
[66], [67], [68], [72],
[76], [78], [79], [80],
[82], [83], [85], [89],
[91], [94], [95], [96],

[99], [103], [107],
[112], [114], [118]

Signature-
based

12

b: DYNAMIC ANALYSIS
Dynamic analysis, also known as behavioral analysis [49],
analyzes and observes malware functioning while it is being
executed. This analysis will examine the function calls and

control flows and evaluate the instructions and parameters.
Malicious codes are executed in a simulated environment to
observe their behavior and countermeasures can be devel
oped. Sandbox, simulator, emulators, RegShot, and Process

141058 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

Explorer, are some of the tools used for dynamic analysis.
Moreover, dynamic analysis outperforms static analysis since
the infected software is run in a virtual environment for mon
itoring. As a result, this technique can detect a wide range of
malware. However, this analysis takes longer to be conducted
because we need to create an environment in which malicious
software may be executed and tested.

c: HYBRID ANALYSIS
Hybrid analysis blends static and dynamic analysis tech
niques to gain the advantages of both techniques. The mal
ware is first examined using code analysis and a malware
signature check. The malware will then be launched in a
simulated environment to observe its actual behavior.

Meanwhile, based on the SLR results, as seen in TABLE 9,
most of the studies with a percentage of 53.3% use static anal
ysis, which is also used in the study of N-grams [96], achiev
ing 100% accuracy rate to detect malware. However, the other
two studies used dynamic analysis, which achieved a 100%
accuracy rate in detecting malware, DT [88] and SVM [119].
We found that dynamic analysis only contributed 28.9%,
followed by hybrid analysis with a percentage of 17.8%.
Even though static analysis is popular among researchers, it is
also contributed to one of the limitations [70] in detecting
malware. Thus, the effectiveness of static analysis requires
further research work. Details of the comparative studies for
analysis type are represented in Appendix A, TABLE 13.

4) CLASSIFICATION BY DATASET
A dataset is one of the crucial elements in conducting
any experiments for malware detection. The most preva
lent datasets are DREBIN and Android Malware Genome
Project, according to the earlier SLR [2], which employed
machine learning using hybrid analysis for android malware
detection. Even though DREBIN is a popular dataset among
researchers, the samples collected were from August 2010 to
October 2012, which is quite outdated. However, it is still rel
evant to achieve some results. Furthermore, most researchers
obtain innocuous apps from Google Play and local app stores.
Also, ContagioDump, VirusTotal, and VirusShare were also
employed for malware samples. However, in this SLR study,
VirusShare [56], [60], [65], [72], [81], [92], [96], [101], [110]
[111], [113], is found as the most popular dataset used in
their experiments, followed by DREBIN, [59], [61] [64], [69],
[75], [82], [83], [102], [103], Malware Genome Project,
[36], [39], [61], [106], [108], [109], Google Play Store,
[61], [80], [108], [109] and many more type of [36], datasets
as shown in TABLE 14 in Appendix A.

V. CURRENT CHALLENGES
To answer RQ6, this section is one of the answers which sum
marizes the current challenges and limitations found in the
selected studies. The following are the common issues that
require further action as the future direction of the research
study.

A. DATASET USED
Dataset issues were found as the most common research
gap in the selected studies. It is not only because the size
of the dataset is small [57], [60], [69]; the lack of a stan
dard dataset benchmark [56] also contributed to this issue.
Besides, various types of datasets were used in the experiment
leading to poor performance [37], [66]. The researchers also
received an insufficient sample of data [40], and some of
them had difficulties in finding suitable datasets [76], [96]
for their experiments. Others, since the dataset is created
from scratch with a minimum sample of files for analysis,
bias is detected in producing the results [88]. Furthermore,
the outdated dataset used in the experiment, which offers
little or no utility as a benchmark for the performance of
malware detection systems on a modern network [112], also
contributed to this issue.

B. OBFUSCATED MALWARE
One of the challenging issues in detecting malware is related
to the obfuscation technique described in the previous sub
section about malware behavior. Modern stealthy malware
attacks hide their behavior in virtual environments and secu
rity tools [53]. This technique will make the malware chal
lenging to be detected. For instance, the current trends of
botnets use the obfuscation technique to change their struc
ture and the packet data [51] in the respective network envi
ronment. During the experiment, some malware behavior
can also not be performed in the Android application pro
cess [115]. The packed code is a well-known method to
obfuscate malware and make it difficult to detect [77]. Other
than that, decompiling the APK with Dex2jar [80] is difficult
since various obfuscation and feature-hiding techniques are
challenging to manage.

C. IMPLEMENTATION TIME
Different kinds of algorithms might be used simultaneously
in the empirical experiment; it takes longer to detect malware.
Furthermore, implementation will take longer during the
classification process [54]. Meanwhile, better effectiveness
comes at the cost of poorer efficiency.

D. TYPE OF ANALYSIS
Since new malware samples constantly arise [83], the cho
sen analysis type, as described in the previous sub-section,
might influence the performance of the detection accuracy
rate. For instance, in some experiments, new malware instant
or updated malware attacks can’t be detected using static
analysis [70]. The approach fails to detect some samples of
malware like Pjapps and Geinimi. [61].

E. MALWARE FEATURES
The feature attributes chosen must be independent of one
another or have a low correlation coefficient [36]. Besides,
many issues arise because of the large number of unrelated
or duplicate characteristics, including confusion about the

VOLUME 11, 2023 141059

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 9. Distribution of MLA based on the analysis type.

No. Reference Analysis
Type

Number of studies

KNN DT NB SVM N-grams K-Means Gaussian Bayesian NF Meta
heuristic

1 [51], [56], [57], [62],
[65], [40], [74], [77],
[81], [86], [90], [92],
[97], [98], [100], [102],
[105], [106], [109], [39],
[113], [115], [116]

Dynamic 1 1

[53], [59], [60], [69],
[36], [71], [87], [88],
[101], [104], [107],
[108], [110], [111],
[119]

Hybrid

[52], [54], [55], [58],
[37], [61], [63], [64],
[66], [67], [68], [70],
[72], [73], [75], [76],
[78], [79], [80], [82],
[83], [84], [85], [89],
[91], [93], [33], [94],
[95], [96], [99], [103],
[112], [117][114], [118]

Static 12 16

learning algorithm, over-fitting, and reduced classification
accuracy [39].

F. CLASSIFICATION METHOD
Minor software changes have a significant impact on the
signature-based method. As a result, malware cannot be iden
tified [73] if this method is used and the modified program
codes are used. The classifiers have similar challenges when
detecting new malware types. It can prevent some malware
from acting differently in real-world situations [119]. Previ
ous research has utilized various approaches, but none has
looked at distance measures for classification [75]. Besides,
distinguishing between malware families is a more chal
lenging problem than a binary classification of malware and
benign files [91]. Meanwhile, text classification studies [33]
commonly meet the sparse matrix problem.

G. OTHER ISSUES
The high false positives rate [86] is one issue that needs
further consideration. In another case, some applications
have requested excessive permissions [78] for malware detec
tion. However, because the mobile device’s computational
resources, processing capability, and memory storage [83]
are limited, they have not utilized it. Furthermore, a model
learned from attack data collected from one platform can
not be directly applied to analyze attacks targeting other
platforms [87]. It’s also impossible to create a linguistic
model that describes the decision [111]. Moreover, when a
researcher considers the kind and mode of new malware,
the embedding space may have an unknown distribution.

An ensemble method would improve the malware detection
algorithm’s robustness [118].

VI. FUTURE DIRECTIONS
This section responds to RQ6 by suggesting future research
areas based on machine learning, which researchers and
developers can use to reduce malware threats in cybersecu
rity. The following are potential solutions for each research
gap as a future direction.

A. OBFUSCATION TECHNIQUE
According to [51], a dynamic framework for predicting future
malware behavior and testing it with several benchmark
datasets is required.

B. MALWARE FEATURES
In empirical experiments, a combination of state-of-the-art
lexical and statistical [54] techniques could aid in determining
the efficiency of malware features. It is also recommended
that more malware families are studied [59] or that different
learning approaches be used for family identification, such as
deep learning techniques. In addition, use an ensemble model
[62] to classify malware using various malware features,
including system calls, API calls, and opcode sequences [66].
Those features can strengthen the feature space. Furthermore,
to detect unknown malware [36], more records with unknown
features [71] are needed to feed on the detection model. Thus,
more datasets are also required [88]. An extensive set of
features for visualizing the performance on a broad spectrum
can be obtained.

141060 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

Meanwhile, because the current method [89] only uses a
few features, more histogram-related features can be added
to improve accuracy. Malware detection and analysis can
also be sped up by incorporating various technologies [108].
The malware feature extraction techniques [119] also require
more research, and a hybrid malware feature extraction strat
egy that includes both static and dynamic analysis might be
developed.

C. CLASSIFICATION METHOD
One of the ways to solve classification method issues is
to extend the work by studying other classifiers’ perfor
mance [75], [79] and considering their hyper-parameters for
efficient and high-accuracy classification. The efficiency-
accuracy trade-off must be thoroughly examined [84]. On the
other hand, an experiment with additional statistical scoring
techniques 96 needs to be conducted in malware classifica
tion. Also, the researcher can fine-tune the machine learning
classification parameters [93] and add more APK samples,
hopefully increasing the accuracy. Extending classification
using other techniques, such as Deep Learning [97], can also
help in solving this issue.

Referring to [102], other query strategies can be applied to
see if they can perform better in terms of cost-effectiveness
and accuracy. It is also suggested to combine the classifier
with dynamic analysis [106]. The proposed classifier should
then be tested and evaluated on various platforms, including
desktop computers. Researchers can fine-tune the machine
learning classification parameters [93] and add more APK
samples, hopefully increasing accuracy. Extending classifi
cation using other techniques, such as Deep Learning [97],
can also help in solving this issue.

D. DATASET
It is essential to test the robustness of the clustering mecha
nisms against adversarial samples [56] and their usability in
the cloud environment by evaluating the model performance
on a larger dataset. Since most of the issues related to the
dataset are about the insufficient dataset, a more extensive
dataset [57] is needed during empirical experiments for more
accurate training of the model and to expand the known mal
ware [33]. Furthermore, evaluation using a more extensive
range of malware is essential [96] so that the results can be
more representative. This may include executable and script
files, images, PDF files, ransomware, etc. [112], to assess the
number of unknown samples that one would expect to see
in realistic environments and better datasets and reevaluate
thereon. On the other hand, the use of deep learning classi
fiers and different feature selection approaches on the dataset
might be examined further [63].

E. ANALYSIS TYPE
Most of the solutions combine static and dynamic analy
sis [58] to improve efficiency further. It is also in [68],
to adjust the fitness scheme to evaluate the method’s per
formance more reasonably. According to [77], the author
compares dynamic analysis to an analogous static approach.

The other option [80] is to use blockchain to construct a
deep neural network framework for malware detection that
combines static and dynamic analysis. Thus, a more robust
way to resolve cycles over time [87] can be conducted.
Meanwhile, based on [104], expanding the methodology by
considering two categories of dynamic and hybrid malware
analysis and comparing the results is another solution that can
be considered further.

F. FALSE POSITIVE RATE
To lower the false-positive rate, more experiments [92] are
needed. It can boost the ability to detect unknown viruses
while also guaranteeing that detection is accurate and precise.

VII. EMPIRICAL ANALYSIS
This section examines three different types of machine learn
ing algorithms to demonstrate some of the current con
cerns raised in the previous section. The chosen dataset and
the experiment’s selected attributes are described first. The
experiment setup is then briefly described. Finally, the exper
iment findings show the present issues that current machine
learning confronts in malware detection.

A. DATASET SELECTION
Elastic Malware Benchmark for Empowering Researchers
(EMBER 2018) [120] was utilized for this experiment, which
gathered features from 1 million PE files scanned in or
before 2018 and divided them into eight groups of raw fea
tures that comprise both parsed and format-agnostic infor
mation. The five types of parsed features are general file,
header, imported, exported, and section information. In con
trast, format-agnostic features include byte histogram, byte-
entropy histogram, and string information.

The EMBER repository makes it simple to train the bench
mark models repeatably, expand the feature set supplied, and
categorize additional PE files using the benchmark models.
This repository makes it simple to produce raw features
and/or vectorized features from any PE file. The Library to
Instrument Executable Formats (LIEF) project [121] extracts
features from PE files in the EMBER dataset. The raw
features are converted to JSON and added to the publicly
accessible dataset. From these raw features, vectorized fea
tures can be created and saved in binary format, which can
then be translated to CSV, data frame, or any other format.
The dataset was divided into two parts: 80% for training,
which included 800K training samples (300K malicious,
300K benign, and 200K unlabeled), and 20% for testing,
which included 200K test samples (100K malicious and 100K
benign).

B. EXPERIMENT SETUP
The Python programming language, which comes with a
sizeable standard library including valuable codes and func
tions, was used to create various machine learning models.
As a development environment, JupyterLab is used where
it serves Jupyter notebooks, code, and data accessible via
the web browser, especially for machine learning workflows.

VOLUME 11, 2023 141061

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 10. Comparison of malware detection performance using a small and large dataset.

Type of ML Algorithm
Existing Research Our Research

SVM [119] DT [88] N-gram [96] SVM DT N-gram

Type of file Win32-executable files Internet files Win32-executable files Windows portable executable (PE)
files

Number of samples 1413 220 24 1 mil
CA Technologies VET Clean & malware

Dataset Zoo & publicly available files are scrapped openmalware.org EMBER 2018
data sources from the Internet

Classification Method Behavior-based Behavior-based Signature-based Signature-based
Analysis Type Dynamic Hybrid Static Static
TPR (%) 1 1 1 0.94 0.86 0.9
FPR (%) 0 0 0 1 1 1
FNR (%) 0 0 0 2.4 3.5 3.2

ROC (%) 100 100 100 99.93 99.64 99.81
FI-Score (%) 100 100 100 98.24 97.45 97.68
Precision (%) 100 100 100 98.94 98.85 98.91

Recall (%) 100 100 100 98.46 96.08 97.04
Accuracy Rate (%) 100 100 100 98.62 96.49 97.43

Besides, mamba and conda were used to run the Jupyter
notebooks. Three types of ML algorithms were selected for
this experiment, including SVM, DT, and N-gram, based on
the current performance results of malware detection with a
100% accuracy rate.

Meanwhile, the dataset has eight raw characteristics in the
general file information, header information, imported func
tions, exported functions, and section information, as well
as format-agnostic histograms such as byte histogram, byte-
entropy histogram, and string information.

C. RESULT AND DISCUSSION
TABLE 10 summarizes the outcomes of the experiments.
TPR, FPR, FNR, ROC, Precision, Recall, F1-Score, and
Accuracy are measures used to evaluate the effectiveness
of three different types of malware detection algorithms.
Furthermore, TPR, Precision, Recall, F1-score, ROC, and
Accuracy are all supposed to be high in an effective malware
detection algorithm, whereas FPR and FNR are expected to
be low. TABLE 10 shows the performance data of three differ
ent malware detection methods. From this table, the accuracy
rates of all machine learning algorithms to detect the malware
can’t obtain a 100% accuracy rate as obtained by the previous
researchers. The size of the dataset jeopardizes the accuracy
rate. Thus, an insufficient or small dataset might produce an
inaccurate accuracy rate for malware detection. Based on the
accuracy rates obtained in the SVM, DT, and N-gram exper
iment, each obtained 98.62%, 96.49%, and 97.43%, respec
tively, which is not consistent with what has been acquired
by previous researchers. However, SVM has achieved the
highest performance among the three algorithms, which is
relevant to be applied in a more extensive experiment in the
future.

VIII. CONCLUSION
Due to the introduction of new technologies and the enor
mous expansion of data in the big data era, machine

learning has emerged as one of the most exciting approaches
in cybersecurity, particularly in the detection of malware.
To summarize, machine learning has sparked the interest
of researchers working in a variety of application domains.
Therefore, this study provided a comprehensive assessment
of machine learning for malware detection employing in
depth SLR techniques. By evaluating the trends and pat
terns of 77 selected research from diverse sources, this study
provided considerable insight into the present concerns and
obstacles that machine learning faces in identifying mal
ware attacks. This study developed a taxonomy for malware
identification that categorizes them into numerous subcate
gories based on a thorough investigation of relevant papers.
Malware detection was classified according to classification
techniques, analysis types, datasets, challenges, and related
issues faced in malware detection and future directions.

Finally, an empirical analysis was carried out to compare
the existing performance results produced using VM, DT,
and N-grams, which use small datasets with new accuracy
rate results using a large dataset. The result shows that if the
algorithm is trained using a larger dataset, the accuracy rate is
significantly reduced from 100% for SVM, DT and N-grams
to 98.62%, 96.49% and 97.43%, respectively. We can say
that an insufficient dataset might influence malware detection
accuracy. Furthermore, the classification method and analy
sis type selected for the experiment also contributed to the
accuracy rate. The behavior-based classification method and
dynamic or hybrid analysis type have a better contribution
to detecting the malware than the signature-based and static
analysis methods.

In terms of future work, we plan to run experiments on
the chosen machine learning algorithms, focusing on feature
extraction, classification method, and analysis type.

APPENDIX A
See Tables 11- 14.

141062 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 11. The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

1 The Brain Virus Virus

The first computer virus was designed for the
IBM Personal Computer and its compatibles.
The bad sectors on infected drives are
typically five kilobytes in size, while the

A copy of the virus is added to a floppy
disk's boot sector.
The actual boot sector is relocated and
tagged as bad.

2 VirDem

1986

Virus

infected boot sectors frequently have the disc
label altered to ©Brain.

There are 14 versions of the parasitic virus on
DOS platform. It was the first virus to infect a
file on the system, and it arrived about a year

It infects the first clean DOS executable file
by injecting its code at the beginning and
moving the original code to the end when the

after the introduction of the Brain boot sector
virus.

virus is run.

A virus on the DOS platform

Stoned

Yale

Virus

Virus

1987

Vienne Virus

Another name for this virus is Alameda. It is
said to be poorly programmed, and some virus
specialists have dubbed its programmer
"lousy."

A virus on the DOS platform is a
straightforward virus that served as a model
for more complicated and inventive viruses
such as Zerobug, Chameleon, and Ghostballs.
Its source code has been widely distributed,
resulting in hundreds of versions. Its source
code has been extensively circulated, resulting
in hundreds of different variations.

The Stoned becomes a resident in the RAM
as soon as the machine starts up from an
infected disc. It examines the Master Boot
Record to see if it is clean before infecting it
when starting from a disc other than the hard
drive.

When an uninfected disc is introduced, it
infects it. The virus enters memory and takes
up a kilobyte of space. The virus relocates
the original boot sector to track 39, head 0,
and sector 8 of the file system.
It scans the system for .com files and infects
one of them. The timestamp of the infected
file will read "62," an impossible figure,
making them simple to find. When Vienna
tries to infect them by overwriting the first
five bytes with the hex character string
"EAF0FF00F0" instructions that trigger a
warm reboot when the program is started,
one of six to eight files will be deleted. These
files do not contain the Vienna virus; they
have just been damaged by it.

Morris Worm Worm

The first internet worm was found to gamer
widespread media attention and emphasize the
need for improved network security. The
worm was created at Cornell but was
distributed at MIT to conceal its origin.

The worm infects a system by using
vulnerabilities in rsh, fingerd, and sendmail
on Solaris and BSD systems. If the worm
discovers that the new system is susceptible,
it sends data that allows the main worm to be
downloaded.

7 Jerusalem 1988 Virus

8 HI.COM Worm

The virus was created for DOS file infector
which was found in Israel with evidence from
1991. However, some records indicate that it
may be from Italy.

A computer worm attacked VAX/VMS
computers over the DECnet. The purpose of
this worm was to use the compromised system
to transmit a Christmas message from "Father
Christmas". The other name for this worm is
Father Christmas.

This virus infects any DOS executables. The
virus enters the memory after being executed
and remains there long after the host
software has been stopped. After the first
infected file is opened, the virus spreads to
any applications that open it, but it stays
away from command.com.

The worm was designed to produce a file
called "Hi.com." All users on the local access
database for every network received a
greeting from Santa Claus. It was only
directed at VAX/VMS platforms.

9 Yankee Virus

1989

10 FuManchu Virus

The other name for this virus is Yankeedoodle
which targeted DOS platform. It resembles
the Vacsina virus a lot. If it is in memory, the
virus will play the song "Yankee Doodle"
every day at 17:00.

Any executable application, including .BIN
files, .SYS, and overlay will become infected
by this virus. It resembles a modified form of
the Jerusalem virus.

The virus enters the memory when
Yankeedoodle is run. Every .com and.exe
file that is launched contracts the virus,
which appends itself to the end of the file.

The Fu Manchu virus embeds itself at the
start or the end of .com or .exe files. The
virus is loaded into memory by running an
infected software, which influences runtime

VOLUME 11, 2023 141063

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

When an infected file is sent to and executed
by a computer, data crime occurs, which
causes very little damage.

11 Datacrime Virus

performance and corrupts program or
overlay files.

It replaces the original portions of the hard
disc and shows an error message. When an
infected file is run, it scans accessible drives
for.com files in the following order: C:, D:,
A:, B:. It avoids any file with the letter "D"
as the seventh letter, most likely to prevent
infecting command.com. Every time the
virus runs, it infects one.com file in the
working directory.

A virus on the DOS platform which infects
.EXE and .COM files. The whale was the
most significant DOS virus ever identified at
the time, weighing in at 9,216 bytes.

12 Whale Virus

1990
13 Frodo Virus

The first DOS malware with perfect stealth.
Frodo, taken from The Lord of the Rings
character, is one of the most straightforward
viruses to eradicate and takes its name from
the text it displays.

The first boot sector virus on DOS that can
handle sectors more significant than 512 bytes
and a memory-resident boot sector virus.

14 DiskKiller Virus

The virus is placed in memory when an
infected file is run. The virus occupies 9,216
bytes in a file but 9,984 bytes in memory. At
different periods, the virus operates
differently, sometimes just infecting the
uninfected. When a .com or .exe file is run, it
can infect the system or be read. It appends
9,216 bytes to the file's conclusion. In some
instances, the virus may erase a file when it
is copied.

The virus enters memory when an infected
file is run. It infects every file with a .com or
.exe extension that the user accesses,
attaching itself to the end of those files.
It will add 100 years to the file's timestamp.
Some data files may also be corrupted.

Disk Killer conceals itself in sectors it flags
as "bad" in the FAT, like several other boot
sector viruses. The data on the disc is
effectively destroyed because of the virus's
encryption of it by XORing sectors with
OAAAAh and 05555h alternatively. Many
boot sector viruses have a very similar
infection and reproduction method.

15 Amoeba Virus

1991

The virus targeted DOS and is considered a
memory-resident parasitic polymorphic
encrypted virus. The 1392 varieties are bug-
infested viruses that inflict minor damage and
fail to function correctly.

A sophisticated multipartite virus. It is well-
known for its armoring tactics, notably in
decryption.

16 Tequila

17 Oligomorphic

Virus

Virus
This virus's decryptors vary with each
generation.

The infectious sequence is complicated to
understand. Any executable and OVL files
that are accessed become infected by the
virus, which hooks INTs lOh, ICh, and 21h.
While awaiting a chance to infect, the virus
becomes a permanent resident o f the higher
memory.

The boot sector record becomes infected by
the virus when an infected file is run. The
virus shrinks the partition of the disc by six
sectors while inserting its code in the sectors
outside of the partition. The infection settles
into memory when the disc boots. The virus
adds 2,468 bytes to .exe files when they are
run.

Using a series o f decryptors rather than just
one makes changing the decryptors the most
straightforward process possible.

A virus that infects the DOS boot section.
This virus is a Stoned version. Michelangelo
gets its name from its activation date, the
birthdate of Renaissance artist Michelangelo.

18 Michelangelo 1992 Virus

It doesn't interact with the operating system
and only acts at the BIOS level.
The virus overwrites the first 100 complex
drive sectors, including the master boot
record and the file allocation table, whether
the computer is an AT or a PS/2, and
transfers the original relevant boot sector
somewhere on the disc.

141064 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

19 Leandro Virus

The virus was set up as a "time bomb". It was
set to go off on a specific day and commonly
distributed via shareware on floppies, but as
Internet usage grew fast.

The virus is transmitted by affixing its code to
add files on your computer or network,
resulting in some programs stopping
functioning properly.

20 Strange Virus
This virus stops people from viewing pirated
content online in an unusual vigilante
operation.

It prevents infected users from visiting
various sites focused on software piracy.

21 PMBS

1993

Virus

It's a nasty memory resident boot virus that
uses the internal string "PMBSVIRS" which
examines the ports' input/output and corrects
the data intended for export after reading an
infected MBR.

It runs a virtual V86 machine for applications
and DOS execution, replicates itself into
extended memory, and puts the computer into
protect mode. It infects and hooks all
interrupts, checking critical situations when
reading the diskette. Another urgent
circumstance causes the computer to hang up
after displaying one of the alerts.

22 Onehalf Virus

Slovak Bomber, Freelove, and Explosion-II
are all other names for Onehalf, considered
polymorphic boot viruses detected on DOS.

The virus compromises executable files and
the hard drive's master boot record. Files with
filenames containing any o f the following
strings are ignored: FINVIRU GUARD NOD
SCAN CLEAN MSAV VSAFE CHKDSK

1994
23 Phantom 1 Virus

The virus is a parasitic polymorphic virus on
DOS that lives in memory. To infect any
executable that is launched or opened after the
virus has been loaded into memory, it hooks
INT ICh, 21h, and writes itself to the end of
the file.

A virus that utilizes DOS

24 Shifter Virus

An image o f the Grim Reaper's head with
flashing eyes shows on the screen after around
20 minutes of inactivity at the keyboard. After
a looping background animation plays, the
message is then displayed, and the text
"PHANTOM 1" fades in. The keyboard is
then turned off.

By inserting its code into built .OBJ files, the
virus spreads by ensuring it is present in every
legitimate application created from the.OBJ
file.

25 WM/Concept 1995 Virus

The first uncontrolled macro virus for Word
products. It wasn't the first Word macro that
distinction belongs to DMV, but it was the
first wacky one. It was discovered that several
CDs distributed by some significant
businesses had it preloaded.

The virus examines the document template
normal.dot to find macros named FileSaveAs
and PayLoad when opening an infected file. If
it finds them, normal.dot is considered
infected and stops the operation. Otherwise, it
adds the macros to the template.

A group of macro viruses that propagate using
spreadsheets made with Microsoft Excel.

26 Laroux Virus

1996

27 OS2 AEP

28 Win95.Boza

Virus

Virus

The first virus to infect OS/2 executable files.

Bizatch is another name for this virus. It was
the first virus for Windows 95, infecting files
in the current directory. When it is run, it
infects up to three files with around 3,192 bytes
of code attached to them.

Once this virus has invaded the Excel
environment, it remains active whenever
Excel is launched and infects both newly
produced Excel workbooks and older
workbooks when they are accessed. The two
macros that makeup Laroux are checking files
and auto open. The check files macro defines
the Excel starting path after the auto-open
macro, which runs anytime a corrupted
Spreadsheet is opened. The virus produces a
file called PERSONAL.XLS if it doesn't
already exist in the starting path. Laroux is a
module found in this file.
The viruses either deleted the file, wrote
themselves to the file's location, or used the
companion virus approach.

This virus spreads by adding its code to other
files on the device or network. Some of the
programs may halt working correctly.

VOLUME 11, 2023 141065

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

29 AOL Trojan Trojan

30 mIRC Worm
1997

Worm

Messages attempting to distribute the Trojan
target AOL Instant Messenger users.

A worm spreads over Internet Relay Chat
(IRC) networks, message boards, or chat
rooms by distributing infected files or
webpages through IRC channels; since the IRC
network is linked to hundreds of channels, it is
vulnerable to worm attacks.

The user's account has been suspended and
will be terminated in 72 hours, according to
the notification. The user must download a
crucial AIM update to fix this issue. The
"update" is a dangerous Trojan.

This worm can propagate by connecting to the
IRC network or by dropping detailed scripts
into the IRC user directory. The installed
script will force the user to transmit a copy of
the infected file to other users in the same
channel whenever the infected user signs into
the IRC server and connects to any channel.

31 Esperanto Vims Vims

The first vims runs on several processors. The
vims may infect files on computers running on
Mac, Microsoft Windows, DOS, and x86
processors.

If there isn't a running copy of Esperanto in
memory when Esperanto is executed on a
DOS or Windows platform, it enters memory-
resident mode. It infects .com, .exe,NewEXE,
and Portable EXE files as they are run.

32 Autostart Worm

A Macintosh worm that only existed once. It
originated in China and made it into several
CDs from software providers preinstalled.

A file called "DB" is started by the worm
when a disc infected with this worm is
mounted on a power Mac computer. It is
running on QuickTime 2.0 or later. It is a
concealed program file, and "????" indicates
the creator. Within the Extensions folder, it
duplicates itself. It alters the file's name to
"Desktop Printer Spooler," a concealed file.
The computer is then restarted via Autostart.

33 Cross Vims

1998

A vims also known as Hopper can contaminate
Word documents with .vbs and .html files.

The vims examines to see if the file is already
infected before running. It adds its code to the
.vbs and .html files. It instantly compromises
the normal.doc template if it is opened from a
.doc file. When a .doc file is closed, an
infection takes hold. It just comments out the
portions of itself that are particular to HTML
when infecting .vbs and .doc files. It disables
MS Office's VirusProtection feature.

34 CIH Vims

An extremely deadly vims for Microsoft
Windows, sometimes known as Chernobyl or
Spacefiller, exclusively affects Windows 95,
98, and ME. A code remark inspired the name.

The vims becomes resident on a system when
a CIH-infected file is run because it infects all
executable files that are accessible. Due to the
way CIH infects files, the infected files are
frequently the same size as the uninfected
ones. The vims begins by looking for long
stretches of vacant or unused space in any big
file to accommodate its code. If the available
space is insufficient, CIH will attempt again
and hunt for a location with the adequate
overall capacity to accommodate its code in
specific-sized chunks. It will act in a typical
way of an infection if this check fails. It will
sign up as a driver to elude simple cleaning
procedures.

35 ExploreZip 1999 Worm

A worm for bulk emails and the first worm to
be packed using a program like UPX. The
worm's body changes with each subsequent
replication, yet it remains visible. It still weighs
about 210,432 bytes, making it a relatively
huge worm even after compression. Following
that, much smaller worms like Navidad were
produced.

Zipped_files.exe is the name of the
attachment. When ExploreZip is run, a notice
states that the zip archive is invalid. Although
the OK button is always in the language that
the infected machine is configured to, the
message is always in English. The worm
duplicates itself as Explore.exe or _setup.exe
in the System folder.

141066 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

36 Happy99 Worm Worm

A Microsoft Windows email/newsgroup worm
that exhibits some characteristics of a virus and
trojan. It was authored by Spanska and
published in the 29A virus magazine's fourth
issue. The author of Happy99 calls it a
"sympathetic hitchhiker who utilizes your
internet connection to travel and thanks you for
the trip with a tiny animation," even though
Happy99 is wild and without a destructive
payload.

This worm is a specific type of virus that
replicates its copies. It sends itself through the
Internet as an attachment in e-mail messages
rather than infecting disc files as its primary
objective.

37 Melissa Virus

One month before CIH's payload was
published, a highly hazardous macro virus
swept East Asia and caused hundreds of
millions of dollars in damage. It was one of the
earliest viruses to become well-known.

The email containing the virus has the subject
"Important Message From [email address of
the account from which the malware was
delivered]." The real email address that sent it
will be shown as the "sender." "Here is the
paper you requested... don't show anybody
else reads the message's body. The
listdoc attachment has 80 usernames and
passwords for pornographic websites. All
Word documents, by default, utilize the
Normal.dot template, which is infected.

38 ILOVEYOU

2000

39 Pikachu

The worm is referred to as LoveLetter or
LoveBug on occasion. The worm spreads in
text source form and is a text script software.

Worm Because hackers may alter the worm's
programming, there are several iterations of the
original worm.

A Microsoft Windows worm that spread over
email and was thought to be the first worm
targeted towards users in their teens and
younger years since it was named after the
Pokemon character. Visual Basic 6.0 was used

Worm to write it.

The email contains an attachment that, when
viewed, causes the message to be sent to
everyone in the recipient's Microsoft Outlook
contact book. The email has the subject line
"ILOVEYOU" and contains the worm.

This worm spreads via Microsoft Outlook
email by attaching the file
PikachuPokemon.exe to email
correspondence. The worm is an executable
Win32 PE file roughly 32 KB in size. A
poorly sketched Pikachu appears as the icon.
Before deleting any files in the Windows and
Windows system folders, the worm
overwrites the original C: AUTOEXEC.BAT
file with its deletion instructions.

40 Nimda Worm

2001

41 SadmindWorm

One of the first Windows worms that could
operate automatically without the user even
reading the infected email. It is also the first to

Worm alter websites so users can download copies of
themselves. Additionally, it contains a virus
that infects executable files.

A web worm that may alter web pages on
Microsoft IIS servers running Windows NT
4.0, 2000, XP, and Solaris systems. It first
surfaced just before the CodeRed worm, and
because both of them were from China, they

Worm could be connected. It exploited security holes
that had been fixed by Sim Microsystems and
Microsoft for more than a year, underscoring
the significance of constantly installing system
updates as soon as they become available.

The Nimda worm may spread to other
computers and networks through five distinct
routes, including through an email, infected
website, local network, server, and file
infection.

Sadmind generates IP addresses to locate new
computers to infect. Each address is checked
to verify if a portmap service is available and
listening on port 111. It searches for systems
that fit these criteria and determines whether
they are running the sadmind remote
administration service.

A Microsoft Windows mass-mailer worm said
to have originated in Mexico is well-known for
its capacity to attach unknown documents to its
emails and transmit them along with the worm,
possibly disclosing sensitive, private, and even
humiliating information. It mostly spreads by
email but is also network-aware.

42 Sircam Worm Worm

Depending on the language used by the
sender, Sircam appears in an email that might
be either in English or Spanish. It includes an
attachment with two file extensions: one for a
document file of some description and the
other for an executable. The attachment may
be longer than the worm itself since it contains
a real Word, Excel, or Zip file previously on
the system the worm was on. It will accept a
file it added to itself on the prior machine,
along with the name and the initial extension.
Three options are available for the initial
extension:.doc, .xls, and .zip. There are four
options for the final extension: .bat, .com,
.Ink, and .pif.

VOLUME 11, 2023 141067

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

43 KLEZ Worm

The worms caused the most significant damage
in history, costing around $19.8 billion. It is
particularly renowned for its capacity to forge
sender line email addresses and for infecting
the machine of the recipient even when they
only preview or read the message without
downloading or running the attachment.

Klez may infiltrate a system via email or
network sharing. The worm employs forged
email addresses that focus on the "From"
section.

44 Mylife Worm Worm

2002

45 Beast Trojan Trojan

A potentially harmful email worm for
Windows

The malware is called a Remote
Administration Tool, or "RAT," which is used
most frequently in the hacker community and
refers to a backdoor trojan horse that runs on
Microsoft Windows. It was created in Delphi
and quickly gained popularity for its distinctive
characteristics. From 95 through 10 versions of
Windows are susceptible to infection.

Three variations of the ransomware exist a
girl holding a flower, a parody of Bill Clinton,
and an ox with a sinister message. When a
user clicks an attachment, all emails and,
within 45 minutes, all system files on the
user's computer are deleted.

One of the earliest trojans to offer a reverse
connection to its victims, Beast grants the
total attacker control of the infected machine
once it is up and running. The traditional
client-server architecture is used, in which the
server infects the victim while the attacker
operates the client. The trojan is safe until it is
opened; after then, it injects its code into other
apps. The three files must be deleted in safe
mode with System Restore disabled on a
Windows XP computer to clean the system.

46 SQL Slammer Worm

2003

47 Sobig Worm Worm

A worm that cost around $1 billion to repair.
The Microsoft Windows operating system is
impacted. The root of the issue was the buffer
overflow flaw in Microsoft's SQL Server and
Desktop Engine database systems.

The worm first surfaced a little more than two
weeks before Slammer. With a reported total
cost of $37.1 billion in damage, it was one of
the most destructive worms of its time.
Additionally, it has broken records for its
capacity for spreading, notably the volume of
emails received with it attached.

David Litchfield, who had first identified the
buffer overflow vulnerability that the worm
exploited, built the proof-of-concept code that
was used to present the worm at the Black Hat
Briefings. A little code primarily generates
random IP addresses and sends itself to those
addresses.

The email that contains Sobig has the sender
address "big@boss.com." There are four
potential topics, including Re: Films,
Regarding Sample, Document, and Sample:
This is that Sample

48 Blaster Worm Worm

An online worm also goes by the name
Lovesan. With extensive Distributed Denial of
Service (DDoS) assaults that caused hundreds
of millions of dollars’ worth of damage in the
late summer of 2003, it wreaked havoc.
Blaster's most popular moniker comes from the
msbast.exe program it deposits in the Windows
System folder. Its second moniker, Lov(e)san,
is derived from the worm's "I LOVE YOU
SAN" phrase. Several publications also refer to
this worm as Poza.

The system will receive code that exploits a
DCOM RPC vulnerability (described in
Microsoft Security Bulletin MS03-026) from
the Blaster worm on an already infected
computer coming through TCP port 135.
There is an 80% chance that the worm will
send exploit code specific to Windows XP
and 20% that it will be specific to Windows
2000. The RPC subsystem will fail if the
exploit code does not match the system. On
Windows XP and Server 2003, this causes a
system reboot. In Windows 2000 and NT 4.0,
this causes the system to be unresponsive.

49 Mydoom Worm Worm

2004

50 Santy Worm Worm

A Microsoft Windows worm that reportedly
caused $3k more damage than Sobig. Thus,
making it the most destructive worm ever
unleashed. It also broke records for dispersal
power.

A Microsoft Windows worm

Mydoom may be distributed by email or
Kazaa file sharing. The worm must be
downloaded from an infected computer on the
Kazaa network to be distributed via Kazaa.
Mydoom may also appear in an email address
with a fake sender address and various subject
lines.

It spreads the worm by exploiting a flaw in the
famous phpBB discussion forum software. It
also used Google's search engine to locate
susceptible servers. It does not infiltrate
computers used by end users.

141068 VOLUME 11, 2023

mailto:big@boss.com

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

51 Commwarrior Worm

52 Zotob Worm 2005 Worm

53 Zlob Trojan Trojan

A Bluetooth worm that attacks the SymbOS
operating system. When it first appeared, this
virus spread quickly and was frequently
utilized on other SymbOS viruses and
derivatives, such as Doomboot. It was also one
of the first mobile phone viruses to propagate
over Bluetooth and MMS (Multimedia
Messaging Service).

A computer worm feat takes use of security
flaws in Windows 2000 and other Microsoft
operating systems, such as the plug-and-play
flaw MS05-039. It has been reported that this
worm may propagate over TCP port 445 or
Microsoft-ds.

A trojan can infect computer users by posing
as an Active X-based fake video codec, but it
can also infect the host machine via malicious
software.

When Bluetooth sends data to a device, it asks
the user to install it. If the user installs the
worm, Bluetooth and MMS will be affected.

The Rbot worm served as the ancestor of
zotob. An infected machine may be made to
restart itself repeatedly via Rbot. Every time a
computer restarted, Zotob would reproduce
itself, multiplying until each device had
several copies of the file by the time it was
deleted. The Blaster worm and this are
comparable.
After being installed, it shows popup adverts
that seem like genuine Microsoft Windows
warning popups, alerting the user that
malware has been installed on their machine.
When these pop-ups are clicked, a bogus anti
spyware application (like Virus Heat and MS
Antivirus) that contains the trojan is
downloaded. Reference name="tm"/

An email worm and virus that targets the
Microsoft Windows operating system. When
specific words are found in a window's title bar
(such as "Registry"), one typical indication is
an automated reboot of the machine.

54 Brontok Virus 2006 Virus

Brontok transfers itself to the user's
application data directory when it is launched.
After that, it configures itself to run with
Windows by adding a registry entry to the
HKLMSoftwareMicrosoftWindowsCurrentV
ersion registry key. Open the registry key. It
alters Windows Explorer settings and disables
the Windows Registry Editor (regedit.exe).
The "Folder Options" option from the Tools
menu is removed, making it harder for users
to retrieve hidden files where it is hidden.
Additionally, the Windows firewall is
disabled. In certain variations, the computer
restarts when a window is discovered that has
specific strings (such as "application data") in

the window title. When an address entered
into Windows Explorer is partially blanked
out, it might be frustrating for the user. It
sends itself to email using its own mailing
engine.

An e-mail worm from the computer worm
family, also known as Stratio and Warezov. It
can infect Microsoft Windows systems,
disabling security features and spreading to
other machines via e-mail attachments.

55 Stration Worm Worm

The Stration worms use social engineering to
infect the target computer by arriving in an
email that appears to be a report from a mail
server informing the recipient that their
computer is infected due to an unpatched
security flaw in Windows and offering as an
attachment a purported fix, which is the worm
program itself, in somewhat broken English.
Some subsequent iterations of the worm
disseminated using Skype and instant
messenger conversation notifications that
contained a URL pointing to the worm.

56 Storm Worm Worm

A backdoor phishing Trojan horse that attacks
machines running on Microsoft operating
systems.

The worm sends an email with the subject
line, "230 dead as storm slams Europe," to
discuss a recent weather tragedy. The virus
installs the wincom32 service when an
attachment is opened, injects a payload, and
transmits packets to locations encoded inside
the malware itself.

57 ZeuS Trojan

2007

Trojan

Malware that is installed on Microsoft
Windows. It was first used to steal data from
the US Department of Transportation but didn't
catch on until 2009. It has also installed
Cryptolocker on occasion. It was regarded as
one of the most successful, infecting millions
of machines globally. It has appeared in several
frauds.

It is spread by phishing and drive-by
downloads.

VOLUME 11, 2023 141069

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

58 Conficker Worm

2008

59 Koobface Worm Worm

The other names for this worm are Downadup,
CONFLICKER, or Kido, and a Microsoft
Windows worm that has received much media
attention and might have originated in either
Ukraine or China. The media overhyped it,
claiming it would carry a hugely destructive
payload. While this never occurred, it is
impressive, given the number of PCs allegedly
affected.

A malware that targeted the Windows
operating system and reported to target
Facebook to propagate through infected wall
postings.

Conficker infects a new system by receiving
malware that takes advantage of the MS08-
067 flaw. An RPC request with exploit code
that uses a buffer overflow vulnerability to
download and run the worm will be sent to the
target machine. It will be downloaded as a .jpg
file from an HTTP server with the worm
installed on the infected computer.

Koobface hides via the VBInject trojan. If a
download is permitted, Koobface will operate
local web and IRC servers, allowing it to join
a botnet, modify the DNS, and do various
other tasks. These additional features could be
installed from the first download or from
different files that might be installed later.

60 TDL3

2009

61 Kenzero

Rootkit

Trojan

An infection that is incredibly clever and has
infected millions of computers worldwide. The
TDL3 Rootkit, similar to the original TDSS
Rootkit, may tamper with Internet surfing and
search results, trigger sporadic crashes and
"blue screens of death," and render a computer
system unresponsive and unstable.

A malware that spreads over peer-to-peer
networks and is designed to track its victims’
online activity.

The TDL3 Rootkit gives hackers access to
your computer so they may use it as a botnet
node or launch malware attacks against it.

Kenzero targets victim machines that
download files from peer-to-peer networks
(P2P). The malware locates the victim's
surfing history after the file is opened and
posts it online. Users can then see the files.

It was designed to delete data from infected
machines and stop them from rebooting.

62 W32. Dozer Worm/
Trojan

Worm releases Trojan. Dozer causes a
distributed denial of service (DDoS), and
W32. Mydoom. A@mm, the
W32.Dozer component is responsible for
email transmission. These parts work
together to carry out DDoS assaults and
distribute via email.

63 Stuxnet

64 Waledac Botnet

2010

Worm

Botnet

A computer worm that aimed at the Iranian
nuclear plant to harm that nation's uranium
enrichment program and stop President
Mahmoud Ahmadinejad from developing a
nuclear weapon.

A botnet that was primarily used as email
spam. It is also known as Waled and
Waledpak. Microsoft eliminated the botnet in
March 2010.

Stuxnet is deployed against industrial systems
rather than trying to steal sensitive
information such as credit card information or
passwords. The centrifuges self-destruct, as a
result, causing significant damage.

Accepting directives from a remote server is
conceivable. Commands also provide
instructions on what to do.

A botnet that goes by the name Hlux is mainly
used for spamming and bitcoin theft.

65 Kelihos Botnet

2011

66 Duqu Worm

A worm that operates on Windows. It
resembles the Stuxnet and searches for data
that might be utilized in an assault on industrial
control systems. The known components are
attempting to acquire information, not to do
harm.

The Kelihos botnet is a peer-to-peer botnet,
meaning each botnet node could function as
the network's central command and control
server. Traditional non-peer-to-peer botnets
rely on a few servers for all the nodes'
guidance and "work"; if these servers are
taken down or deleted, the botnet will no
longer get advice and will subsequently shut
down. Peer-to-peer botnets aim to reduce that
danger by enabling each peer to submit
commands to the botnet, making it more
challenging to take it down.
Duqu requires a thorough and time
consuming installation procedure. Duqu uses
a specifically created Microsoft Word
document to arrive. The Word document
includes a zero-day kernel vulnerability,
allowing attackers to covertly install Duqu on
the machine without the user's knowledge.
The installer and the exploit shellcode may be
separated into two pieces to demonstrate the
installation procedure as simple as possible.

141070 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

A worm that spreads over Remote Desktop
Services on Windows computers by brute-
forcing the server's login credentials.

67 Morto Worm Worm

The payload includes a worm propagation
routine that uses accessible Remote Desktop
Protocol (RDP) Services to infect other
systems. This affects machines linked to the
local subnet and internet-based RDP services
available to the public. A hardcoded
password list will be used to brute force the
administrator login, and following a
successful login, infection will start.

68 Medre

69 Flame

2012

Worm

Virus

A worm that takes operational data. The worm
gathers AutoCAD files, including drawings.
ACAD/Medre.A is capable of being utilized
for industrial espionage.

A virus that targets Windows-based PCs.

ACAD/Medre.A gathers data pertaining to
the AutoCAD program. The worm gathers
drawings from AutoCAD (*.dwg) files stored
in information repositories.

Flame has a "Kill" command that removes all
virus traces from the computer. Through LAN
or USB, it can spread to other computers.
Keyboard input, screenshots, network
activities, and Skype chats may all be
recorded.

70 Shamoon Virus

A computer virus that affected current 32-bit
NT kernel versions of Microsoft Windows was
found by Seculert. The malware appears to
have been designed for cyber warfare and
became known years later as the "largest hack
in history." due to the virus's destructiveness
and the expense of both the assault and
recovery, it has been noticed that its behavior
differs from that of other malware attacks. An
infected machine can transmit Shamoon to
other devices connected to the network.

Once a machine has been infected, the virus
keeps a list of the files from places on the
system, uploads them to the attacker, and then
deletes them. Finally, the virus overwrites the
computer's master boot record, rendering it
useless.

71 Hesperbot Trojan

2013

72 CryptoLocker Ransomware/
Trojan

The Trojan may connect to remote sites to
deliver or receive orders from the attacker and
log user keystrokes to steal sensitive
information.

A well-known Microsoft Windows
ransomware that spreads over email and is
regarded as one of the original ransomwares.
The executable file for CryptoLocker is
included in a ZIP file that is attached to an
email message. By utilizing Windows' built-in
feature of masking file extensions from file
names, this executable file has a disguised
filename and icon that looks like a PDF.

Despite being a new type of malware, ESET
identified it as "Win32/Spy.Hesperbot" and
gave it the name "Hesperbot." The security
company calls it a "potent banking Trojan"
because it could log keystrokes, take
screenshots and videos, set up a remote proxy,
and even set up a covert VNC server on the
infected system.
The most common way this virus propagates
is through emails sent to business email
accounts that pose as customer support-
related communications from FedEx, UPS,
DHS, etc. The computer becomes infected
when the zip attachment in these emails is
opened.

A group of malicious programs designed to
form a sophisticated network of botnets that
can spread spam, reroute Web traffic, and

73 Windigo 2014 Backdoor infect users'machines with malware all while
concealing the whereabouts of the hackers
carrying out the assaults.

The main tools used by Windigo to steal
login information, compromise web servers,
and reroute traffic are Linux/Ebury and
Linux/Cdorked backdoors. cPanel, a well-
known web hosting control panel platform,
and kemel.org have become notable victims
of Windigo.__________________________

74 Bashlite Botnet

2015

75 Linux Wifatch Virus

The malware infects Linux systems (DDoS) to
launch distributed denial-of-service attacks. It
was once known as Bashdoor; however, this
name is now used to describe the malware's
attack technique. It has been used to launch 400
gigabits per second assaults. Bashlite was
created to quickly cross-compile to various
computer architectures and is written in C.

A Linux virus that patched WiFi routers after
infecting them and turning them into
nematodes.

For command and control, Bashlight employs
a client-server architecture. The
communication protocol is a lightweight
variant of Internet Relay Chat (IRC). Most
variations only have a single command and
control IP address hardcoded, even though it
allows numerous command and control
servers. Using a built-in dictionary of popular
usernames and passwords, it spreads through
brute force. The virus establishes connections
to random IP addresses and makes login
attempts; it then reports any successful logins
to the command-and-control server.
The virus will advise the user to upgrade
firmware and change passwords in a message
displayed after launching it. It refreshes
definitions and functions similarly to an
antivirus program. This uses its peer-to-peer
network and removes any remaining virus
remains.

VOLUME 11, 2023 141071

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

76 Locky 2016 Ransomware

According to reports, a Windows macro trojan
virus program and ransomware email worm
have caused 4000 new infections each hour and
around 100,000 per day, with most attacks
occurring in Germany and the Netherlands.

Locky is spread by emails that look like bills
or by using exploit kits on compromised
websites. The Word document will download
the Locky ransomware executable and start
the encryption process when the user double
clicks it, enables macros, or runs the
Javascript file.

77 Mirai Botnet

Distributed denial of service (DDoS) assaults
are the most destructive. Linux-based
computer systems can be infected with this
malware that converts them into "bots" that can
be remotely controlled and used as part of a
botnet in sophisticated network assaults. It
primarily targets online consumer electronics,
including wireless routers and remote
webcams.

Internet-connected Mirai-infected machines
continually search the internet for IoT
devices' IP addresses. Private networks,
addresses assigned to the US Postal Service,
and the Department of Defense are among the
IP Address ranges listed in a chart included
with Mirai that it would not infect.

78 Wanna Cry Ransomware

2017

79 Xafecopy Trojan Trojan

The original name is WanaCrypt, Wana
CryptOr, or Wana DecryptOr, the famous
ransomware worm on Microsoft Windows. It
has caused chaos at airports, banks,
universities, hospitals, and many more
establishments and makes

The targeted operating system is Android. It
was said that the Trojan was included in
several programs, most frequently in battery
optimizers.

Numerous attack vectors, such as worms and
trojans, can cause infection. The program will
extract an embedded file into the same folder
as said executable when a computer contracts
WannaCry. A password-protected zip folder
containing several files utilized by WannaCry
is the embedded resource.
Xafecopy poses as a helpful app, frequently a
battery optimizer. It works by clicking on
online pages that use the WAP billing system,
a type of mobile payment system that is paid
straight to the mobile account. Based on the
Ubsod family, the virus operates on Android
devices that support WAP via a GPRS or 3G
wireless connection.

80 Ransomware Ransomware

2018

81 Tanatos Worm

Another name for this malware is encryptor
virus, crypto trojan, lock virus, cryptovirus, or
crypto worm, which renders personal data on a
computer inaccessible in some way while
requesting a ransom for its recovery, hence the
term. Although the subject of crypto virology
predates the word "ransomware," it is
frequently used to characterize such harmful
software.

The other name for this worm is Bugbear
which targeted the Microsoft Windows
platform by releasing a backdoor/keylogger
malware that may provide a hacker access to
several components of the compromised
machine. The preview pane of an unpatched
system is where the worm may spread to a
machine. It may also send emails stored on an
infected system to a random email address.
Additionally, it was prone to giving networked
printers information that made them produce
nonsense.

Sending the recipient an email message with
a specially constructed file or program
attached allows for the execution of this form
of extortion assault. The malware encrypts
several files on the victim's PC if they open or
execute the attachment. The victim is then
presented with a ransom letter. The victim
cannot open the encrypted data without the
proper decryption key. The cracker may (or
may not) transmit the decryption key,
enabling decryption of the "kidnapped" data
that are taken once the ransom required in the
ransom letter has been paid.
Tanatos can enter a system via network or
email. When it comes to an email attachment,
it employs a few sophisticated techniques to
avoid being immediately recognized as a
worm. The worm's network broadcast is
considerably stranger than usual.

82 Titanium APT

2019

A very advanced backdoor malware APT,
developed by PLATINUM, a cybercrime
collective. Due to the use of encryption and
fileless technology, none of the files in the file

Backdoor system can be identified as malicious. The
ability of software to imitate well-known
programs is another trait that makes
identification difficult.

A Trojan backdoor is then deployed at the end
of a lengthy process that involves dropping,
downloading, and installation phases in the
Titanium APT. A significant portion of the
sequence is cleverly concealed from
detection, notably by stenographical
concealing data in a PNG picture.

83 Swarm Virus Virus

An artificial swarm malware may exchange
acquired information, accelerate the trial-and-
error process, and use the specialization in
swarm intelligence.

A virus that uses certain characteristics of
swarm systems, or swarm algorithms, found
in nature. An antimalware system can
integrate the swarm behavior pattern.

141072 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 11. (Continued.) The description of malwares with their threat strategies.

No. Name of the virus Year Type of malware Description Threat strategy

84 Shlayer

85 Ghost 2020

86 Snugy

Ransomware infections can be used, along
with other malware infestations and trojans

Trojan/ that steal passwords. Various software
Adware cracking tools and the Adobe Flash Player

installation is common guises used to conceal
it.
Since every file is encrypted, opening the file
requires paying a ransom. A ransomware
infection can be installed alongside other

Ransomware malware infestations and trojans that steal
passwords.

This malware allows backdoor access to the
hacked Exchange server while communicating

Backdoor with the actors via control (C2) channels and
various commands. Snugy is a CASHY200
backdoor version.

Creates pop-up advertising that isn't truthful,
free software installations (bundling),
deceptive Flash Player installers, and torrent
file downloads.

The user cannot open files previously
accessible by the user. These files now have a
new extension, such as my.docx.locked. Your
computer shows a message requesting a
ransom. To release user files, cybercriminals
demand a ransom payment, which is often
made in bitcoins.
To execute instructions on the compromised
server, the Snugy backdoor leverages a DNS
tunneling channel, which enables an actor to
discover the system's hostname and execute
commands.

87 Clop Ransomware/
Trojan

2021
Gameover Zeus Botnet/

Trojan

89 Cryptojacking Crypto

The targeted platform for this ransomware is
Microsoft Windows which
MalwareHunterTeam discovered. It is also
found in the Crypto Mix family. The word clop
in Russia means bug. The strategy of this
ransomware is to attack large networks rather
than single machines.

A peer-to-peer botnet constructed from parts of
the previous ZeuS virus. It is thought that the
Cutwail botnet was used to propagate it.

A cyber threat hides on a computer or mobile
device and takes advantage of the device's
resources to "mine" cryptocurrency forms of
virtual money.

It will disable antivirus programs like
Windows Defender and Malwarebytes. Then,
it terminates several Windows services and
processes. It closes all open files to prepare
them for encryption.
Windows Defender may be turned off by
configuring different Registry entries, which
turn off features including antispyware
detections, real-time protection, behavior
tracking, sample uploading to Microsoft,
cloud detections, and Tamper Protection.
Transactions can be completed without a
centralized "Command and Control" server.
Zeus Gameover can construct separate
servers to deliver sensitive data without using
centralized ones. It takes all o f your money by
gaining access to your private bank account
information. In essence, it is impossible to
find the stolen data.
Utilize a person's computer resources to assist
in "mining" cryptocurrencies like Bitcoin.
Hackers are attempting to install
cryptojacking software on computers and
mobile devices to aid in the mining process
and significantly slow down the user's device
because mining demands a lot of
computational power to produce new
ciyptocurrency.__________________________

90 Onyx Ransomware

2022

The malware was written using the .net
programing language, which has a method
where Getprocess AP returns a list of processes
that are currently operating on the host. When
this malware is executed on the system, it first
checks the process name and process ID to see
if the malware instance is already operating.
The new instance will not be executed if the
malware instance is already operating.

After encrypting files, this ransomware
changes their filenames by inserting
the.ampkcz suffix. The "readme.txt" ransom
note is dropped into each encrypted directory
by this ransomware when it has finished
encrypting the target device.

91 Raas Ransomware

Ransomware as a Service (RaaS) is a business
model in which ransomware operators pay
affiliates to initiate ransomware attacks
established by operators. They are widely
available on the dark web, offered in the same
manner as commodities on the regular web.

RaaS providers execute advertising
campaigns and maintain websites that are
identical to those o f your own business. They
tweet regularly and have videos and white
papers.

VOLUME 11, 2023 141073

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 12. Quality assessment score of the selected studies.

ID Qi Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

PI 1 1 1 1 1 1 1 1 1 1 10

P2 0.5 1 1 0.5 0.5 1 1 1 1 0.5 8

P3 1 1 1 1 0.5 1 1 1 1 0.5 9

P4 1 1 1 0.5 1 1 1 1 1 1 9.5

P5 0.5 1 1 0.5 0.5 1 1 1 1 0 7.5

P6 1 1 1 1 1 1 1 1 1 0 9

P7 1 1 1 1 0.5 1 1 1 1 1 9.5

P8 1 1 1 1 0.5 1 1 1 1 1 9.5

P9 1 1 1 1 0.5 1 1 1 1 1 9.5

P10 1 1 1 1 0.5 1 1 1 1 1 9.5

P ll 0.5 1 1 1 0.5 1 1 1 1 0 8

P12 1 1 1 1 1 1 1 1 1 0.5 9.5

P13 1 1 1 1 0.5 1 1 1 1 1 9.5

P14 1 1 1 1 1 1 1 1 1 0 9

P15 1 1 1 1 0.5 1 1 1 1 1 9.5

P16 1 0.5 1 0.5 1 1 1 1 1 1 9

P17 0.5 1 1 1 0.5 1 1 1 1 0 8

P18 0.5 1 1 1 0.5 1 1 1 1 0 8

P19 0.5 1 1 1 0.5 1 1 1 1 0 8

P20 1 1 1 1 0.5 1 1 1 1 1 9.5

P21 0.5 1 1 1 0.5 1 1 1 1 0 8

P22 0.5 1 1 1 1 1 1 1 1 1 9.5

P23 0.5 1 1 1 0.5 1 1 1 1 0 8

P24 1 1 1 1 1 1 1 1 1 0 9

P25 1 1 1 1 0.5 1 1 1 1 1 9.5

P26 0.5 1 1 1 0.5 1 1 1 1 0 8

P27 1 1 1 1 1 1 1 1 1 0.5 9.5

P28 0.5 1 1 1 1 1 1 1 1 0 8.5

P29 1 1 1 1 1 1 1 1 1 0 9

P30 0.5 1 1 1 1 1 1 1 1 1 9.5

P31 1 1 1 1 1 1 1 1 1 1 10

P32 1 1 1 1 1 1 1 1 1 0.5 9.5

P33 1 1 1 1 0.5 1 1 1 1 1 9.5

P34 0.5 1 1 1 1 1 1 1 1 1 9.5

P35 0.5 1 1 1 1 1 1 1 1 1 9.5

P36 1 1 1 1 1 1 1 1 1 1 10

P37 0.5 0.5 1 1 0.5 1 1 1 1 0 7.5

P38 0.5 1 1 1 0.5 1 1 1 1 0 8

P39 1 1 1 1 1 1 1 1 1 1 10

P40 0.5 1 1 1 1 1 1 1 1 1 9.5

P41 0.5 1 1 1 0.5 1 1 1 1 0 8

P42 1 1 1 1 1 1 1 1 1 0.5 9.5

141074 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 12. (Continued.) Quality assessment score of the selected studies.

ID Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

P43 l 1 1 1 1 1 1 1 1 1 10

P44 l 1 1 1 1 1 1 1 1 1 10

P45 0.5 0.5 1 1 0.5 1 1 1 1 0 7.5

P46 1 1 1 1 0.5 1 1 1 1 0 8.5

P47 1 1 1 1 1 1 1 1 1 1 10

P48 1 1 1 1 1 1 1 1 1 0.5 9.5

P49 0.5 1 1 1 1 1 1 1 1 1 9.5

P50 1 1 1 1 1 1 1 1 1 1 10

P51 0.5 1 1 1 0.5 1 1 1 1 0 8

P52 0.5 1 1 1 0.5 1 1 1 1 0 8

P53 1 1 1 1 1 1 1 1 1 1 10

P54 0.5 1 1 1 0.5 1 1 1 1 0 8

P55 0.5 1 1 1 0.5 1 1 1 1 0 8

P56 0.5 1 1 1 0.5 1 1 1 1 0 8

P57 0.5 1 1 1 0.5 1 1 1 1 0 8

P58 0.5 1 1 1 0.5 1 1 1 1 0 8

P59 0.5 1 1 1 0.5 1 1 1 1 0 8

P60 0.5 1 1 1 0.5 1 1 1 1 0 8

P61 0.5 1 1 1 0.5 1 1 1 1 0 8

P62 1 1 1 1 1 1 1 1 1 1 10

P63 0.5 1 1 1 0.5 1 1 1 1 0 8

P64 1 1 1 1 1 1 1 1 1 1 10

P65 1 1 1 1 1 1 1 1 1 1 10

P66 0.5 1 1 1 0.5 1 1 1 1 0 8

P67 0.5 1 1 1 0.5 1 1 1 1 0 8

P68 1 1 1 1 1 1 1 1 1 0 9

P69 1 1 1 1 1 1 1 1 1 1 10

P70 1 1 1 1 1 1 1 1 1 1 10

P71 0.5 1 1 1 0.5 1 1 1 1 0 8

P72 1 1 1 1 1 1 1 1 1 1 10

P73 0.5 1 1 1 1 1 1 1 1 1 9.5

P74 0.5 1 1 1 0.5 1 1 1 1 0 8

P75 0.5 1 1 1 0.5 1 1 1 1 0 8

P76 1 1 1 1 1 1 1 1 1 0 9

P77 1 1 1 1 1 1 1 1 1 1 10

VOLUME 11, 2023 141075

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 13. Comparative study of MLA on malware detection.

ID Ref. Platform Data Set Modelling
Tools

Software
Used

Proposed Model
(Development)

Classification
Method

Analysis
Type

Machine
Learning

Algorithm

Detection
Accuracy

Rate
PI [125] Android Fisher iris, Bagging-DT Android LinRegDroid: Signature- Static DT 92.99

applications Forensic
glass,

Japanese
credit, Pima

Indian
Diabetes,
MODroid

algorithm,
Android

Package Kit
(APK),
Dalvik

bytecodes,
AAPT2

OS, Virtual
Machine,
MATLAB

R2016

Detection of
Android Malware
Using Multiple
Linear Regression
Models-Based
Classifiers

based KNN 89.15%

P2 [126] Android Malgenome API calls, Android Using Machine Behavior- Dynamic KNN 98.3%
applications , Maldroid Python OS Learning to

Identify Android
Malware Relying
on API calling
sequences and
Permissions

based NB
SVM
DT

98.7%
100%
100%

P3 [127] Android Google API calls, Windows 8 Malware Signature- Static SVM 92%
applications Play Store,

MalDroid,
DefenseDro

id

Reverse
Engineered(Ja

dx-GUI),
APK, Dalvik
Bytecodes,

Python
3.8.12,

Androguard

Detection: A
Framework for
Reverse
Engineered
Android
Applications
Through Machine
Learning
Algorithms

based DT
NB

KNN

90.12%
88.7%
89.5%

P4 [51] Network CTU-13 Python, Weka, Multilayer Behavior- Dynamic KNN 92.20%
system (CTU

University,
Czech

Republic)

Scikit-leam
(SMOTE,

SMOTEENN,
ROS), flow-
based feature

selection,
protocol/struc

ture
independent

Jupyter
Notebook

framework for
botnet detection
using machine
learning
algorithms

based

P5 [52] Computer Elastic Python, Not Empirical Signature- Static KNN 88%
System Malware

Benchmark
for

Research
2018

(EMBER20
18)

Scikit-leam,
AdaBoosted

CatBoost,
AdaBoosted
LightGBM

and
Optimized
LightGBM

mentioned Measurement of
Performance
Maintenance of
Gradient Boosted
Decision Tree
Models for
Malware
Detection

based DT
NB

91%
88%

P6 [53] Cloud University Python, Virtual VMShield: Behavior- Hybrid N-gram & 81.23% to
based ofNew LibVMI, machine Memory based Meta 99.91%
service Mexico

(UNM) &
University

of
California

(Bare
cloud)

DRAKVUF,
binary
particle
swarm

optimization
(BPSO)

(Ubuntu
Linux),

Anaconda
Navigator

Introspection-
based Malware
Detection to
Secure Cloud-
based Services
against Stealthy
Attacks

heuristic

P7 [54] Network 25-DGA& Kullback- Not Algorithmically Signature- Static N-grams > 96%
system UMUDGA Leibner

divergence,
Jaccard
Index,

pseudo
random
strings

mentioned generated
malicious domain
names detection
based on n-grams
features

based

P8 [55] Computer Chinese variational Not Deep Generative Signature- Static Bayesian & 80% to
System security

company
(RiSing)

inference,
neural

networks, &
stochastic
gradient

optimization

mentioned Model for
Malware
Detection

based Gaussian 85%

141076 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P9 [56] Cloud Data Cuckoo Not Machine Learning Behavior- Dynamic DT 93.60%
enviromnen collection sandbox, mentioned based Malware based

t from
VirusShare

&
VirusTotal

sites

principal
component

analysis
(PCA),
random

forest, Chi-
square,

Python, &
Scikit-leam

Detection in
Cloud
Environment
using Clustering
Approach

P10 [57] Computer Windows Python, VirtualBox Using Dtrace for Behavior- Dynamic DT 94%
System 10 ISO files Scikit-leam (Ubuntu) Machine Learning based

(Windows) Solutions in
Malware
Detection

P ll [58] Android
application

Kaggle Not
mentioned

Not
mentioned

Malicious
Application
Detection in
Android using
Machine Learning

Signature-
based

Static DT 93.60%

P12 [371 Android Omnidroid Python, Android Android Malware Signature- Static Gaussian 83%
application (by Dalvik OS (Linux), Detection Using based DT 82%

AndroPyTo bytecode, Google Static Features SVM 81%
ol), Android Collab and Machine

Android
Malware

Application
Package

Learning

Dataset (APK),
(AMD),

KuafuDet
dataset,

Androguard,
AndroPyTool,
TensorFlow

AndroZoo
P13 [59] Android

application
DREBIN &
AMD (by
Arguslab)

Manhattan
distance,
Python,

AndropyTool

Linux DroidTKM:
Detection of
Trojan Families
using the KNN
Classifier Based
on Manhattan
Distance Metric

Behavior-
based

Hybrid KNN 97.83%

P14 [60] Computer VirusShare, Cuckoo VirtualBox Forensic Malware Behavior- Hybrid NB 93%
System portableapp

s.com &
Windows 7

Ultimate
32-bit

directory

Sandbox,
JavaScript

Object
Notation
(JSON),

Python Pefile,
Principal

Component
Analysis
(PCA)

Identification
Using Naive
Bayes Method

based (static)
85%

(dynamic)

P15 [61] Android Google Apktool, Not IPDroid: Android Signature- Static NB 92.54%
application Play Store,

Genome,
Drebin &
Koodous

Python, Bag-
of-Words
Model,
Natural

Language
Processing

(NLP),
Information

Gain
(LG.)

mentioned Malware
Detection using
Intents and
Permissions

based SVM 92.42%

P16 [62] Computer Kaggle Python, Linux, AKnowledge- Behavior- Dynamic NB 73.01%
System scikit-leam VirtualBox,

Anaconda3,
Jupyter

Notebook

Domain Analyser
for Malware
Classification

based SVM 75.97%

P17 [631 Android CICInvesA Principal WEKA3.8, A Static Feature Signature- Static NB 88.23%
application ndMal2019 Component

Analysis
(PCA)

Ubuntu
(Linux)

Selection-based
Android Malware
Detection Using
Machine Learning
Techniques

based SVM
DT

91.26%
92.90%

VOLUME 11, 2023 141077

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P18 [64] Android
application

DREBIN extreme
Gradient
Boosting

(XGBoost),
Natural

Language
Processing

(NLP),
Python,

scikit-leam,
panda,
numpy

Mint 18.3
Sylvia
(Linux)

Evaluation of N-
Gram Based
Multi-Layer
Approach to
Detect Malware in
Android

Signature- Static N-grams > 97%

P19 [65] Computer
System

VirusTotal Cuckoo Adobe MALGRA:
& Sandbox, Acrobat Machine Learning

Virushare cloud-based Reader DC andN-Gram
sandbox 2019, Malware Feature

(SNDBOX), Adobe Extraction and
Markov Flash Detection System

model, TF- Player,
IDF, Java 8 Microsoft.
Update 19, NET

Python 2.7.15 Framework
4.7,

Microsoft
Office

Standard
2010,

WinRAR
5.61.

Behavior-
based

Dynamic N-grams 98.40%

P20 [66] Computer Malware HashingVecto Ubuntu TuningMalconv:
System Data rizer, Skleam, 18.04 malware detection

Science Python, (Linux) with not just raw
(small data) CUDA, bytes

& Keras,
Malshare Tensorflow,

(large data) Gradient
boosting

Cloud VirusTotal Android 7.0 Not Enhanced Android
Computing API,

Quadratic
Programming

Problem
(QPP)

mentioned Malware
Detection: An
SVM-Based
Machine Learning
Approach

Computer Kaggle Fireworks Windows A Malware
System algorithm

(FWA),
Elitism

distances,

10 OS Detection Method
Based on
Improved
Fireworks
Algorithm and
Support Vector
Machine

Computer DREBIN RESTful API, Not Malware
System Monkey

tool
mentioned Detection Based

on Feature Library
and Machine
Learning

Android API calls, AXMLPrinter Android A Framework for
application Permissions 2, Baksmali OS Detection of

, Intents Disassembler, Android Malware
and Python 3.7, using Static

combinatio MD5 hash Features
n all of it algorithm,

Avira
Antivirus,
Android

Application
package
(APK)

Android Google ten-fold Android Bayesian model
(IoT Play, cross emulator, updating method

Services- Android validation Virtual based android
network Malware method machine, malware detection
traffic) Genome

Project,
https://virus
share.com

Wireshark for IoT services

Signature- Static N-grams 99.03%
(TuningMal (small data)

conv) 98.69%
(large data)

P21 [67] Signature- Static SVM 99.75%

P22 [68] Signature-
based

Static SVM >80%

P23 [69] Behavior-
based

Hybrid SVM 94.15 = %

P24 [70] Behavior- Static SVM
KNN
DT

91.96%
95.9%
92.94

P25 [36] Behavior- Hybrid Bayesian 96%

141078 VOLUME 11, 2023

https://virus

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P26 [71] Android
application

HelDroid Python,
Scikit-leam,

Pandas,
NumPy,
SciPy,

Matplotlib

Jupyter
Notebook

Exposing Android
Ransomware
using Machine
Learning

Behavior-
based

Hybrid DT 99.08%

P27 [72] Computer VirusShare, PEview Windows Comparison of Signature- Static DT 99%
System VirusTotal,

VX Heaven
OS malware detection

techniques using
machine learning
algorithm

based SVM
KNN

91%
94%

P28 [73] Cloud
Computing

Malimg Kullback-
Leibler

divergence
(KL),

Gaussian
Mixture
Models
(GMM),
Python,

Tensorflow

Not
mentioned

Malware
Detection in
Cloud Computing
using an Image
Visualization
Technique

Image-based Static Gaussian
Mixed

80%

P29 [40] Computer Windows Euclidean Virtual Clustering Behavior- Dynamic K-Means > 90%
System Registry Distance, machine, Analysis for based
(Data Java Weka 3.8.2 Malware Behavior

Registry) Detection using
Registry Data

P30 [74] Network Kasperski Euclidean Not Detection System Behavior- Dynamic K-Means 88%
system & McAfee distance mentioned for Detecting

Worms using
Hybrid Algorithm
of Naive Bayesian
classifier and K-
Means

based NB 81%

P31 [751 Android DREBIN Android Android A performance Behavior- Static KNN 99.2%
application Application

Package
(APK),

Dalvik byte
code,

dex2oat, &
Euclidean,

Minkowski,
Correlation,

Jaccard,
Hamming and

Spearman
distances

OS evaluation on
distance measures
in KNN for
mobile malware
detection

based SVM 93.9%

P32 [76] Computer Alexa 1M, Python, MacOS X Detection of Signature- Static masked N- 98.91%
System Bader repo

extended
Boruta, R

version 3.4.2
10.12.7 algorithmically

generated
malicious domain
names using
masked N-grams

based grams

P33 [77] Computer VirusTotal API calls., Oracle A Dynamic Behavior- Dynamic NB >90%
System & Malicia Levenshtein

distance,
packed cide,

UPX,
PECompact,

VB.Net

VirtualBox,
Drltrace,

Windows 7
os

Heuristic Method
for Detecting
Packed Malware
Using Naive
Bayes

based

P34 [781 Android Xiaomi API calls, Android Android Malware Signature- Static NB 87.18%
application App Store,

AndroidMa
nifest files
& dex files

androguard,
Activity,

BroadcastRec
eiver,

Service,
ContentProvi

der

os Detection Based
on Naive Bayes

based

P35 [79] Network
system

Malicia-
project

GPGPU Windows
os

An efficient
detection of
malware by naive
Bayes classifier
using GPGPU

Signature-
based

Static NB 87%

VOLUME 11, 2023 141079

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P36 [80] Android
IoT

Services

Google
Play Store
& Chinese
App Store

API calls,
APK,

Dex2jar,
blockchain

Android
OS

A multimodal
malware detection
technique for
Android IoT
devices using
various features

Signature-
based

Static NB
improved

NB
SVM
KNN

90.5%
98%
95%
92%

P37 [81] Computer
System

VirusShare
& AV-Test

Engine
(Windows
portable

executable
files)

Cuckoo
sandbox,
genetic

algorithm,
JSON, API

calls, Registry
keys,

windows
system

(directories,
DLL, EXE)

Windows 7
OS, Ubuntu

16.04,
Vmware,

Virtual Box

Feature
Optimization for
Run Time
Analysis of
Malware in
Windows
Operating System
using Machine
Learning
Approach

Behavior-
based

Dynamic SVM
NB

81.3%
64.7%

P38 [82] Computer
System

DREBIN Android
Package Kit

(APK), DEX,
xxd,

dexdump,
aapt, scikit-

leam

Android
OS, Ubuntu

Linux
14.04 LTS

A scalable and
extensible
framework for
android malware
detection and
family attribution

Signature-
based

Static N-grams 99.2%
(small data)

86.2%
(large data)

P39 [83] Android
application

DREBIN,
AndroTrac

ker,
MODROID

Text mining,
bag-of-words,
APK & DEX

files,
ApkReader,

BINARY
& Augmented
Normalized

Term
Frequency
(ANTF)
methods

Android
OS, WEKA

3.6.1,
OpenNLP

Adapting text
categorization for
manifest based
android malware
detection

Signature-
based

Static N-grams 94.0% to
99.3%.

P40 [84] Computer
System

RISSof
ICL

machine
learning

Honeypot,
Artificial

neural
networks
(ANN)

Windows
OS, Virtual

machine

Ransomware
prediction using
supervised
learning
algorithms

Image-based Static SVM 88.20%

P41 [85] Computer
System

Endgame
Malware

BEnchmark
for

Research
(EMBER)

Honeypot Not
mentioned

Malware detection
using honeypot
and machine
learning

Signature-
based

Static SVM 90%

P42 [86] Online
social

network

The Fake
Project

(collected
from

Twitter)

Dempster-
Shafer-
Theory
(DST),

Python 3.6

Mac OS Detection of
social botnet using
a trust model
based on spam
content in Twitter
network

Behavior-
based

Dynamic Bayesian 85%

P43 [87] Computer
System

MALICA
(Real-world

malware
samples)

Temporal
dependency

network
(TDN),

Conditional
probability

Windows
OS

Probabilistically
inferring attack
ramifications
using temporal
dependence
network

Behavior-
based

Hybrid Bayesian > 97%

distributions
(CPDs),

Loopy Belief
Propagation

(LBP),
Apache

Benchmark

141080 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P44 [88] Computer
System

Clean and
malware
files are
scrapped
from the
Internet

API Calls,
Cuckoo

Sandbox,
Java, JSON,

ReportHandle
r, Python

Windows 7
OS, Virtual
Machine,

Windows 7,
Virtual

Box, Weka,
Adobe PDF

Reader

A novel malware
analysis
framework for
malware detection
and classification
using machine
learning approach

Behavior-
based

Hybrid DT 100%

P45 [89] Computer
System

VX
heavens &
Windows
OS clean

files

PEiD Windows 7
& 10 OS

Malware detection
based on string
length histogram
using machine
learning

Signature-
based

Static DT
KNN

89%
79.14%

P46 [90] Android
application

Malware
Genome
Project &
Android
Malware
Dataset

(by
Arguslab)

Markov
Chain,

Gaussian
Dissimilarity

(GD),
Logarithmic

Gaussian
Dissimilarity

(LGD),
Python,

Scikit-Leam

Android
OS,

Lollipop
5.1 (API

22), Linux
OS

Sequencing
system calls for
effective malware
detection in
android

Behavior-
based

Dynamic GB 98%

P47 [91] Computer
System

(Windows)

Windows
PE files &
PE parser
extracts

API Calls,
Value

Difference
Metric
(VDM)

Windows
OS

Malware detection
using a
heterogeneous
distance function

Signature-
based

Static KNN 98.80%

P48 [92] Android
application

Google
Android

Market &
VirusShare.

com

API calls,
APK & DEX,

Dalvik
bytecodes,
Python 2.7,
Androguard

Android
OS,

Windows
10 OS

Quick and
accurate android
malware detection
based on sensitive
APIs

Behavior-
based

Dynamic KNN&DT 92%

P49 [93] Android
application

Android .A
PK files (by
Malaysian
Computer

Emergency
Response

Team-
MyCERT)

APK files,
Dalvik
opcode

Android
OS

Android malware
detection using
machine learning
on image patterns

Image-based Static KNN
DT

80.69%
78.62%

P50 [33] Android
application

Kaggle Relevance
Frequency

(RF).
Euclidean
distance

Android
OS

New results on
permission based
static analysis for
Android malware

Permission-
based

Static KNN
NB

91%
84%

P51 [94] Computer
System

Github,
CNET

Download,
PE file
headers

Python,
Opcode

Not
mentioned

Malware
Detection using
Opcode Trigram
Sequence with
SVM

Signature-
based

Static Linear
SVM

98%

P52 [95] Computer
System

Windows 7,
Windows

XP
operating

systems, &
Cygwin

executable
files,

VXHeaven
s

Snort sub
signature,

Chi-square,
CFsSubset,
Principal

Components,
InfoGainAttri

bute,
GainRatioAttr

ibute,
Hexdump

Linux
Ubuntu
14.04,

WEKA

Accuracy
improved
malware detection
method using
snort sub
signatures and
machine learning
techniques

Signature-
based

Static N-grams > 99.78%

VOLUME 11, 2023 141081

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P53 [96] Computer VirusTotal, Hex Windows Signature-based Signature- Static N-grams 100%
System Windows-

based
executable
files, VX
Heaven,

Open
Malware,
VirusSign

and
VirusShare

Editor (HxD),
C#.NET

OS, Virtual
machine

malware detection
using sequences
ofN-grams

based

P54 [97] Computer Mac OS X Python, Mac OS X Intelligent OS X Behavior- Dynamic SVM >91%
System malware Euclidean

distance,
Principal

malware threat
detection with
code inspection

based (existing
data)

>96% (new
Component data)

Analysis
(PCA),

Synthetic
Minority

Over
sampling

Technique
(SMOTE),
Quadratic

Programming
(QP), Kernel
Smooth (KS)

P55 [98] Computer
System

Real
Ransomwar

e

API calls,
Cuckoo

Sandbox,
Python 2.7

Windows 7
OS, Virtual
machine,
Ubuntu

16.04 LTS

Detecting
ransomware using
support vector
machines

Behavior-
based

Dynamic SVM 97.48%

P56 [99] Android
application

AndroidMa
nifest.xml

Application
programming

interfaces
(APIs), aapt,
APK files,

Windows
XP,

Android
OS

A SVM-based
malware detection
mechanism for
android devices

Signature-
based

Static SVM 99%

P57 [100] Cloud
Computing

Microsoft
Malware

Classificati
on

Challenge

Cuckoo
Sandbox,
Message
Digest 5

(MD5), Zero-
day attacks

Windows
10, Virtual
machine

A Zero-Day
Resistant Malware
Detection Method
for Securing
Cloud Using SVM
and Sandboxing
Techniques

Behavior-
based

Dynamic SVM 93.80%

P58 [101] Wireless
network

VirusShare.
com

API calls,
Jimple,

Android
OS, Soot

A Dynamic and
Static Combined

Behavior-
based

Hybrid SVM 94.38%

apktool, Android
Malicious Code
Detection Model
based on SVM

P59 [102] Android
application

DREBIN Active
Learning,
Expected

error
reduction,
API calls,
DroidCat,

aapt, K-Best,
Python 3.6

Android
OS, Oracle

Android malicious
application
detection using
support vector
machine and
active learning

Behavior-
based

Dynamic SVM >90 %

P60 [103] Android DREBIN, APKtool, Android Android malicious Signature- Static SVM 92.29%
application Android Python, OS application based DT 97.59%

Malware scikit-leam, classification NB 81.01%
Genome SMOTE using clustering
Project

141082 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P61 [104] Android MODroid
application

APKTool, Android Application of
Windows OS, Virtual machine learning

PowerShell, Machine, algorithms for
Python Weka Android malware

Explorer detection
API calls, Virtual Adjusting SVMs
One Side machine for large data sets

Class using balanced
Perceptron decision trees
(OSCP),
Python,

scikit-leam,
Sequential
Minimal

Optimization
(SMO)
fuzzy c- Android Android malware
means OS classification

clustering based on ANFIS
(FCM- with fuzzy c-

ANFIS), means clustering
Adaptive using significant

neuro-fuzzy application
inference permissions
system

(ANFIS),
Android

APK, API
calls, root

mean
square error

(RMSE)

Behavior- Hybrid SVM 79.08%
KNN 80.50%

P62 [105] Computer Windows
System executables

files
(https://msd
n.microsoft.

com)

Behavior-
based

Dynamic SVM 84.02%
SVM + DT 89.16%

P63 [106] Android
application

GNOME
project

Behavior- Dynamic Adaptive 91%
based NF

(ANFC)

P64 [107] Computer
System

Downloade
d

event/activi
ty data
(from

Symantec)

Python 2.7.3,
Marmite

Ubuntu
Linux
12.04

Marmite:
spreading
malicious file
reputation through
download graphs

Signature-
based

Hybrid Bayesian 94%

P65 [108] Android
application

Malgenome
project &
Google

playstore

APK Android
OS, Linux,

dalvik
virtual

machine
(DVM)

Android malicious
application
detection using
permission vector
and network
traffic analysis

Behavior-
based

Hybrid DT 95.56%

P66 [109] Android Android Monkey, Android Malware detection Behavior- Dynamic DT 85.00%
application Malware

Genome
Project &
Google

Play Store

Python 3.4.0,
APK

OS, Linux,
Virtual

Machine
(VM),

WEKA

in android based
on dynamic
analysis

based

P67 [110] Computer VirusShare IDAPro code Virtual RansHunt: A Behavior- Hybrid DT 95%
System (www.viruu

sshare.com)
analyzer machine,

Ubuntu
12.04(Linu

x),
Windows
XP & 7,

Weka C4.5,
Cuckoo
Sandbox

support vector
machines based
ransomware
analysis
framework with
integrated feature
set

based NB 93.73%

P68 [111] Computer Windows Hybrid Ubuntu A deep neuro- Behavior- Hybrid DeepNF 69.44%
System Portable

Executables
(PE32),

VirusShare,
VirusTotal

API,
Peframe

Intelligence,
Self

Organizing
Map (SOM),
fuzzy rules,
CaptureBat,
WinDump

3.9.5,
RapidMiner

14.04,
Virtual Box

5.0.20,
Windows 7,

Weka
3.7.13

fuzzy method for
multi-label
malware
classification and
fuzzy rules
extraction

based

VOLUME 11, 2023 141083

https://msd
http://www.viruu

lEEEAxess N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 13. (Continued.) Comparative study of MLA on malware detection.

P69 [39] Android GNOME Adaptive Android An improved Behavior- Dynamic Evolving 90%
application project neuro-fuzzy

inference
system

(ANFIS),
Dynamic
evolving

neuro-fuzzy
inference
system

(DENFIS),
APK, API

calls, Apktool

OS Android malware
detection scheme
based on an
evolving hybrid
neuro-fuzzy
classifier
(EHNFC) and
permission-based
features

based Hybrid
Neuro
Fuzzy

(EHNFC)

P70 [112] Computer KDDCUP’ Open Set Not Open set intrusion Signature- Static Gaussian 91.1%
System 99 Recognition,

User to Root
Attacks
(U2R),
sigmoid

mentioned recognition for
fine-grained
attack
categorization

based SVM 90.1%

P71 [113] Mobile VirusShare. Android Android 6 A detecting Behavior- Dynamic Incremental 90.50%
application com,

Google
official
market

Application
Package
(APK),

AXMLPrinter
2, dex2jar,

jd-core

method for
malicious mobile
application based
on incremental
SVM

based SVM

P72 [114] Computer MS Word Term Microsoft Automated Signature- Static KNN 96.30%
System tiles &

MS Excel
files

Frequency
Inverse

Document
Frequency
(TFIDF)

Office,
Visual

Basic for
Application

s (VBA)

Microsoft office
macro malware
detection using
machine learning

based

P73 [115] Android Programs Androidetect, Android Machine learning- Behavior- Dynamic NB 82.5%
application & Real-

world
application

Code
injection,
Binder,
Vector

construction,
Hook

technology,
API calls,

C/C++, Java

OS based malicious
application
detection of
android

based DT 86%

P74 [116] Computer
System

Ahmadi,
Sami,

Virussign
& CSDMC

Run Length
Encoding

(RLE), API
calls, Java

Windows
OS

Improving
malware detection
time by using
RLE and N-gram

Behavior-
based

Dynamic N-grams 95%

P75 [117] Computer Malimg Gabor Windows Malware class Image-based Static SVM 98.88%
System Wavelet,

GIST, DWT
OS recognition using

image processing
techniques

KNN 98.84%

P76 [118] Computer vx heaven operational MATLAB Graph embedding Signature- Static SVM 95.62%
System &

dynamic
link

libraries
(DLL)

codes
(OpCode),

Graph
embedding,
Application

Programming
Interfaces

(API),
Dynamic

Link
Libraries
(DLL)

as a new approach
for unknown
malware detection

based KNN
DT

94.83%
92.9%

P77 [119] Cyber CA API calls, Virtual Defending Behavior- Hybrid SVM 100%
physical Technologi HookMe, Machine, unknown attacks based NB (dynamic)
systems es VET

Zoo &
publicly
available

data
sources

Euclidian &
Minkowski
distances,

Python

Oracle VM
Virtual
Box,

Cuckoo
Sandbox

on cyber-physical
systems by semi
supervised
approach and
available
unlabelled data

84.8%
(dynamic)

141084 VOLUME 11, 2023

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

TABLE 14. List of datasets.

No. Related Work Dataset Type
1 [53] UNM
2 [53] Barecloud
3 [95] Cygwin executable files
4 [55] RiSing
5 [85], [52] EMBER
6 [54] 25-DGA
7 [93] Android .APK files
8 [83] AndroTracker
9 [37] AndroZoo
10 [70] API calls, Permissions, Intents and combination all o f it
11 [81] AV-Test Engine
12 [119] CA Technologies VET Zoo
13 [80] Chinese App Store
14 [63] CICInves AndMal2019
15 [94] CNET Download
16 [116] CSDMC
17 [51] CTU-13
18 [78] Dex files
19 [107] Downloaded event/activity data
20 [118] Dynamic link libraries (DLL)
21 [94] Github
22 [71] HelDroid
23 [74] Kasperski
24 [112] KDDCUP’99
25 [97] Kitmos
26 [61] Koodous
27 [37] KuafuDet
28 [97] LaoShu
29 [97] MacVX
30 [66] Malshare
31 [66] Malware Data Science
32 [88] malware files are scrapped from the Internet
33 [74] McAfee

34 [100] Microsoft
Malware Classification Challenge

35 [114] MS Word & MS Excel files
36 [37] Omnidroid
37 [96] Open Malware
38 [94] PE file headers
39 [91] PE parser extracts
40 [111] Peframe
41 [60] portableapps.com
42 [115] Programs & Real-world application
43 [119] Publicly available data sources
44 [98] real Ransomware
45 [84] RISS of ICL machine learning
46 [97] SMOTE
47 [86] The Fake
48 [54] UMUDGA
49 [57] Windows 10 ISO files
50 [60] Windows 7 Ultimate 32-bit directory
51 [89] Windows OS clean files
52 [111] Windows Portable Executables
53 [40] Windows Registry
54 [97] WireLurker
55 [78] Xiaomi App Store
56 [37], [59], [90] Android Malware Dataset (AMD)
57 [78], [99] AndroidManifest files
58 [76], [88] CLEAN

VOLUME 11, 2023 141085

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

TABLE 14. (Continued.) List of datasets.

[64], [69], [75], [82], [83],
59 [102], [103], [59], [61] DREBIN
60 [92], [113] Google Android Market
61 [61], [36], [80], [39], [108] Google Play Store
62 [62], [68], [33], [58] Kaggle
63 [83], [104] MODROID
64 [77], [79], [87] Malicia
65 [73], [117] Malimg

66 [1° 8]’ [39]’[?0̂ [36]’ [1° 6]’ Malware Genome Project

fi7 [65], [60], [72], [81], [92], [96],
[101], [111], [113], [56], [110] VlrusShare

68 [96], [116] VirusSign
[65], [67], [72], [77], [96],69 [111][56] VirusTotal

70 [72], [118], [96], [89], [95] VX Heaven
71 [105], [96] Windows executables files
72 [72], [91] Windows PE file

ACKNOWLEDGMENT
The authors would like to thank the support of the student
Michal Dobrovolny for consultations regarding application
aspects.

REFERENCES
[1] J. Landage and M. P. Wankhade, ‘‘Malware and malware detection tech

niques: A survey,’’ Int. J. Eng. Res. Technol., vol. 2, no. 12, pp. 0181-2278,
2013.

[2] A. H. Galib andB. M. M. Hossain, ‘‘A systematic review on hybrid analysis
using machine learning for Android malware detection,’’ in Proc. 2nd Int.
Conf. Innov. Eng. Technol. (ICIET), Dec. 2019, pp. 1-6.

[3] N. Tarar, S. Sharma, and C. R. Krishna, ‘‘Analysis and classification of
Android malware using machine learning algorithms,” in Proc. 3rd Int.
Conf. Inventive Comput. Technol. (ICICT), Nov. 2018, pp. 738-743.

[4] M. Anshori, F. Mar’i, and F. A. Bachtiar, ‘‘Comparison of machine learning
methods for Android malicious software classification based on system
call,’’ in Proc. Int. Conf. Sustain. Inf. Eng. Technol. (SIET), Sep. 2019,
pp. 343-348.

[5] G. Shanmugasundaram, S. Balaji, and T. Mugilan, ‘‘Investigation of mal
ware detection techniques on smart phones,’’ in Proc. IEEE Int. Conf. Syst.
Comput., Autom. Netw. (ICSCA), Jul. 2018, pp. 1-4.

[6] S. Naz and D. K. Singh, ‘‘Review of machine learning methods for win
dows malware detection,’’ in Proc. 10th Int. Conf. Comput. Commun. Netw.
Technol. (ICCCNT), Jul. 2019, pp. 1-6.

[7] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, ‘‘Android mobile mal
ware detection using machine learning: A systematic review,’’ Electronics,
vol. 10, no. 13, p. 1606, Jul. 2021.

[8] M. Ashawa and S. Morris, ‘‘Analysis of Android malware detection tech
niques: A systematic review,’’ Int. J. Cyber-Secur. Digit. Forensics, vol. 8,
no. 3, pp. 177-187, 2019.

[9] B. Kitchenham, ‘‘Guidelines for performing systematic literature reviews
in software engineering,’’ Dept. Comput. Sci., Keele Univ., Keele, U.K.
Tech. Rep., 2007.

[10] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and G. Prisma, ‘‘Preferred
reporting items for systematic reviews and meta-analyses: The PRISMA
statement,’’ Ann. Internal Med., vol. 151, no. 4, pp. 264-269, 2009.

[11] T. Dyba and T. Dings0yr, ‘‘Empirical studies of agile software devel
opment: A systematic review,’’ Inf. Softw. Technol., vol. 50, nos. 9-10,
pp. 833-859, Aug. 2008.

[12] A. Nguyen-Duc, D. S. Cruzes, and R. Conradi, ‘‘The impact of global
dispersion on coordination, team performance and software quality—A
systematic literature review,’’ Inf. Softw. Technol., vol. 57, pp. 277-294,
Jan. 2015.

[13] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—A
systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.

[14] M. Orabi, D. Mouheb, Z. Al Aghbari, and I. Kamel, ‘‘Detection of bots in
social media: A systematic review,’’ Inf. Process. Manage., vol. 57, no. 4,
Jul. 2020, Art. no. 102250, doi: 10.1016/j.ipm.2020.102250.

[15] N. Milosevic, ‘‘History of malware,’’ 2013, arXiv:1302.5392.
[16] I. Zelinka and R. Senkenk, ‘‘Swarm intelligence in cybersecurity,’’ in Proc.

Genetic Evol. Comput. Conf. Companion, Jul. 2020, pp. 1313-1342.
[17] HelpNetSecurity: A Brief History of Malware. Accessed:

Nov. 27, 2021. [Online]. Available: https://www.helpnetsecurity.
com/2014/10/20/infographic-a-brief-history-of-malware/

[18] A. Qamar, A. Karim, and V. Chang, ‘‘Mobile malware attacks: Review,
taxonomy & future directions,’’ Future Gener. Comput. Syst., vol. 97,
pp. 887-909, Aug. 2019.

[19] (Apr. 2021). McAfee: McAfee Labs Threats Report. Accessed:
Aug. 18, 2021. [Online]. Available: https://www.mcafee.
com/enterprise/en-us/lp/threats-reports/apr-2021.html

[20] AV-TEST Institute: Statistic of Malware. Accessed: Aug. 18, 2021.
[Online]. Available: https://www.av-test.org/en/statistics/malware/

[21] I. Kara, ‘‘A basic malware analysis method,’’ Comput. Fraud Secur.,
vol. 2019, no. 6, pp. 11-19, Jan. 2019.

[22] R. Tahir, ‘‘A study on malware and malware detection techniques,’’ Int. J.
Educ. Manage. Eng., vol. 8, no. 2, pp. 20-30, Mar. 2018.

[23] I. You and K. Yim, ‘‘Malware obfuscation techniques: A brief survey,’’ in
Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., Nov. 2010,
pp. 297-300.

[24] M. Christodorescu and J. Somesh, ‘‘Static analysis of executables to detect
malicious patterns,’’ in Proc. 12th USENIX Secur. Symp. (USENIX Secur.),
2006, pp. 169-186.

[25] E. Konstantinou and S. Wolthusen, ‘‘Metamorphic virus: Analysis and
detection,’’ Dept. Math. Roy. Holloway, Univ. London, London, U.K.,
Tech. Rep., RHUL-MA-2008-02, 2008.

[26] Tesrex: Five Stages of Malware Attacks. Accessed: Nov. 28, 2021. [Online].
Available: https://tesrex.com/article/5-stages-malware-attack/

[27] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P.
Campbell, ‘‘Introduction to machine learning, neural networks, and deep
learning,’’ Transl. Vis. Sci. Technol., vol. 9, no. 2, p. 14, 2020.

[28] Analytics Vidya: Fundamental Knowledge o f Machine Learning.
Accessed: Feb. 4, 2022. [Online]. Available: https://medium.com/
analytics-vidhya/fundamental-omachine-learning-ada28afa1bd3/

[29] Vinod Sharma’s Blog. Accessed: Nov. 28, 2021. [Online]. Available:
https://vinodsblog.com/2018/03/11/the-exciting-evolution-of-machine-
learning/

[30] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, ‘‘A survey on distributed machine learning,’’ ACM Com
put. Surveys (CSUR), vol. 53, no. 2, pp. 1-33, 2020.

[31] M. Alazab, ‘‘Profiling and classifying the behavior of malicious codes,’’
J. Syst. Softw., vol. 100, pp. 91-102, Feb. 2015.

[32] R. Agrawal, ‘‘K-nearestneighborforuncertaindata,’’ Int. J. Comput. Appl.,
vol. 105, no. 11, pp. 13-16, 2014.

141086 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.ipm.2020.102250
https://www.helpnetsecurity
https://www.mcafee
https://www.av-test.org/en/statistics/malware/
https://tesrex.com/article/5-stages-malware-attack/
https://medium.com/
https://vinodsblog.com/2018/03/11/the-exciting-evolution-of-machine-

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess

[33] D. O. §ahin, O. E. Kural, S. Akleylek, and E. Kili§, ‘‘New results on
permission based static analysis for Android malware,’’ in Proc. 6th Int.
Symp. Digit. Forensic Secur. (ISDFS), Mar. 2018, pp. 1-4.

[34] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81-106, Mar. 1986.

[35] B. Zhang, J. Yin, J. Hao, S. Wang, D. Zhang, and W. Tang, ‘‘Newmalicious
code detection based on N-gram analysis and rough set theory,’’ in Proc.
Int. Conf. Comput. Intell. Secur., vol. 2, Nov. 2006, pp. 1229-1232.

[36] F. Wu, L. Xiao, and J. Zhu, ‘‘Bayesian model updating method based
Android malware detection for IoT services,’’ in Proc. 15th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jun. 2019, pp. 61-66.

[37] A. Al Zaabi and D. Mouheb, ‘‘Android malware detection using static
features and machine learning,’’ in Proc. Int. Conf. Commun., Comput.,
Cybersecur., Informat. (CCCI), Nov. 2020, pp. 1-5.

[38] W. Rhmann and G. A. Ansari, ‘‘Use of metaheuristic algorithms in malware
detection,’’ Int. J. Recent Innov. Trends Comput. Commun., vol. 5, no. 6,
pp. 1370-1374, Jun. 2017.

[39] A. Altaher, ‘‘An improved Android malware detection scheme based
on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-
based features,’’ Neural Comput. Appl., vol. 28, no. 12, pp. 4147-4157,
Dec. 2017.

[40] N. A. Rosli, W. Yassin, M. A. Faizal, and S. R. Selamat, ‘‘Clustering
analysis for malware behavior detection using registry data,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 10, no. 12, pp. 1-10, 2019.

[41] M. Al Ali, D. Svetinovic, Z. Aung, and S. Lukman, ‘‘Malware detection
in Android mobile platform using machine learning algorithms,’’ in Proc.
Int. Conf. Infocom. Technol. Unmanned Syst. Trends Future Directions
(ICTUS), Dec. 2017, pp. 763-768.

[42] T. A. A. Abdullah, W. Ali, and R. Abdulghafor, ‘‘Empirical study on intel
ligent Android malware detection based on supervised machine learning,’’
Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 1-10, 2020.

[43] U. Baldangombo, N. Jambaljav, and S.-J. Horng, ‘‘A static malware detec
tion system using data mining methods,’’ 2013, arXiv:1308.2831.

[44] Y.-S. Yen and H.-M. Sun, ‘‘An Android mutation malware detection based
on deep learning using visualization of importance from codes,’’ Micro
electron. Rel., vol. 93, pp. 109-114, Feb. 2019.

[45] S. Sohrabi, O. Udrea, and A. Riabov, ‘‘Hypothesis exploration for mal
ware detection using planning,’’ in Proc. 27th AAAI Conf. Artif. Intell.,
Jun. 2013, pp. 883-889.

[46] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, ‘‘Survey on malware detec
tion methods,’’ in Proc. 3rd Hackers’ Workshop Comput. Internet Secur.
(IITKHACK), Mar. 2009, pp. 74-79.

[47] I. A. Saeed, A. Selamat, and A. M. A. Abuagoub, ‘‘A survey on malware
and malware detection systems,’’ Int. J. Comput. Appl., vol. 67, no. 16,
pp. 25-31, Apr. 2013.

[48] G. Liang, J. Pang, Z. Shan, R. Yang, and Y. Chen, ‘‘Automatic benchmark
generation framework for malware detection,’’ Secur. Commun. Netw.,
vol. 2018, pp. 1-8, Sep. 2018.

[49] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, ‘‘Detection of
malicious code by applying machine learning classifiers on static features:
A state-of-the-art survey,’’ Inf. Secur. Tech. Rep., vol. 14, no. 1, pp. 16-29,
Feb. 2009.

[50] M. Goyal and R. Kumar, ‘‘The pipeline process of signature-based and
behavior-based malware detection,’’ in Proc. IEEE 5th Int. Conf. Comput.
Commun. Autom. (ICCCA), Oct. 2020, pp. 497-502.

[51] W. N. H. Ibrahim, S. Anuar, A. Selamat, O. Krejcar, R. G. Crespo,
E. Herrera-Viedma, and H. Fujita, ‘‘Multilayer framework for botnet
detection using machine learning algorithms,’’ IEEE Access, vol. 9,
pp. 48753-48768, 2021.

[52] C. Galen and R. Steele, ‘‘Empirical measurement of performance main
tenance of gradient boosted decision tree models for malware detec
tion,’’ in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), Apr. 2021,
pp. 193-198.

[53] P. Mishra, P. Aggarwal, A. Vidyarthi, P. Singh, B. Khan, H. H. Alhelou,
and P. Siano, ‘‘VMShield: Memory introspection-based malware detection
to secure cloud-based services against stealthy attacks,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 10, pp. 6754-6764, Oct. 2021.

[54] A. Cucchiarelli, C. Morbidoni, L. Spalazzi, and M. Baldi, ‘‘Algorithmically
generated malicious domain names detection based on n-grams features,’’
Exp. Syst. Appl., vol. 170, May 2021, Art. no. 114551.

[55] Y. Fu and Q. Lan, ‘‘Deep generative model for malware detection,’’ in Proc.
Chin. Control Decis. Conf. (CCDC), Aug. 2020, pp. 2072-2077.

VOLUME 11, 2023

[56] R. Kumar, K. Sethi, N. Prajapati, R. Ranjan Rout, and P. Bera, ‘‘Machine
learning based malware detection in cloud environment using clustering
approach,’’ in Proc. 11th Int. Conf. Comput., Commun. Netw. Technol.
(ICCCNT), Jul. 2020, pp. 1-7.

[57] A. Mohan K. P., S. Chandran, G. Gressel, T. U. Arjun, and V. Pavithran,
‘‘Using dtrace for machine learning solutions in malware detection,’’
in Proc. 11th Int. Conf. Comput., Commun. Netw. Technol. (ICCCNT),
Jul. 2020, pp. 1-7.

[58] H. Soni, P. Arora, and D. Rajeswari, ‘‘Malicious application detection in
Android using machine learning,’’ in Proc. Int. Conf. Commun. Signal
Process. (ICCSP), Jul. 2020, pp. 0846-0848.

[59] D. T. Dehkordy and A. Rasoolzadegan, ‘‘DroidTKM: Detection of trojan
families using the KNN classifier based on Manhattan distance met
ric,’’ in Proc. 10th Int. Conf. Comput. Knowl. Eng. (ICCKE), Oct. 2020,
pp. 136-141.

[60] B. Ramadhan, Y. Purwanto, and M. F. Ruriawan, ‘‘Forensic malware
identification using naive Bayes method,’’ in Proc. Int. Conf. Inf. Technol.
Syst. Innov. (ICITSI), Oct. 2020, pp. 1-7.

[61] K. Khariwal, J. Singh, and A. Arora, ‘‘IPDroid: Android malware detection
using intents and permissions,’’ in Proc. 4th World Conf. Smart Trends
Syst., Secur. Sustainability (WorldS4), Jul. 2020, pp. 197-202.

[62] O. P. Samantray and S. N. Tripathy, ‘‘A knowledge-domain analyser for
malware classification,’’ in Proc. Int. Conf. Comput. Sci., Eng. Appl.
(ICCSEA), Mar. 2020, pp. 1-7.

[63] A. Sangal and H. K. Verma, ‘‘A static feature selection-based Android
malware detection using machine learning techniques,’’ in Proc. Int. Conf.
Smart Electron. Commun. (ICOSEC), Sep. 2020, pp. 48-51.

[64] T. Islam, S. S. M. M. Rahman, M. A. Hasan, A. S. M. M. Rahaman,
and M. I. Jabiullah, ‘‘Evaluation of N-gram based multi-layer approach to
detect malware in Android,’’ Proc. Comput. Sci., vol. 171, pp. 1074-1082,
Jan. 2020.

[65] M. Ali, S. Shiaeles, G. Bendiab, and B. Ghita, ‘‘MALGRA: Machine
learning and N-gram malware feature extraction and detection system,’’
Electronics, vol. 9, no. 11, p. 1777, Oct. 2020.

[66] L. Yang and J. Liu, ‘‘TuningMalconv: Malware detection with not just raw
bytes,’’ IEEE Access, vol. 8, pp. 140915-140922, 2020.

[67] H. Han, S. Lim, K. Suh, S. Park, S.-J. Cho, and M. Park, ‘‘Enhanced
Android malware detection: An SVM-based machine learning approach,’’
in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Feb. 2020,
pp. 75-81.

[68] D. Dong, Z. Ye, J. Su, S. Xie, Y. Cao, and R. Kochan, ‘‘A malware
detection method based on improved fireworks algorithm and support
vector machine,’’ in Proc. IEEE 15th Int. Conf. Adv. Trends Radioelectron.,
Telecommun. Comput. Eng. (TCSET), Feb. 2020, pp. 846-851.

[69] D. Hu, B. Xu, J. Wang, L. Han, and J. Liu, ‘‘Malware detection based on
feature library and machine learning,’’ in Proc. IEEE 3rd Int. Conf. Autom.,
Electron. Electr. Eng. (AUTEEE), Nov. 2020, pp. 205-213.

[70] M. Dhalaria and E. Gandotra, ‘‘A framework for detection of Android
malware using static features,’’ in Proc. IEEE 17th India Council Int. Conf.
(INDICON), Dec. 2020, pp. 1-7.

[71] O. B. Victoriano, ‘‘Exposing Android ransomware using machine learn
ing,’’ in Proc. Int. Conf. Inf. Syst. Syst. Manage., Oct. 2019, pp. 32-37.

[72] N. S. Selamat and F. H. M. Ali, ‘‘Comparison of malware detection
techniques using machine learning algorithm,’’ Indonesian J. Electr. Eng.
Comput. Sci., vol. 16, no. 1, p. 435, Oct. 2019.

[73] F. Abdullayeva, ‘‘Malware detection in cloud computing using an image
visualization technique,’’ in Proc. IEEE 13th Int. Conf. Appl. Inf. Commun.
Technol. (AICT), Oct. 2019, pp. 1-5.

[74] O. M. Qasim and K. H. Alsadi, ‘‘Detection system for detecting worms
using hybrid algorithm of Naive Bayesian classifier and K-means,’’
in Proc. 2nd Int. Conf. Eng. Technol. Appl. (IICETA), Aug. 2019,
pp. 173-178.

[75] G. Baldini and D. Geneiatakis, ‘‘A performance evaluation on distance
measures in KNN for mobile malware detection,’’ in Proc. 6th Int. Conf.
Control, Decis. Inf. Technol. (CoDIT), Apr. 2019, pp. 193-198.

[76] J. Selvi, R. J. Rodriguez, and E. Soria-Olivas, ‘‘Detection of algorithmi
cally generated malicious domain names using masked N-grams,’’ Exp.
Syst. Appl., vol. 124, pp. 156-163, Jun. 2019.

[77] E. M. Alkhateeb and M. Stamp, ‘‘A dynamic heuristic method for detecting
packed malware using naive Bayes,’’ in Proc. Int. Conf. Electr. Comput.
Technol. Appl. (ICECTA), Nov. 2019, pp. 1-6.

141087

lEEEArcess* N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions

[78] J. Pang and J. Bian, ‘‘Android malware detection based on naive Bayes,’’
in Proc. IEEE 10thInt. Conf. Softw. Eng. Service Sci. (ICSESS), Oct. 2019,
pp. 483-486.

[79] S. K. Sahay and M. Chaudhari, ‘‘An efficient detection of malware by naive
Bayes classifier using GPGPU,’’ in Advances in Computer Communication
and Computational Sciences. Singapore: Springer, 2019, pp. 255-262.

[80] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif,
‘‘A multimodal malware detection technique for Android IoT devices using
various features,’’ IEEE Access, vol. 7, pp. 64411-64430, 2019.

[81] A. Irshad, R. Maurya, M. K. Dutta, R. Burget, and V. Uher, ‘‘Feature
optimization for run time analysis of malware in windows operating system
using machine learning approach,’’ in Proc. 42nd Int. Conf. Telecommun.
Signal Process. (TSP), Jul. 2019, pp. 255-260.

[82] L. Zhang, V. L. L. Thing, and Y. Cheng, ‘‘A scalable and extensible frame
work for Android malware detection and family attribution,’’ Comput.
Secur., vol. 80, pp. 120-133, Jan. 2019.

[83] O. Coban and S. Ozel, ‘‘Adapting text categorization for manifest based
Android malware detection,’’ Comput. Sci., vol. 20, no. 3, p. 383, 2019.

[84] U. Adamu and I. Awan, ‘‘Ransomware prediction using supervised learn
ing algorithms,’’ in Proc. 7th Int. Conf. Future Internet Things Cloud
(FiCloud), Aug. 2019, pp. 57-63.

[85] I. M. M. Matin and B. Rahardjo, ‘‘Malware detection using honeypot
and machine learning,’’ in Proc. 7th Int. Conf. Cyber IT Service Manage.
(CITSM), vol. 7, Nov. 2019, pp. 1-4.

[86] G. Lingam, R. Ranjan Rout, and D. V. L. N. Somayajulu, ‘‘Detection
of social botnet using a trust model based on spam content in Twitter
network,’’ in Proc. IEEE 13th Int. Conf. Ind. Inf. Syst. (ICIIS), Dec. 2018,
pp. 280-285.

[87] Y. Yang, Z. Cai, C. Wang, and J. Zhang, ‘‘Probabilistically inferring
attack ramifications using temporal dependence network,’’ IEEE Trans.
Inf. Forensics Security, vol. 13, no. 11, pp. 2913-2928, Nov. 2018.

[88] K. Sethi, S. K. Chaudhary, B. K. Tripathy, and P. Bera, ‘‘A novel mal
ware analysis framework for malware detection and classification using
machine learning approach,’’ in Proc. 19th Int. Conf. Distrib. Comput.
Netw., Jan. 2018, pp. 1-4.

[89] S. K. Sawaisarje, V. K. Pachghare, and D. D. Kshirsagar, ‘‘Malware
detection based on string length histogram using machine learning,’’ in
Proc. 3rd IEEE Int. Conf. Recent Trends Electron., Inf. Commun. Technol.
(RTEICT), May 2018, pp. 1836-1841.

[90] A. S. M. Ahsan-Ul-Haque, M. Shohrab Hossain, and M. Atiquzzaman,
‘‘Sequencing system calls for effective malware detection in android,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1-7.

[91] M. Jurecek and R. Lorencz, ‘‘Malware detection using a heterogeneous
distance function,’’ Comput. Informat., vol. 37, no. 3, pp. 759-780,
2018.

[92] C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, ‘‘Quick and accurate
Android malware detection based on sensitive APIs,’’ in Proc. IEEE Int.
Conf. Smart Internet Things (SmartIoT), Aug. 2018, pp. 143-148.

[93] F. M. Darus, N. A. A. Salleh, and A. F. M. Ariffin, ‘‘Android malware
detection using machine learning on image patterns,’’ in Proc. Cyber
Resilience Conf. (CRC), Nov. 2018, pp. 1-2.

[94] A. I. Elkhawas and N. Abdelbaki, ‘‘Malware detection using opcode
trigram sequence with SVM,’’ in Proc. 26th Int. Conf. Softw., Telecommun.
Comput. Netw. (SoftCOM), Sep. 2018, pp. 1-6.

[95] B. M. Khammas, S. Hasan, R. A. Ahmed, J. S. Bassi, and I. Ismail,
‘‘Accuracy improved malware detection method using snort sub-signatures
and machine learning techniques,’’ in Proc. 10th Comput. Sci. Electron.
Eng. (CEEC), Sep. 2018, pp. 107-112.

[96] A. M. Abiola and M. F. Marhusin, ‘‘Signature-based malware detection
using sequences of N-grams,’’ Int. J. Eng. Technol., vol. 7, no. 4, p. 120,
Oct. 2018.

[97] H. H. Pajouh, A. Dehghantanha, R. Khayami, and K.-K.-R. Choo, ‘‘Intel
ligent OS X malware threat detection with code inspection,’’ J. Comput.
Virol. Hacking Techn., vol. 14, no. 3, pp. 213-223, Aug. 2018.

[98] Y. Takeuchi, K. Sakai, and S. Fukumoto, ‘‘Detecting ransomware using
support vector machines,’’ in Proc. 47th Int. Conf. Parallel Process. Com
panion, Aug. 2018, pp. 1-6.

[99] Y.-F. Lu, C.-F. Kuo, H.-Y. Chen, C.-W. Chen, and S.-C. Chou, ‘‘A SVM-
based malware detection mechanism for Android devices,’’ in Proc. Int.
Conf. Syst. Sci. Eng. (ICSSE), Jun. 2018, pp. 1-6.

[100] S. Kumar and C. B. B. Singh, ‘‘A zero-day resistant malware detection
method for securing cloud using SVM and sandboxing techniques,’’ in
Proc. 2nd Int. Conf. Inventive Commun. Comput. Technol. (ICICCT),
Apr. 2018, pp. 1397-1402.

101] J. Du, H. Chen, W. Zhon, Z. Liu, and A. Xu, ‘‘A dynamic and
static combined Android malicious code detection model based on
SVM,’’ in Proc. 5th Int. Conf. Syst. Informat. (ICSAI), Nov. 2018,
pp. 675-801.

102] B. Rashidi, C. Fung, and E. Bertino, ‘‘Android malicious application
detection using support vector machine and active learning,’’ in Proc. 13th
Int. Conf. Netw. Service Manage. (CNSM), Nov. 2017, pp. 1-9.

103] H. Rathore, S. K. Sahay, P. Chaturvedi, and M. Sewak, ‘‘Android
malicious application classification using clustering,’’ in Proc. Int. Conf.
Intell. Syst. Design Appl. Cham, Switzerland: Springer: Cham, 2018,
pp. 659-667.

104] M. Kakavand, M. Dabbagh, and A. Dehghantanha, ‘‘Application of
machine learning algorithms for Android malware detection,’’ in Proc. Int.
Conf. Comput. Intell. Intell. Syst., Nov. 2018, pp. 32-36.

105] C. Vatamanu, D. Teodor Gavrilut, and G. Popoiu, ‘‘Adjusting SVMs
for large data sets using balanced decision trees,’’ in Proc. 20th Int.
Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2018,
pp. 223-229.

106] A. Altaher and O. Barukab, ‘‘Android malware classification based
on ANFIS with fuzzy c-means clustering using significant application
permissions,’’ TURKISH J. Electr. Eng. Comput. Sci., vol. 25, no. 3,
pp. 2232-2242, 2017.

107] G. Stringhini, Y. Shen, Y. Han, and X. Zhang, ‘‘Marmite: Spreading
malicious file reputation through download graphs,’’ in Proc. 33rd Annu.
Comput. Secur. Appl. Conf., Dec. 2017, pp. 91-102.

108] S. Kandukuru and R. M. Sharma, ‘‘Android malicious applica
tion detection using permission vector and network traffic analy
sis,’’ in Proc. 2nd Int. Conf. Converg. Technol. (I2CT), Apr. 2017,
pp. 1126-1132.

109] T. Bhatia and R. Kaushal, ‘‘Malware detection in Android based on
dynamic analysis,’’ in Proc. Int. Conf. Cyber Secur. Protection Digit.
Services (Cyber Secur.), Jun. 2017, pp. 1-6.

110] M. M. Hasan and M. M. Rahman, ‘‘RansHunt: A support vector
machines based ransomware analysis framework with integrated feature
set,’’ in Proc. 20th Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2017,
pp. 1-7.

111] A. Shalaginov and K. Franke, ‘‘A deep neuro-fuzzy method for multi
label malware classification and fuzzy rules extraction,’’ in Proc. IEEE
Symp. Ser. Comput. Intell. (SSCI), Dec. 2017, pp. 1-8.

112] S. Cruz, C. Coleman, E. M. Rudd, and T. E. Boult, ‘‘Open
set intrusion recognition for fine-grained attack categorization,’’ in
Proc. IEEE Int. Symp. Technol. Homeland Secur. (HST), Apr. 2017,
pp. 1-6.

113] Y. Li, Y. Ma, M. Chen, and Z. Dai, ‘‘A detecting method for malicious
mobile application based on incremental SVM,’’ in Proc. 3rd IEEE Int.
Conf. Comput. Commun. (ICCC), Dec. 2017, pp. 1246-1250.

114] R. Bearden and D. Chai-Tien Lo, ‘‘Automated Microsoft office macro
malware detection using machine learning,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 4448-4452.

115] L. Wei, W. Luo, J. Weng, Y. Zhong, X. Zhang, and Z. Yan, ‘‘Machine
learning-based malicious application detection of android,’’ IEEE Access,
vol. 5, pp. 25591-25601, 2017.

116] F. Mira, W. Huang, and A. Brown, ‘‘Improving malware detection time by
using RLE and N-gram,’’ in Proc. 23rdInt. Conf. Autom. Comput. (ICAC),
Sep. 2017, pp. 1-5.

117] A. Makandar and A. Patrot, ‘‘Malware class recognition using image
processing techniques,’’ in Proc. Int. Conf. Data Manage., Anal. Innov.
(ICDMAI), Feb. 2017, pp. 76-80.

118] H. Hashemi, A. Azmoodeh, A. Hamzeh, and S. Hashemi, ‘‘Graph embed
ding as a new approach for unknown malware detection,’’ J. Comput. Virol.
Hacking Techn., vol. 13, no. 3, pp. 153-166, Aug. 2017.

119] S. Huda, S. Miah, M. M. Hassan, R. Islam, J. Yearwood, M. Alrubaian,
and A. Almogren, ‘‘Defending unknown attacks on Cyber-physical sys
tems by semi-supervised approach and available unlabeled data,’’ Inf. Sci.,
vol. 379, pp. 211-228, Feb. 2017.

120] H. S. Anderson and P. Roth, ‘‘EMBER: An open datasetfor training static
PE malware machine learning models,’’ 2018, arXiv:1804.04637.

121] LIEF: Library to Instrument Executable Formats. Accessed: Jan. 1, 2022.
[Online]. Available: https://lief-project.github.io/

122] The Malware Wiki. Accessed: Nov. 29, 2022. [Online]. Available:
https://malwiki.org/index.php?title=Main_Page

123] N. Z. Gorment, A. Selamat, and O. Krejcar, ‘‘A recent research on
malware detection using machine learning algorithm: Current challenges
and future works,’’ in Proc. Int. Vis. Inform. Conf. Cham, Switzerland:
Springer, Nov. 2021, pp. 469-481.

141088 VOLUME 11, 2023

https://lief-project.github.io/
https://malwiki.org/index.php?title=Main_Page

N. Z. Gorment et al.: MLA for Malware Detection: Taxonomy, Current Challenges, and Future Directions lEEEAxess'

[124] N. Z. Gorment, A. Selamat, and O. Krejcar, ‘‘Anti-obfuscation tech
niques: Recent analysis of malware detection,’’ in New Trends inIntelligent
Software Methodologies, Tools and Techniques. Clifton, VA, USA: IOS
Press, 2022, pp. 181-192.

[125] D. O. §ahin, S. Akleylek, and E. Kili§, ‘‘LinRegDroid: Detection of
Android malware using multiple linear regression models-based classi
fiers,’’ IEEE Access, vol. 10, pp. 14246-14259, 2022.

[126] E. Amer, A. Mohamed, S. E. Mohamed, M. Ashaf, A. Ehab, O. Shereef,
and H. Metwaie, ‘‘Using machine learning to identify Android malware
relying on API calling sequences and permissions,’’ J. Comput. Commun.,
vol. 1, no. 1, pp. 38-47, Feb. 2022.

[127] B. Urooj, M. Ali Shah, C. Maple, M. K. Abbasi, and S. Riasat, ‘‘Mal
ware detection: A framework for reverse engineered Android appli
cations through machine learning algorithms,’’ IEEE Access, vol. 10,
pp. 89031-89050, 2022.

NOR ZAKIAH GORMENT (Member, IEEE)
received the bachelor’s degree in computer science
(major in software engineering) from Universiti
Malaya (UM), in 2003, and the master’s degree
in software engineering from Universiti Putra
Malaysia (UPM), in 2018. She is currently pur
suing the Ph.D. degree with the Malaysia-Japan
International Institute of Technology (MJIIT),
Universiti Teknologi Malaysia (UTM).

She was a Multimedia Programmer with
Dawama Sdn. Bhd., from 2003 to 2011, and a Software Developer with One
Learning Solution Sdn. Bhd., from 2011 to 2013. She is also a Lecturer
with the College of Computing and Informatics, Universiti Tenaga Nasional
(Energy University—UNITEN), an education institute that is established by
the Ministry of Higher Education, Malaysia. Her research interests include
software engineering, artificial intelligence, machine learning, and cyber
security.

Prof. Gorment is a member of the Malaysia Board of Technologies
(MBOT) for graduate and professional technologies.

ALI SELAMAT (Member, IEEE) received the
B.Sc. degree (Hons.) in information technology
from Teesside University, U.K., in 1997, the M.Sc.
degree in distributed multimedia interactive sys
tems from Lancaster University, U.K., in 1998, and
the Dr.Eng. degree from Osaka Prefecture Univer
sity, Japan, in 2003.

He was the Chief Information Officer (CIO) and
the Director of Communication and Information
Technology with Universiti Teknologi Malaysia

(UTM). He was elected as the Chair of the IEEE Computer Society, Malaysia
Section, under the IEEE, USA. Previously, he was holding the position
of Research Dean of the Knowledge Economy Research Alliance, UTM.
He was a Principal Consultant in big data analytics with the Ministry of
Higher Education, in 2010, a member of the Malaysia Artificial Intelligence
Roadmaps, from 2020 to 2021, and a keynote speaker at many international
conferences. He was a Visiting Professor with Kuwait University and few
other universities in Japan, Saudi Arabia, and Indonesia. He is currently
the Dean of Malaysia-Japan International Institute of Technology (MJIIT),
an educational institute that is established by the Ministry of Higher Edu
cation, Malaysia, to enhance Japanese-oriented engineering education in
Malaysia and Asia, with support from the Government of Japan through
the Japanese International Cooperation Agency (JICA) and UTM together
with 29 Japanese University Consortium (JUC). He is also a Visiting Pro
fessor with the University of Hradec Kralove, Czech Republic, and the
Kagoshima Institute of Technology, Japan. His research interests include
data analytics, digital transformations, knowledge management in higher
education, key performance indicators, cloud-based software engineering,
software agents, information retrievals, pattern recognition, genetic algo
rithms, neural networks, and soft computing.

LIM KOK CHENG (Member, IEEE) received the
Ph.D. degree in usability engineering from the
Department of Computing, School of Engineering,
Universiti Teknologi Malaysia.

He started his career as an IT Analyst Consul
tant in New Zealand, Singapore, and a Malaysian-
based company. It is within this period of time that
he obtained specific experience and field knowl
edge in software marketing, testing, and training.
With clear interest in academics, he expanded his

knowledge by continuing his master’s degree, while at the same time con
ducting multiple research plus development works with the Ministry of Sci
ence, Technology and Innovation (MOSTI), in the midst of also tutoring in
Universiti Tenaga Nasional (UNITEN), Malaysia, and Asia-Pacific Univer
sity (APU). He joined UNITEN’s permanent academic force as a Lecturer,
in 2010 and has been contributing to the university till date, as a Lecturer with
the College of Computing and Informatics. He is also working as the Head
of Software Engineering Program, the Head of the External Relations Unit,
UNITEN, and a Treasurer of the IEEE Malaysia Section Computer Chapter.
He has accumulated 15 years of teaching and training experience, produced
more than 100 student projects, and has won multiple awards in international
innovation competitions.

ONDREJ KREJCAR received the Ph.D. degree in
technical cybernetics from the Technical Univer
sity of Ostrava, Czech Republic, in 2008.

From 2016 to 2020, he was the Vice Dean of Sci
ence and Research with the Faculty of Informatics
and Management, University of Hradec Kralove
(UHK), Czech Republic, where he has been a Vice
Rector in science and creative activities, since June
2020. He is currently a Full Professor in systems
engineering and informatics with the Center for

Basic and Applied Research, Faculty of Informatics and Management, UHK,
and a Research Fellow with the Malaysia-Japan International Institute of
Technology, University of Technology Malaysia, Kuala Lumpur, Malaysia.
He is also the Director of the Center for Basic and Applied Research,
UHK. At UHK, he is responsible for the Doctoral Study Program in applied
informatics, where he is focusing on lecturing on smart approaches to the
development of information systems and applications in ubiquitous comput
ing environments.

Dr. Krejcar’s H-index is 21, with more than 1800 citations received in the
Web of Science, where more than 120 IF journal articles are indexed in the
JCR index. He is also on the editorial board of the Sensors (MDPI) IF journal
(Q1/Q2 at JCR), and several other ESCI-indexed journals. He has been a
Management Committee Member Substitute for Project COST CA16226,
since 2017. He has also been the Vice Leader and a Management Committee
Member of WG4 at Project COST CA17136, since 2018. In 2018, he was
the 14th Top Peer Reviewer in multidisciplinary in the world according to
Publons, and a Top Reviewer in the Global Peer-review Awards 2019 by
Publons. Since 2019, he has been the Chairperson of the Program Committee
of the KAPPA Program, Technology Agency of the Czech Republic, and
a Regulator of the EEA/Norwegian Financial Mechanism in the Czech
Republic, from 2019 to 2024. Since 2020, he has also been the Chairperson of
Panel 1 (Computer, Physical and Chemical Sciences) of the ZETA Program,
Technology Agency of the Czech Republic. From 2014 to 2019, he was the
Deputy Chairperson of Panel 7 (Processing Industry, Robotics, and Electrical
Engineering) of the Epsilon Program, Technology Agency of the Czech
Republic.

VOLUME 11, 2023 141089

