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ABSTRACT Remarkable advances have been made in deep learning, leading to the emergence of highly
realistic Al-generated videos known as deepfakes. Deepfakes use generative models to manipulate facial
features to create modified identities or expressions with impressive realism. These synthetic media creations
can deceive, discredit, or blackmail individuals and threaten the integrity of the legal, political, and social
systems. Consequently, researchers are actively developing techniques to detect deepfake content to preserve
privacy and combat the dissemination of fabricated media. This article presents a comprehensive study
examining existing methods of creating deepfake images and videos for face and expression replacement.
In addition, it provides an overview of publicly available deepfake datasets for benchmarking, serving as
important resources for training and evaluating deepfake detection systems. In addition, the study sheds
light on the detection approaches used to identify deepfake face and expression swaps while discussing
the challenges and issues involved. However, the focus of this study goes beyond identifying the existing
barriers. It goes a step further by outlining future research directions and guiding future scientists to address
the concerns that need to be addressed in deepfake detection methods. In this way, this paper aims to facilitate
the development of robust and effective deepfake detection solutions for face and expression swaps, thereby
contributing to ongoing efforts to protect the authenticity and trustworthiness of visual media.

INDEX TERMS Deepfake, deep learning, face manipulation, face swap, re-enactment, media forensic,
generative adversarial networks.

I. INTRODUCTION

Manipulation of picture and video content isn’t new. For
this purpose, many special software tools, such as Adobe
Photoshop and Adobe Lightroom, have been available for
decades [1]. However, the realistic modification of facial
features in digital images and videos using these tools
has traditionally faced limitations due to factors such as
the requirement for domain expertise, complexity, and the
time-consuming nature of the process. With the advent of
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deepfake technology, the landscape has changed dramatically
over the past five years, reducing the amount of effort
involved in facial manipulation [2]. The term ‘‘deepfake,”
a blend of “deep learning” and ‘‘fake,” specifically refers
to manipulated media content created using artificial neural
networks. Deepfake techniques rely on advanced deep
learning models like autoencoders and generative adversarial
networks (GANSs) [3], [4] to analyze a person’s facial features
and behaviors, enabling the synthesis of manipulated facial
images that replicate similar gestures and movements [5].
Deepfake technology raises significant global security
concerns, enabling unauthorized manipulation of individual’s
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FIGURE 1. Examples of deepfake face manipulation. Face swap images obtained from the Celeb-DF dataset [6]. and expression swap images are derived

from FaceForensics++ [7].

faces and expressions in political videos [8]. This technology
has the potential for harmful exploitation, such as escalating
tensions, spreading false information to influence elections,
and misusing it on social media platforms [9]. While deepfake
technology has demonstrated innovative applications, such as
voice dubbing without reshooting film scenes [10], digital
try-ons during shopping [11], and improved traditional
teaching methods to engage students [12], the harmful
uses of deepfakes outweigh these positive aspects. The
accessibility and scalability of deepfake technology allow
nearly anyone with device access to create compelling fake
videos closely resembling authentic media [12], [13], [14].
The availability of user-friendly tools like DeepFacelLab
[15], [16], smartphone apps such as Zao [17], and FakeApp
[18] has simplified deepfake usage for non-professionals to
swap their faces with any target person seamlessly. Deepfake
face manipulations can be divided into four main groups:
(1) face generation, which involves creating entirely new
facial images, (2) facial attributes changes such as hair color,
age, gender, glasses, etc., (3) face swap, which involves
replacing the face of the original person with the face of
another person, and (4) expression swap also known as re-
enactment, in which the facial expression of the original
person is transferred to the facial expression of the target
person.
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Deepfake can have different levels of risk. Out of
four deepfake face manipulations, face swapping and
re-enactment pose a significant threat to society [19], [20].
Figure 1 graphically summarizes these two facial changes.
Face swapping is especially concerning, serving as a versatile
tool for identity theft, crafting fabricated images or videos
of specific individuals [21], [22], [23]. Face-swapped videos
can be used to create convincing illusions of someone’s
presence, which can compromise biometric systems and
grant unauthorized access to sensitive data [24]. In one
notable case, the American Al company Kneron successfully
fooled Alipay and WeChat payment processes, as well as
self-service terminals in airports and train stations [25]. This
shows the serious impact that deepfake face-swap technology
can have on identity authentication systems that rely on
biometric data. In contrast, facial re-enactment enables
complete impersonation using a single image to persuade
others without verbal communication. The real-time threat
of facial re-enactment is evident from reported incidents
in China, where stolen facial images were used to create
deepfake videos [26]. They employed a smartphone with a
compromised camera to trick the tax invoice system with
pre-generated deepfake identities. Another concerning aspect
is its potential misuse in child predator scenarios [25],
where the predator hides behind a virtual avatar, needing
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TABLE 1. Comparative analysis of deepfake review/survey papers.

Reference  Deepfake Detection Generation Dataset Scope

[27] Face Manipulation Briefly Discussed Briefly Discussed Limited coverage Present deepfake face manipu-
lation and detection techniques,
no emphasis on limitations.

[28] Face and Expression  Briefly Discussed Briefly Discussed Limited Coverage Overview of creation/detection

swap tools, minimal focus on limita-
tions.

[29] Images and Videos Briefly Discussed Limited Coverage Limited Coverage Brief overview of detection
techniques, some generation
aspects, not emphasizing
limitations.

[30] Images and Videos Thoroughly Not Discussed Not Discussed Focus on deepfake detection

Discussed approaches and model efficacy.

[31] Audio and Video Briefly Discussed Thoroughly Limited Coverage Provides insights on

Discussed improvements, trends,
limitations, and challenges
in audio-visual deepfakes.

Current Face and Expression  Thoroughly Thoroughly Thoroughly Insights on improvements,

swap Discussed Discussed Discussed trends, limitations, and

challenges in deepfake face
and expression swaps.

no resemblance to any existing individual. Reenactment
is a suitable form of deepfakes to spoof face biometrics
systems implementing real-time challenge-response liveness
detection mechanisms.

The deepfake generation and detection field is funda-
mentally competitive, as both defenders (detectors) and
adversaries (generators) strive to outperform each other.
Significant progress has been made on both fronts in recent
years. Various competitions have been launched to facilitate
the development of effective deepfake detection solutions.
These include the Media Forensics Challenge (MFC2018)
[32] sponsored by the National Institute for Standards and
Technology (NIST) [33], the Deepfake Detection Challenge
(DFDC) [34], [35] initiated by Facebook in collaboration
with Microsoft and academic partners from different uni-
versities, and the Deeper Forensics Challenge 2020 [36]
hosted on the CodaLab platform [37] in conjunction with
ECCYV 2020 (The 2nd Workshop on Sensing, Understanding,
and Synthesizing Humans) [38]. The research community
is actively striving to enhance the detection of deepfake
face and expression swap [21], [39], [40], [41], [42], [43].
While convolutional neural networks (CNNs) are commonly
utilized to detect deepfake videos, their effectiveness is not
absolute [44]. There are challenges and drawbacks that need
to be considered. Developers of deepfake videos are becom-
ing adept at evading detection through the use of advanced
techniques such as adversarial generation algorithms, which
mask distinct markers or conceal unique identifiers of
deepfakes [45]. These algorithms manipulate input data
to create videos that appear more authentic to detection
mechanisms, making accurate detection more difficult [46].
Variations in video quality and content further complicate
detection [47], as distinguishing deepfake characteristics are
less prominent in certain cases.
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To effectively detect deepfake face and expression swaps,
itis crucial to understand the advancements and limitations of
deepfake generation and detection techniques, as well as the
existing detection methods and challenges to overcome for
implementing effective forensic systems. Various initiatives
have examined deepfake face manipulation, and some of
the relevant survey and review papers are presented in
Table 1. The majority of these surveys are centred on
identifying deepfake content in both images and videos
[29], [30]. Tolosana’s survey [27] explored diverse deepfake
techniques for face manipulations but lacked thorough
explanations of generation methods and explicit coverage
of limitations. Masood et al. [31] specifically addressed
creating and detecting deepfakes in audio and video formats.
Additionally, Zhang’s concise survey [28] briefly covered
face and expression swap detection, with limited emphasis on
generation techniques. Currently, there’s no comprehensive
survey dedicated to exploring deepfake face and expression
swap as a comprehensive topic. Such a study would provide
clear insights into generating and detecting deepfake face
and expression swaps, bridging gaps in previous surveys by
incorporating dataset details. Additionally, such an overview
would aid in identifying critical challenges and opportunities
for implementing real-time forensic systems specifically
designed to uncover face and expression swap deepfakes.
The primary contributions of our work can be summarized
as follows:

e We comprehensively examine deepfake face and
expression swap generation methods, exploring their
recent advancements, patterns, and the challenges they
pose.

o We thoroughly analyze existing deepfake face and
expression swap datasets and detection approaches,
with a particular focus on their generalization,
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FIGURE 2. Illustration of deepfake face swap generation process.

Decoder B

interpretability, and robustness capabilities. These
factors are critical for implementing these methods in
real-time forensic systems.

o We discuss the challenges associated with deepfake
detection and outline future research directions in this
domain.

The paper is structured as follows: Section II discusses
various algorithms proposed in recent years for generating
deepfake face and expression swaps. Then, Section III
presents a list of datasets used for deepfake face and
expression swap detection. Next, Section IV describes
different approaches to detect deepfake face and expression
swaps. Afterwards, Section VI discusses the limitations of
existing detection methods and future directions. Finally,
Section VII concludes the paper.

Il. DEEPFAKE VIDEO GENERATION

This section will discuss various methods proposed for
face swapping in images and videos, using deep learning
models such as GANs [48], [49] and autoencoders [50].
Table 2 and Table 3 provide a comprehensive overview of the
various approaches employed for creating deepfake face and
expression swaps.

A. FACE SWAP

The process involves three main steps to perform a face swap.
First, the algorithm detects faces in both the source and target
video. Next, the approach replaces the target face’s nose,
mouth, and eyes with the corresponding features of the source
face. The color and lighting of the candidate’s facial image
are adjusted to ensure seamless integration of the two faces.
Afterwards, the overlapping region undergoes match distance
computation to evaluate and rank the quality of the blended
candidate replacement.
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In a study by Korshunova [51], a fast face swap technique
was introduced using convolutional neural networks (CNNs).
Training the network on a series of images allowed it to
learn the target identity’s appearance and generate face
swap images. However, this method is limited to trans-
forming individual images and is unsuitable for producing
high-quality videos with time continuity. In 2017, a Reddit
user created a deepfake video using an autoencoder [52].
The deepfake face-swap auto-encoder network utilizes a
shared encoder and two decoders, while the encoder and
the two decoders share parameters during the training
process. A shared encoder learns to encode shared non-
identities (latent vectors) underlying both source and target
individuals. Two decoders reconstruct the source and target
faces from their respective latent vector representations.
Face swapping is accomplished by decoding the latent
vector of the source face through the target face decoder.
Figure 2 shows a deepfake creation process through an
autoencoder. Various face-swapping applications, such as
DeepFaceLab [15], [16], DFaker [53], and Deepfake tf [54]
(a Deepfake framework based on TensorFlow), make use
of the autoencoder technique. DeepFaceLab [15], [16] is
specially designed for non-experts and includes features like
residual blocks, transfer style loss and masked loss to improve
face and eye consistency in the generated deepfakes. Nirkin
et al. [55] presented a face swapping method that utilized
face segmentation and replacement with a full convolutional
network (FCN). Their technique involves identifying 2D
facial landmarks in each video frame, which are used to
compute the 3D posture and adjust the 3D shape for facial
expressions. Using a trained FCN to predict face visibility
at each pixel, the model performs face segmentation and
isolates the face from the background. The source face is
transformed and seamlessly integrated into the target frame
using the aligned 3D face shapes as proxies. It’s important
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FIGURE 3. GAN network architecture.

to note that their approach was not trained end-to-end and
required specific handling for occlusions in images.

GANs (Generative Adversarial Networks) represent an
optimized approach for deep learning-based manipulation
and effectively improve the quality of deepfakes. GANs
consist of two competing neural networks: i) a generative
network (G) that captures the data distribution to generate
synthetic samples, and ii) a discriminative model (D) that
distinguishes real examples from those generated by G.
Training G is designed to increase the likelihood of D
making mistakes, resulting in a two-player min-max game.
The discriminator’s role is to identify real and fake samples.
The training process of GANs continues until an equilibrium
between G and D is reached, indicating that the generator and
discriminator are no longer improving. However, achieving
such balance is rare, and training is usually stopped when
the visual quality of the generated samples no longer shows a
significant improvement [56]. Alternatively, G can be trained
to generate samples that D cannot distinguish as real or
fake. At this point, D is detached, and G alone can generate
photorealistic fake content. The working principle of GANs
is illustrated in Figure 3.

Face-swap GAN (FS-GAN) [57] employs the encoder-
decoder as a generator and offers additional antagonistic
and perceptive losses to the automated coding system.
Added counter losses improved the efficiency of image
reconstruction, and the perceptual loss helped to improve
the generated face alignment with the input image. However,
their approach generates over-smooth, blurred face swap
results. All of the above approaches require [15], [16], [51],
[52], [53], [55], [57] subject-specific training involving two
video sequences to represent the source and target faces.
These models have limited generalization capabilities and
are primarily designed for swapping faces between specific
identities. Additionally, these approaches require a significant
amount of source and target facial training data.

Subject-agnostic approaches have been proposed to over-
come the limitations of subject-specific or pair-specific
training. These approaches aim to enhance the model’s
flexibility and generalization capabilities, enabling them to
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handle diverse face swapping scenarios without requiring
extensive training data. One such approach is RSGAN [58],
which uses two Variational Autoencoders (VAE) to generate
separate latent vector embeddings for hair and face regions,
which are then combined to create a swapped face. RSGAN
requires only a single image of the source and target, reducing
training requirements. However, the hair regions may not
align accurately with the original image, and the technique is
limited to generating face images with 128 x 128 resolution.
Unlike other face swapping approaches, Natsume et al. [59]
introduced FSNet, which eliminates complex pre- and post-
processing stages. FSNet consists of two sub-networks: a
VAE that generates the latent vector for the face area of the
source image, and non-face components like hairstyles and
backgrounds of the target image and a generator network that
performs face swapping by merging the latent vector of the
source face with the non-face component of the target image.
FSNet can achieve high-quality face swapping using a single
source and target image, even with diverse face orientations
and illumination conditions. It also preserves the background
and hairstyle from the original image but struggles with face
swapping when a part of the face is occluded.

Dealing with facial occlusions in face-swapping tech-
niques is a complicated task. Common occlusions such as
hair, glasses, and hands can obscure the source’s or the
target’s face, causing visual inconsistencies and artifacts in
the face swap results. Nirkin et al. [60] proposed FSGAN,
an occlusion-aware approach that uses RNN and GAN
to preserve target occlusions during face swapping and
re-enacting facial expressions. The FSGAN model generates
a source face re-enactment based on the target’s pose and
expression, followed by segmenting both source and target
faces. The training of the face re-enactment network involves
utilizing stepwise consistency loss and Poisson blending
loss in progressive stages, seamlessly blending the source
face into its new environment while preserving the desired
skin tone and lighting conditions. Notably, the model’s
subject-agnostic nature eliminates the need for fine-tuning
the network for each new source. Despite these strengths,
the re-enactment generator’s multiple iterations can result in
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TABLE 2. Deepfake face swap generation techniques overview.

Technique Features Network Resolution  Limitations

Fast Face-swap [51] VGGFace CNN 256 %256 Applicable to frontal face, over-
smoothed swapped faces, requires
large training data.

Deepfake [52] Facial Landmarks Encoder-Decoder 256256 Blurry output, missing gaze direc-
tion, expressions, and illumination,
needs many source and target im-
ages.

FCN [55] Facial Landmarks CNN 256x256 No occlusion preservation, requires
extensive training data per task, color
tone mismatch.

FS-GAN [57] VGGFace GAN 256x256 Over-smoothed faces due to missing
texture features.

RSGAN [58] Facial Landmarks GAN 128128 Artifacts in hair region, low output
resolution, sensitive to occlusion.

FSNet [59] Facial Landmarks GAN 128x128 Unable to handle occluded face re-
gions.

FSGAN [60] Facial Landmarks GAN+RNN 256 %256 Blurry textures, limited output res-
olution, restricted expression range,
doesn’t preserve source face shape.

FaceShifter [61] Occlusion, Style Attributes GAN 256256 Striped artifacts, can’t preserve tar-
get’s expression.

SimSwap [62] Facial Landmarks GAN 256256 Obvious artifacts around face bound-
ary, large training data needed, over-
smooth faces.

MegaFS [63] Face ROI GAN 1024x1024  Output quality dependent on Style-
GAN?2 capabilities.

Hififace [64] Facial Landmarks GAN 512x512 Lack of realism, noticeable artifacts.

AP-GAN [65] Facial Landmarks GAN 256 %256 Compressed representation restricts
high-resolution face swaps.

High-res Face-swap [66] Facial Landmarks GAN 1024x1024  Output faceswap Quality depends on

FaceDancer [67] Facial Landmarks

GAN?’s latent code generation.

GAN 256256 No gaze movement transfer,
challenging with unusual angles or
turned faces.

a blurry texture, which negatively impacts the visual quality
of the generated outcomes. Additionally, FSGAN struggles
to preserve target image attributes such as image resolution
and the face shape of the source identity. Li et al. [61]
introduced a two-stage FaceShifter approach for generating
high-quality face-swapping results. In the first stage, a GAN
network accurately extracts and adaptively combines the
identities from the source and target images. The FaceShifter
model goes beyond previous face-swapping methods by
extensively utilizing target image information in creating the
swapped face rather than relying on limited target image
information. The second stage involves using the HEAR
(Heuristic Error Acknowledging Refinement Network) to
refine the occluded areas. The subject-agnostic nature of
FaceShifter eliminates the need for subject-specific training,
making it applicable to new face pairings. FaceShifter
is subject-agnostic, produces state-of-the-art identity swap
results, and handles partially occluded faces well. How-
ever, it still faces difficulties due to loose attribute con-
straints, leading to mismatched expressions, skin color, and
poses, causing temporal discontinuity and instability in the
results.
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To achieve high-fidelity face swapping, SimSwap [62]
introduced the ID injection module. The module separates
identity information from the decoder, embedding the source
face identity into the target image. This eliminates the
dependency on specific decoder weights and becomes
applicable to any identity. The approach incorporates a
weak feature matching loss to preserve the target face
features while minimizing identity modifications. Zhang et
al. [65] presented a video face-swapping framework named
AP-GAN to generate faces that match the target face.
The framework uses a U-Net-based generator with a PE
(pose and expression) block to correct pose and expression
and an ID block for identity translation. The framework
also uses multiscale discriminator features with perceptual
loss to preserve facial characteristics, such as skin color,
illumination, and occlusion. However, light, skin color, and
makeup variations can still affect the temporal stability of the
output video.

Xu et al. [66] introduced a framework for high-resolution
(High-res) face swapping using a disentangled latent space
approach with StyleGAN. The approach separates the texture
and appearance attributes of facial images to preserve the
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desired target look and texture while transmitting source
identity. When the disentangled latent code is fed into the
StyleGAN generator, it produces generative features that
enable high-resolution face swapping. The framework also
enables the creation of face-swapped videos with consistent
frames and smooth transitions by incorporating code and
flow trajectory constraints. However, the accuracy of the
GAN inversion method in providing precise latent codes
is critical for ensuring the faithful reflection of the source
image identity. Other techniques like MegaFS [63] and
HifiFace [64] also use GAN-based approaches for high-
resolution face swapping with different identities. MegaFS
[63] utilizes pre-trained StyleGAN?2 latent space to identify
the corresponding latent code for generating face-swapped
images, while HifiFace [64] incorporates a 3D shape-aware
identity extractor to enhance metrics associated with identity
transfer.

Rosberg et al. [67] proposed an approach for face swapping
called FaceDancer. This method addresses challenges such as
lighting, occlusions, pose variations, and semantic structure
preservation. The approach incorporates the Adaptive Feature
Fusion Attention (AFFA) module, which learns attention
masks to merge conditioned and unconditioned features
selectively. Additionally, the Interpreted Feature Similarity
Regularization (IFSR) technique is utilized to enhance
attribute preservation. The AFFA module lets the model
decide which conditioned features to discard and which
unconditioned features to keep from the target face. At the
same time, the IFSR method improves facial expression, head
pose, and lighting preservation while ensuring a high level
of identity transfer. Furthermore, FaceDancer can scale to
low-resolution images with significant distortions.

B. EXPRESSION-SWAP

Expression swap, also called deepfake re-enactment, trans-
fers source face expressions and poses to the target while
preserving the target’s identity. This helps the attacker to
generate uncertainty, disclose information, and manipulate
facts. To illustrate this type of strategy, we use the method
described in [68]. Figure 4 depicts the general facial re-
enactment procedure. In the first stage, facial key points were
extracted through 3D landmark detectors to render landmark
images for source and target faces, and then low-dimensional
parameter representation, such as pose, expression from the
source, and style information from the target video, were
obtained through the encoders network. Extracted source and
target face features were combined to produce a mixed feature
map. The decoder utilized wrapped target features and a
hybrid feature map to produce a re-enacted face.

The Face2Face project [69] is a contemporary research
venture that led to the development of deepfake re-enactment
technology. Face2Face performs a real-time reconstruction
of the face to project the source actor’s facial expressions
onto the target actor and then wraps it with the composite
shapes derived from the source video. Dense photometric
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constancy measures make a face and shadow consistent in
each frame. The method builds a 3D face model in the first
frame and modifies each frame’s expressions to re-enact the
face in videos instantly. However, it should be noted that
due to the utilization of coarse 3D facial reconstructions of
the target face, the output video does not accurately follow
the source person’s head and eye movements. Additionally,
the synthesized mouth movement may appear unappealing to
the viewer. In Suwajanakorn’s approach [70], a 3D model
guided by facial features was employed to synthesize the
mouth region of the face. Additionally, the interior of the
face was filled using a technique similar to the Face2Face
method. By leveraging audio sequence data, a recurrent
neural network (RNN) was utilized to generate a sparse
mouth shape for each frame in the video. The mouth textures
were also synthesized and merged with the target video.
However, the method could only modify the facial expression,
not the 3D head’s position and the constantly changing
background. 3D Head Generation models excel at producing
high-quality lip-sync but have a severe disadvantage in
handling non-verbal cues.

Agarwal et al. [71] proposed the Audio-Visual Face
Re-enactment GAN (AVFR-GAN) network. This archi-
tecture uses auditory and visual cues to generate facial
re-enactments. The AVFR-GAN network starts by using pre-
processed data, such as a face segmentation mask, to capture
the facial structure. It also uses corresponding speech
signals to improve lip synchronization. The pipeline uses an
identity-aware face generator to enhance the output quality
further. However, extreme facial expressions or movements
not present in the training data are challenging for this
approach. A technique for animating a still portrait using
face landmarks and 2D wraps was introduced by Averbuch-
Elor [72]. Although it can manipulate facial expressions in
a frontal face and allows for moderate adjustments to head
position based on a source expression, it is not suitable
for generating re-enacted videos and lacks the ability to
control gaze movement and preserve the target individual’s
identity.

These approaches are extended in Deep Video Portraits
[73], which enable generative neural networks to manip-
ulate head rotation, 3D head position, facial expression,
and gaze. Deep Video Portraits use a hybrid 3D deep
method to fully reanimate videos by manipulating head
rotation, 3D head position, facial expression, and gaze. This
involves constructing a morphable 3D facial model [74]
using traditional graphics techniques and processing the
rendered image with a Cycle-GAN (cGAN) [75]. Overall,
the results of this approach are generally favourable, but
certain challenges need to be addressed. These challenges
include frame dropping due to occlusion, variations in
lighting, rapid motion, face misalignment, and compression
artifacts. Another approach, GANimation [76], proposed
generating diverse facial expressions using a dual generator
network based on emotion Action Units (AUs). Additionally,
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FIGURE 4. Face re-enactment process [68].

the method incorporates an attention network model that
identifies and prioritizes important regions of the image for
each expression. This technique enables smooth interpolation
between newly created and original photos while retaining
background details. However, it is worth noting that the
approach has limitations in effectively handling significant
variations in pose. In contrast to relying on action unit estima-
tion, GANnotation [77] presented a deep facial re-enactment
technique guided by face landmarks. This approach generates
images incrementally, employing a triple loss of consistency
to mitigate visual artifacts. However, it should be noted that
the method primarily focuses on synthesizing images with
a frontal face view for subsequent processing. Thies et al.
introduced a neural texture-based pseudo-video generation
process [78], intending to rectify 3D artifacts by utilizing
target textures acquired from raw video data through
photometric loss. The model incorporates 3D transformation
and perspective effects into the learned rendering process,
encoding the object’s appearance within the texture space
of the normalized 3D model. The technology is based on
a patch-based GAN-loss similar to Pix2Pix [79]. However,
it is important to note that this approach primarily focuses on
re-enacting mouth movements while keeping eye movements
unchanged.

The aforementioned facial re-enactment models rely on
extensive datasets of source and target identities, and they
are restricted to re-enacting specific individuals, making them
unsuitable for generating photo-realistic re-enactments for
unknown identities. A few or one-shot facial re-enactment
techniques have recently been proposed to transfer facial
expressions and poses using fewer or even a single target
image to address this limitation. Zakharov [80] proposed a
few-shot learning approach that used meta-learning to model
human faces. They demonstrated how to make the Mona
Lisa’s face speak by using an embedded network and GAN
to derive pose-invariant video information. However, their
approach encountered challenges with generating accurate
gaze due to landmark mismatch, resulting in a noticeable
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difference in the perceived personality of the re-enacted face.
Zhang [81] introduced an unsupervised one-shot facial re-
enactment technique, which utilizes face parsing maps and
identity-specific features to guide the re-enactment process.
However, it has been observed that this method produces
distorted results in re-enacting a different target, indicating
limitations in achieving accurate and realistic re-enactments
in such scenarios. On the other hand, the First Order
Motion Model (FOMM) [82] is a self-supervised network
that effectively separates appearance and motion components
by modeling the motion around key points using an affine
transformation. FOMM can generate re-enactments with just
a few training examples. Furthermore, it implements an
occlusion-aware generator that calculates an occlusion mask
for regions not visible in the source image. Despite this
approach’s significant improvements, synthesized faces still
exhibit visual artifacts in continuously changing expressions.
This limitation can be attributed to the dense 2D motion
field estimation, which does not fully capture the intricate 3D
facial motion. Hao et al. [83] proposed a one-shot FARGAN
model. This model utilizes facial landmarks to capture facial
expressions and recreate poses and expressions. The genera-
tor model is composed of a transformer and an embedder, and
they incorporate the spatially adaptive normalization module
(SPADE) [87] to incorporate landmark information into the
embedder model. However, it is important to note that the
model’s performance is compromised in cases where there
is significant variation in appearance between the source
and target faces. Furthermore, the model does not leverage
gaze information in the landmark mask, limiting its ability to
enhance the motion realism of the synthesized face. Ha et al.
introduced the MarioNETte [68], which utilizes target feature
alignment and an image attention block to incorporate target
facial features into re-enacted face images. This approach
allows for the recreation of the faces of unseen targets using
only a few reference shots. However, it is important to note
that their proposed solution does not preserve the appearance
of the target face.
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TABLE 3. Deepfake expression-swap techniques overview.

Technique Features Network Resolution  Limitations

Face2Face [69] Facial Landmarks 3DMM 1024x1024  Struggles with realistic mouth
deformations, no head pose con-
trol, sensitive to occlusion.

Learning Lip Sync [70] Mouth landmarks, MFCC audio ~ RNN 2048x 1024  Requires extensive training data
per expression swap, no full
3D head pose control including
background.

AVFR-GAN [71] Face Mesh, Segmentation GAN 256x256 Limited handling of varied

Mask, Speech poses.

Bringing Portraits to Life [72] Facial Landmarks, 2D wraps 3DMM 600x 800 Sensitive to large head poses, no
source gaze transfer, target iden-
tity preservation.

Deep Video Portraits [73] Parametric Face Model CGAN 1024x 1024  Sensitive to motion and occlu-
sion.

GANimation [76] Action Units GAN 128128 Lacks gaze adaptation and pose
variation.

GANDnotation [77] Facial Landmarks GAN 128x128 Lacks gaze adaptation.

Neural textures [78] UV-map, Texture Map 3D Modeling + Patch-based 512x512 Unable to re-enact eye move-

GAN-loss ment.

Neural Talking Head Model  Facial Landmarks GAN 256256 Lacks gaze adaptation,

[80] noticeable target personality
mismatch.

One-shot Face Reenactment Face Parsing Map, Identity Fea-  GAN 256256 Distorted low-quality output.

[81] tures

FOMM [82] Sparse Keypoints, Local Affine  GAN 256256 Fails to preserve consistently

Transformation changing background.

FaR-GAN [83] Facial Landmarks GAN 256256 Sensitive to considerable ap-
pearance differences between
source and target faces, lack of
gaze adaptation.

MakeltSmile [84] Face ROI GAN 256256 Limited to expressions with
open face, results quality de-
pends on training data.

FaceSwapNet [85] Facial Landmarks GAN 256x256 Lacks gaze adaptation.

MarioNETte [68] Facial Landmarks GAN 256x256 Cannot fully preserve source fa-
cial features.

PNCC GAN [86] 3D Facial ROI GAN 256x256 Sensitive to extreme poses or

expressions.

A significant challenge in facial re-enactment tools is
accurately representing the opening of the mouth. Existing
methods struggle with predicting the inside of the mouth
and teeth, resulting in inconsistent outcomes. Previous
approaches like FOMM [82] rely on sparse key points to
model head pose and facial expressions, which fails to
capture the rich texture details of teeth. As a result, the
resulting faces may lack the necessary detail, particularly
when generating smiling faces with distinct tooth structures.
Fu et al. [84] introduced MakeltSmile to tackle the issue of
incomplete tooth structure in face re-enactment. MakeltSmile
utilizes a geometry-aware encoder to extract tooth structure
information from the driving video. By incorporating tooth
information from the driving face rather than the target
face, this method addresses the problem of inaccurate tooth
structure. MakeltSmile comprises two modules: a feature
extraction module and a face generation module. The feature
extraction module captures precise tooth texture from the
smiling driver’s face, while the face generation module
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faithfully reproduces faces with clear and appropriate teeth
using a GAN-based technique.

Re-enactment models struggle to preserve the target
identity, leading to flawed re-enactments. The FaceSwapNet
model [85] addresses this challenge by enabling the transfer
of facial expressions and gestures from a source to random
targets using two key modules: the landmark swapper and the
landmark-guided generator. The landmark swapper employs
two encoders and one decoder to ensure identity consistency
between the generated person and the target person by
aligning the source’s and target individual’s landmarks.
The landmark-guided generator leverages the exchanged
landmark and the target person’s geometry information to
generate the re-enacted image. A novel triplet perceptual loss
is introduced to enhance face appearance and geometry infor-
mation learning. Xue et al. [86] presented an approach that
leverages a GAN with a Projected Normalized Coordinate
Code (PNCC) to preserve facial details and reflect the target
identity accurately. The technique reconstructs the PNCC
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using the target identity parameters and the source pose and
expression parameters estimated by 3D facial reconstruction
to filter out the source identity. By adopting the reconstructed
representation as the driving information, their approach
achieves high-fidelity generation and ensures the preservation
of target identity in face re-enactment.

C. CHALLENGES FOR DEEPFAKE CREATION

The researchers improved the deepfake generation network
training by integrating the tertiary concepts to achieve a
more hyperrealistic and natural result with high confidence
[88], such as style transfer, motion transfer, and semantic
segmentation. However, the current deepfake is still imperfect
and leaves room for improvement.

o Computational Cost: The training dataset’s significance
in the deepfake domain is pivotal, as most deepfake
technologies rely on ample genuine data for more
convincing content generation. This has led to increased
computational demands. To tackle this, researchers
focused on minimal data use via few-shot learning [80],
[81] for deepfake creation. However, these strategies
encountered challenges in accurately reproducing intri-
cate facial elements, like gaze and expressions, resulting
in noticeable discrepancies in perceived identity and
the overall authenticity of the generated deepfakes.
The ongoing focus on minimizing computational needs
and refining training datasets drives advancements in
deepfake research.

o Identity leakage: When creating realistic deepfakes,
preserving the target identity is difficult if there is a
significant difference between the target and driving
identities. This is particularly evident in face reen-
actment tasks where a source identity drives target
expressions. During training, aspects of the facial
identity data are transferred to the generated face. This
event occurs when training is performed on single or
multiple identities, yet data pairing is performed on the
same identity. Addressing these challenges holds the key
to advancing deepfake technology in the future.

o Deepfake Quality: One potential trend in deepfake
generation is the improvement of output quality. Due
to the instability of GAN training, most deepfake
outputs contain subtle traces, such as unusual texture
artifacts or pixel inconsistencies, that make them
vulnerable to detection. The challenges in creating
realistic deepfakes involve achieving natural emotions,
seamless timing, and realistic speech rates. Additional
issues include visible anomalies like frame flickering
and jittering due to the lack of temporal consistency
in deepfake generation frameworks that process each
frame individually. Currently, deepfakes are commonly
produced in controlled environments with uniform
lighting and backgrounds. However, sudden changes
in lighting during indoor/outdoor transitions can cause
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color disparities and unexpected anomalies in the output.
Future research could focus on improving deepfake
quality by addressing artifacts, enhancing output reso-
lution, and defending against attacks.

Ill. DEEPFAKE DATASETS

Due to growing concerns about the potential risks posed
by deepfake abuse, numerous groups have made valuable
contributions by creating datasets to support deepfake detec-
tion. These datasets can be classified into three generations
based on visual quality, quantity, and the range of deepfake
techniques employed. Generally, the more recent generations
of datasets offer larger volumes of data and greater diversity
in synthetic methods. In this section, we present existing
known deepfake datasets for face and expression swaps.
Figure 5 highlights quality and variations in different
generations of deepfake datasets.

A. FIRST GENERATION

o UADFYV [40]: Yang et al. [40] created this dataset con-
sisting of 98 videos (49 authentic YouTube videos and
49 fake videos) for their deepfake detection experiments.
FakeApp [18] was employed to generate low-quality
deepfake face swapping videos with a resolution of
294 x 500 pixels. Each video has an average duration of
11:14. The dataset is small enough to handle a desktop
environment easily.

o Deepfake-TIMIT (DF-TIMIT) [89], [90]: In this
particular dataset, there are a total of 960 videos.
Among them, 320 videos were carefully chosen from the
VidTIMIT dataset [91] as they formed 16 pairs with a
striking resemblance. The faces in these selected videos
were swapped utilizing the face-swap GAN, an open-
source deepfake algorithm [57]. Two subsets were
created: DF-TIMIT-Low-Quality (LQ) with 320 videos,
each containing around 200 frames of 64 x 64 pixels,
and DF-TIMIT-High-Quality (HQ) with 320 image
sequences, each consisting of approximately 400 frames
sized at 128 x 128 pixels.

o Fake Faces in the Wild (FFW) [92]: A dataset
of 150 videos was presented by Khodabakhsh et al.
[92]. The videos were created using both deepfake
and conventional methods, such as computer graphics
image (CGI) and splicing. The videos range from 60 to
2000 frames with a maximum resolution of 480 pixels.

o FaceForensic++ (FF++) [7]: The dataset provided
contains a total of 4,000 videos, consisting of 1,000
real videos and 5,000 fake videos. Within the real
video category, 1,000 videos were modified using four
facial modification techniques. Two of these techniques
involve face swapping deepfake methods, namely Auto-
encoder face-swap (DF) and Face-swap (FS), while
the other two techniques involve expression swapping
deepfake methods, namely Face2Face (F2F) and Neural
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FIGURE 5. Examples of deepfake dataset evolution: Revealing weaknesses in first generation deepfake dataset, the excellent naturalness
achieved in the second generation of deepfakes, advanced variations in third generation Deepfakes with perturbations, multi-face in one frame,

and manipulation masks.

Texture (NT). The dataset is available in two qualities:
uncompressed (Raw C0) and compressed (LQ, HQ)
using the H.264 codec. The HQ videos, referred to as
High-quality (C23), were compressed at a rate of 23, .
while the LQ videos, known as Low-quality (C40), were
compressed at a rate of 40. Regarding the original video
resolution, approximately 55% of the videos have a
resolution of 854 x 480, which corresponds to VGA
resolution. About 32.5% of the videos have a resolution
of 1280 x 720, classified as HD. The remaining 12.5% of
the videos have a resolution of 1920, commonly known
as Full HD.

The quality of the images in these datasets has not explic-
itly been improved, causing low-resolution and unrealistic
deepfake results with blurry or flawed facial features. Addi-
tionally, the datasets were created in controlled environments
with specific lighting, camera angles, and backgrounds.
Consequently, while these datasets are helpful for training
detectors that do not require a large dataset, they are
not ideal for identifying complex facial and expression
swaps.

B. SECOND GENERATION

o Deepfake Detection dataset (DFD) [93]: The dataset, N
released collaboratively by Google and Jigsaw, contains
363 real videos and 3068 face-swapped fakes featuring
28 paid actors. These actors engage in actions like
walking, hugging, and expressing emotions such as
anger, happiness, disgust, and neutrality. The exact o
synthesis algorithm has not been disclosed, but it is
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likely a deepfake (auto-encoder) algorithm. The dataset
offers videos in three compression qualities: Raw (CO0),
C23, and C40.

Deepfake Detection Challenge Preview (DFDC-P)
[34]: Facebook, Microsoft, and AWS have launched
a collaborative challenge to promote the development
of Deepfake detection algorithms through an organized
dataset. The dataset includes 1,131 original videos
featuring 66 actors and 4,113 deepfake (face-swap)
videos. These videos contain three types of augmenta-
tions as perturbation techniques. However, the synthesis
algorithm used in the dataset has not been disclosed.
Celeb-DF [6]:This dataset includes 590 authentic
YouTube videos of 59 celebrities from different back-
grounds, genders, and nationalities. Additionally, it has
5,639 manipulated videos created using an advanced
deepfake face swap algorithm (auto-encoder). The
dataset offers a range of camera orientations, lighting
conditions, and backgrounds, and the deepfakes are of
high quality with no visible defects., unlike previous
datasets featuring lower-quality videos with noticeable
artifacts. Each video in the dataset lasts for about
13 seconds and follows a standard frame rate of
30 frames per second.

FaceShifter (FSh) [61]: The dataset comprises
10000 high-quality deepfake videos generated using the
FaceShifter algorithm by manipulating real videos from
FF++ [7] dataset. Videos are available in three different
compression qualities: Raw (C0), C23, and C40.
Deepfake MNIST+ [94]:: A dataset called Deep-
fake MNIST+ was introduced by Huang et al. [94].
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TABLE 4. “Comparative Analysis of Deepfake Datasets: Notation and Definitions. (Note: “NA” = not applicable, “—" = unknown, and “Vids” and “Imgs”
represent videos and images.)”

Dataset Type Real Fake Deepfake Generation Techniques Perturbation Visual Year
Methods Quality
Expression-Swap Face-Swap
UADFV [40] Vids 49 49 NA FakeApp 0 Low 2018
DF-TIMIT [89] Vids 320 640 NA Faceswap-GAN 0 Low 2018
FFW [92] Vids - 150 NA FakeApp, 0 Low 2018
FaceSwap
FF++ [7] Vids 1k 4k Neural-Texture, Deepfake, 2 Low 2019
Face2Face FaceSwap
DFD [93] Vids 363 3068 NA Unknown 2 Low 2019
Face-swapping
Algorithm
DFDC-P [34] Vids 1,131 4113 NA Two  Unknown 9 Low 2019
Face-swapping
Algorithms
Celeb-DF [6] Vids 590 5639 NA Auto-Encoder 0 High 2020
DFDC [35] Vids 19154 100k NTH FSGAN, 19 High 2020
MM/NN,
DeepFaceLab
FSh [61] Vids 1k 10k NA FaceShifter 2 High 2020
DF-1.0 [36] Vids 50k 10k NA DF-VAE 7 High 2020
WDF [98] Vids 3,805 3509 NA Unknown - High 2020
Face-swapping
Algorithms
KoDF [99] Vids 62,166 175,776 FOMM, ATFHP, FSGAN, 0 High 2021
Wav2Lip DeepFaceLab,
Face-Swap
FFIW [100] Vids 10k 10k NA DeepFaceLab, - High 2021
FSGAN,
FaceSwap
FN [101] Imgs/ 1,438,201/ 1,457,861/ Talking Head, Deepfake, 36 High/ 2021
Vids 99,630 121,617 FOMM, ATVG Net  FSGAN, Low
FaceShifter,
BlendFace, MM
Replace, DSS
OF [102] Imgs 16k 173k - GAN+Auto- 6 High/ 2021
Encoder Low
MNIST+ [94] Vids 10k 10k FOMM NA 2 High 2021
DF-Mobio [96] Vids 31k 15k NA Faceswap-GAN 0 High 2022
FMFCC-V [103]  Vids 44,290 38,102 NA Faceswap, 12 High 2022
Faceswap-GAN,
DeepFaceLab,
Recycle-GAN
DF-Platter [104]  Vids 764 132,496 NA FSGAN, 2 High/ 2023
FaceShifter, Low
FaceSwap

It contains 10,000 videos of human faces displaying
ten different expressions and 10,000 real-face videos
collected from VoxCelebl [95]. The facial expression
swapping videos were created using the First Order
Motion Model (FOMM) [82] with ten different actions,
including blink, open mouth, yaw, nod, head tilted
right, head tilted left, look up and smile, surprise, and
embarrassment. Furthermore, challenging samples were
selected using two public liveness detection APIs, where
the detectors failed to detect them precisely. The videos
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in this dataset are compressed using the H.264 codec,
with compression rates of C23 and C40.

DF-Mobio [96]: This dataset contains over 46,000
videos, including 15,000 deepfakes and 31,000 authentic
videos. The original videos were sourced from the
Mobio dataset [97], featuring people speaking directly
to the camera using a phone or laptop. The videos
simulate virtual meetings on platforms like Zoom or
Skype. For training the GAN model [57] to create
deepfakes, 2,000 faces were captured per subject at a
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frame rate of 8 frames per second, with an input size
of 256 x 256 pixels.

The dataset of the second generation aims to enhance the
dataset’s size and visual quality. Nevertheless, these datasets
lack diversity in techniques employed to create manipulated
data and do not possess specific task annotations, rendering
them less efficient in tackling real-world challenges.

C. THIRD GENERATION

o Deepfake Detection Challenge (DFDC) [35]: This
dataset contains approximately 100,000 manipulated
videos and 19,000 original videos created for the Kaggle
competition [105] as an extension of the DFDC preview
dataset. The dataset includes a variety of motion and
camera placement scenarios, covering different lighting
conditions such as day and night. Different algorithms
were used for manipulation, including DeepFaceLab
[15], [16] with two resolution options: 128 x 128 (DF-
128) and 256 x 256 (DF-256), an unlearned mor-
phable mask face swap algorithm (MM/NN) [106], and
Generative Adversarial Networks (GANs) techniques
such as Neural Talking Heads (NTH) [80] and FSGAN
[60]. To promote the development of deepfake detection
models, a competition II was launched along with
a hidden test set to evaluate the submitted model’s
performance.

o WildDeepfake (WDF) [98]: This dataset is unique in
the third generation as it includes real and manipulated
videos from the internet. The videos dataset includes
3,805 authentic videos and 3,509 deepfake face swap
videos. These videos can have more than ten individuals
in a scene, making it a unique and valuable resource for
improving deepfake detection in real-world scenarios.
The dataset includes diverse video content with events
like broadcasts, films, interviews, and talks, with varying
backgrounds, environments, lighting conditions, com-
pression rates, resolutions, and video formats.

o DeeperForensics-1.0 (DF-1.0) [36]:The data set
includes 50,000 original videos and 10,000 deepfake
manipulated videos. One hundred paid actors with four
different skin tones were used to create high-resolution
source videos. These videos were captured with
seven cameras at different locations and under nine
lighting conditions, displaying eight facial expressions
(happy, neutral, sad, angry, disdain, surprise, fear, and
disgust). A robust face-swapping mechanism called
deepfake Variational-Auto-Encoder (DF-VAE) was also
developed to generate the fake videos. DeeperForensics-
1.0 utilizes a range of perturbation techniques, including
Gaussian blur, random flip, random brightness contrast,
image compression, random cropping, color saturation,
and local blockwise distortion, to simulate real-world
situations and diversity in the dataset.

o Korean Deepfake Dataset (KoDF) [99]: This dataset
focuses on Korean subjects and includes 62,166 real
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clips and 175,776 deepfake clips. Six different deepfake
models were employed to create these fake videos. Out
of these six models, three of them are face swapping
models, namely FSGAN [60], DeepFaceLab [15], [16],
and FaceSwap [107]. The remaining three models are
re-enactment models, which include the First Order
Motion Model [82], ATFHP [108], and Wav2Lip [109].
The dataset was created using a front-facing camera to
guarantee minimal variation in the subject pose. The
video clips are of high quality with a resolution of
1920 x 1080, and the dataset was not subjected to any
perturbations such as compression, resizing, or manual
editing.

Face Forensics in the Wild (FFIW) [100]: The
dataset consists of 4,000 videos obtained from YouTube,
where each video is divided into four equal parts.
A random 12-second sequence is selected from each
part to generate the fake videos. Face-swapping videos
were created using DeepFaceLab [15], [16], FSGAN
[60], and a graphics-based FaceSwap method by
randomly selecting two videos from a collection of
12,000 filtered sequences. On average, each image in
the dataset includes three human faces. The dataset
underwent an automated manipulation process using
a domain-adversarial quality assessment network to
reduce cost. The videos range from 2 to 74 seconds
in length with a resolution of 854 x 480 and a frame
rate of 30 frames per second, making a total of 53,000
images.

ForgeryNet (FN) [101]: The dataset has been divided
into two categories: a fake image set with over
2.9 million images and a fake video set with more
than 220,000 videos. Both subsets also contain authentic
data. To create the fake images and videos, 15 image
forgery techniques and 8 video forgery techniques were
used. The dataset was also mixed with 36 perturbations
to make it more challenging.

OpenForensics (OF) [102]: The OpenForensics dataset
is designed explicitly for multi-face forgery detec-
tion and segmentation tasks, offering a large image
dataset with diverse backgrounds. Additionally, the
creators developed a method to generate countless fake
faces without repeatedly training the auto-encoder. The
dataset was created using real images obtained from
Google Open Images, while fake faces were generated
using a process involving GAN-based face synthesis,
Poisson blending, and color-matching algorithms. The
OpenForensics approach provides high-resolution face
images with improved visual quality and a more natural
appearance. To simulate real-world challenges, various
perturbations were applied, resulting in a challenging
test subset. These perturbations were categorized into
color manipulation, edge manipulation, blockwise dis-
tortion, image aliasing, convolution mask transforma-
tion, and external effects, each with three levels of
intensity: easy, moderate, and difficult.
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+ Fake Media Forensics Challenge of China Society of
Image and Graphics (FMFCC-V) [103]: The dataset
includes 38,102 deepfake videos and 44,290 authentic
videos featuring 83 Asian individuals, each speaking for
approximately 40 minutes. These videos showcase vari-
ous head poses, facial expressions, backgrounds, resolu-
tions, and frame rates. The videos were captured indoors
and outdoors, with resolutions mainly at 480p, 720p, and
1080p and frame rates of 25fps and 30fps. The deepfake
videos were generated using four different methods:
Faceswap [107], Faceswap-GAN [57], DeepFacelLab
[15], [16], and Recycle-GAN [110]. To simulate real-
world situations, deepfake and authentic videos were
subjected to twelve types of perturbations, including
brightening, noise addition, blurring, darkening, contrast
adjustment, and flipping. The FMFCC-V dataset offers
two versions of the deepfake dataset for different
applications. The long version includes approximately
16 minutes of video without any perturbations, while
the short version comprises 10-second videos, with half
having perturbations applied, including both authentic
and deepfake videos.

o DF-Platter [104]: The DF-Platter dataset con-
tains 764 YouTube videos of single and multiple
subjects, showcasing a wide range of expressions,
poses, backgrounds, lighting conditions, and occlu-
sions. It employs FSGAN [60], FaceShifter [61], and
FaceSwap [107] techniques to generate 132,496 high-
resolution (HR) and low-resolution (LR) deepfake
videos. The dataset consists of three sets: Set A for
single-subject deepfakes, Sets B and C for intra-deep
fakes, and multi-face deepfakes. All subjects are of
Indian ethnicity and annotated with attributes such as
resolution, gender, age, skin tone, and facial occlusion.
The DF-Platter dataset maintains a balanced distribution
of resolution and gender. The videos are available
at three compression levels (c0, c23, c40), with a
duration of around 20 seconds each, and provided in
MPEG4.0 format, with a frame rate of 25 fps.

The third generation of the deepfake dataset demonstrates
a significant improvement in sample quality compared to
previous generations. It contains a wide range of video
samples that showcase different subjects, backgrounds, and
lighting conditions. The third generation of the dataset was
generated using various deepfake models, and it incorporates
different perturbations, such as compression, blurring, and
noise, to imitate real-world deepfake attacks and challenges.
Table 4 summarizes the various deepfake datasets available
for face and expression swapping.

IV. DEEPFAKE DETECTION

Detecting deepfakes in images and videos requires analyzing
the content to determine if it has been altered or remains in its
original state. In the research community, detecting deepfakes
is commonly approached as a binary classification problem,
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where videos are categorized as either genuine or fake.
To accomplish this, classifiers rely on identifying features
that differentiate between real and manipulated content.
Researchers use various methods for extracting features, such
as traditional machine learning or deep learning algorithms,
to detect inconsistencies and artifacts in deepfake videos.
Deep learning methods are preferred for their speed and
accuracy in automatically extracting features. The process
of detecting deepfakes typically involves extracting facial
information from video frames, followed by using neural
networks or conventional techniques to extract features. The
frames are then classified based on these features. However,
current deepfake detection methods face challenges regarding
generalization, robustness, and interpretability, which hinder
their practical applications.

o Generalization: It is a widely used quantitative tool
to assess the performance of an algorithm on unseen
datasets (not considered during training). However,
many suggested deepfake detection approaches rely on
supervised learning, which is susceptible to overfitting.
A model trained specifically on face swapping may
struggle to detect other manipulation techniques, such
as expression swapping and other deepfake face swap
implementations. This presents a significant challenge
in real-world scenarios where new deepfake face manip-
ulation methods are continually emerging. Retraining
detectors for each new modification method becomes
impractical due to the lack of adequately annotated data
from new deepfake manipulation methods.

« Robustness: Social media platforms like Twitter, Insta-
gram, and Facebook often compress, resize, and remove
metadata from videos before they are shared on the
platforms. These steps are aimed at protecting user
privacy and conserving network resources. However,
these practices create obstacles to deepfake detection.
High compression rates, in particular, result in signif-
icant loss of image data, making deepfake detection
difficult [47]. Moreover, adversarial attacks pose an
additional challenge for deepfake detectors to maintain
their robustness. These attacks use well-engineered
perturbations such as Gaussian noise, Blur, translation,
resizing, first-order gradient, etc., to increase the false
positive detection rate [111]. These adversarial pertur-
bations trick the detector [111], [112] into detecting
fake content as real. Additionally, an adversary can
choose perturbations that are too small to be seen by
the naked eye [113], [114]. Therefore, it is essential to
develop robust deepfake detection algorithms that can
resist social media laundering and adversarial attacks.

« Interpretability: Neural network methods are used to
perform batch analysis on huge sets of videos. However,
the lack of interpretability in neural network-based
algorithms has always been a concern. These models
function as black boxes, leaving users without clear
explanations for their performance. In forensic analysis,
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FIGURE 6. Visualization of different artifacts left by deepfake generation process.

TABLE 5. Evaluation metrics employed by state-of-the-art deepfake
detection approaches.

Metric Description

Accuracy (Acc) The proportion of data instances accurately pre-
dicted out of the total data instances.

Precision The ratio of correctly predicted positive data to the
total number of predicted positive data.

Recall The ratio of true positive predictions to the dataset’s
total number of positive instances.

F1-Score The weighted average of precision and recall when
the weights are equal.

AUC A measure of the degree of separability between

two classes of a given model.

Error Rate (EER)  The proportion of misclassified instances from the

total number of instances in a dataset.

practitioners rely on these detection algorithms for a lim-
ited number of videos. Therefore, if a numerical score
indicating the possibility of a video being generated
through a synthesis algorithm lacks a logical foundation,
it will not be useful for practitioners. In order to make the
results reliable in the real context, the detection method
must offer interpretability [115].

This section explores deepfake detection techniques,
classifiers, notable results, evaluated datasets, and the aspects
of generalization, robustness, and interpretability in detection
systems. It’s important to mention that researchers use
different metrics to evaluate the performance of deepfake
detection techniques. Table 5 provides a comprehensive list
of evaluation metrics employed in state-of-the-art deepfake
detection techniques.

A. ARTIFACT-BASED APPROACH

The majority of frame-based deepfake detection techniques
rely on identifying the artifacts left by the Generative
Adversarial Network (GAN) during the generation of the
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deepfake. These artifacts act as evidence of manipulation
and can be extracted as features for the detection approach.
The methods use hand-crafted features or neural networks
to identify specific artifacts unique to deepfakes. These
artifacts include a range of indicators, including biometric
and biological cues, as shown in Figure 7 and visual
irregularities caused by deepfake generators, as demonstrated
in Figure 6.

1) VISUAL ARTIFACTS

Researchers have adopted both conventional machine learn-
ing methods and deep neural networks for deepfake detection
in this approach.

The deepfake face swap algorithm generates faces with
resolutions ranging from 64 x 64 to 256 x 256 [116]. However,
due to its limited resolution, the algorithm faces challenges in
producing small, high-quality moving facial features such as
nose, eyes, hair and skin texture. Falko Matern [43] proposed
a deepfake detection technique that targets the absence of
details in small facial components. This technique involves
extracting texture features from facial regions such as the eyes
and teeth, which were used to train two different classifiers -
the Multilayer Perceptron (MLP) and the logistic regression
model (LogReg). The MLP-trained features derived from
the eye area are effective in detecting deepfake face swaps.
However, the logistic regression model incorporating eye and
teeth features is more effective in detecting face re-enactment.
While this method is computationally efficient, it is limited to
images that meet certain conditions (e.g., open eyes, visible
teeth).

Another deepfake detection approach, proposed by Yang
[40], involves using the 3D head pose artifact. This method
relies on the hypothesis that synthesized facial regions
in deepfake videos display inconsistencies in 3D head
pose estimation compared to genuine videos. To achieve
this, 68 facial landmarks were utilized to estimate head
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FIGURE 7. Visualization of deepfake biometric and biological artifacts for detection.

orientation and position differences. These differences were
then employed to train a Support Vector Machine (SVM)
classifier. The approach was effective on two small datasets,
UADFV [40] and DARPA MediFor GAN Challenge [32].
However, it did not perform well on noisy and blurry images.
This led to challenges in precisely predicting the positions of
facial landmarks, subsequently affecting the accuracy of head
pose estimations in large, visually challenging datasets [6].
In[117], Liet al. represented a method for detecting deepfake
images and videos by analyzing facial symmetry. The
technique identifies inconsistencies and unnatural traces in
the face symmetry of the manipulated media. The dlib library
[118] was used to detect faces and locate facial landmarks
to estimate the 3D face pose. Face alignment was achieved
by rotating around the center of the eyes. Symmetrical face
patches were cropped from the images using sliding windows
within the face region. Their approach utilized a Deep
Residual Network (DRN) architecture and introduced a novel
multi-margin angular loss function to measure the similarity
of symmetry features. This loss function incorporated angular
margin penalties to enhance intra-class compactness and
inter-class discrepancy. Although the method exhibited
robustness to data re-compression, it did not perform well
on high-quality datasets [6], [35]. In light of the hypothesis
that some deepfake methods are ineffective in producing
realistic facial manipulations from different angles, resulting
in unwanted artifacts such as blurring and irregular textures
in the generated videos, Xu [119] proposed a GLCM
(Gray-Level Co-occurrence Matrix) based technique to
extract texture features. These features were classified using
SVM to determine whether the face in the input video is
original or manipulated. Both low and high-quality videos
from the Deepfake-TIMIT dataset [90] and the FF++
dataset [7] were used to evaluate the performance of this
approach. However, the proposed approach does not provide
a generalized solution for a visually challenging dataset
[6]. Another study by Kingra et al. [120] utilized Linear
Binary Pattern (LBP)-encoded images to extract texture
features. Unlike LBP-encoded histograms that only contain
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intensity information, LBP-encoded images provide both
location and intensity information. The approach involves
Face region detection and extraction, feature extraction by
LBP, and classification using a CNN-based architecture. This
approach, known as LBPNet, is able to detect deepfake
images in advanced deepfake datasets [6], [34], including
animations [82] and manipulated faces from mobile applica-
tions. Additionally, the model is designed to be interpretable,
as the class activation maps illustrate the reasons for the
predictions. However, it is important to note that LBPNet’s
performance is not robust for highly compressed video.
Rather than only considering spatial artifacts, researchers
have investigated the flaws of deepfakes in the frequency
domain. Frank et al. [121] comprehensively investigate the
artifacts present in the frequency domain in various GAN
architectures and datasets. They found that the upsampling
techniques used in GANSs cause severe artifacts. Durall [122]
proposed a novel approach for analyzing artifacts in the
frequency domain of deepfakes. The method involved apply-
ing the Discrete Fourier Transform (DFT) to examine the
spectral distributions and calculate average amplitudes across
different frequency bands. These amplitude measurements
were then used as feature vectors, and fed individually
into various classifiers, including SVM, K-Means, and
Logistic Regression, for both supervised and unsupervised
detection of deepfakes. Notably, the unsupervised classifiers
demonstrated superior performance in terms of accuracy
compared to the supervised classifiers. The effectiveness of
this approach was demonstrated in accurately identifying
medium and high-resolution deepfake images from the
FF++ dataset [7]. However, detecting low-quality facial
images was challenging due to the significantly narrower
accessible frequency spectrum. In another approach, Kohli
[123] proposed a method for detecting face deepfakes using
a shallow frequency convolution neural network (fCNN).
The approach involved converting facial images into the
frequency domain using a 2D global Discrete Cosine
Transform (DCT) and analyzing the activation map of
the f{CNN to derive key features for face classification.
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However, the proposed method did not achieve significant
generalization for the challenging Celeb-DF [6] dataset.
Liu et al. [124] utilize Discrete Fourier Transform (DCT)
to extract the phase spectrum. The authors emphasized
the importance of local texture information in detecting
forgeries, as well as the sensitivity of the phase spectrum to
upsampling. Their method, Spatial Phase Shallow Learning
(SPSL), combines spatial images with the phase spectrum to
capture up-sampling features in facial forgery, focusing on
local regions through a shallow network design. The method
has demonstrated good generalization capabilities during
cross-dataset evaluation. However, it is essential to note
that methods relying on upsampling artifacts are ineffective
for deepfake generation methods that do not incorporate
upsampling.

Most deepfake generation approaches involve merging a
fake face with a background image, often leading to visible
irregularities around the facial area, such as uneven brightness
borders. Various detectors for deepfake artifacts concentrate
on these blending imperfections [125], [126], [127]. Yuezun
et al. [125] proposed a method using a Convolutional Neural
Network (CNN) based approach to detect distortions in
facial images at the pixel level. They hypothesized that
deepfake algorithms utilize affine warping to resize the
images to match the target face, introducing resolution
irregularities around the face boundaries. To extract facial
features, the approach utilized dlib [118] and trained four
CNN models: VGG16 [128], ResNet50, ResNet101, and
ResNet152 [129]. Among the four, RESNET-50 was the
most efficient in handling low-quality face swap videos.
However, its generalization capabilities are limited for
high-quality datasets [6]. Nirkin et al. [126] proposed a
method that utilizes two networks, one for identifying the
face region through narrow semantic segmentation and
the other for recognizing the context around the face.
Inconsistencies between the face and surroundings were
detected by comparing these network outputs. The approach
demonstrated resilience against image laundering attacks
(JPEG compression, scaling) for deepfake face swap. Despite
its effectiveness, this method has limitations in generalizing
across high-quality deepfake datasets [6] and is ineffective
against deepfake techniques that generate the entire image.
The framework proposed by Kim et al. [127] utilizes a
content feature extractor (CFE) and a trace feature extractor
(TFE) to identify deepfake videos. The CFE focuses on
extracting facial features such as wrinkles, eyes, and skin
tones. At the same time, the TFE captures trace information,
including subtle texture variations and facial contours, from
non-facial content images. By merging features extracted
from both models, the framework aims to identify deepfakes
by considering a wider range of tampering indicators and not
relying solely on facial information. The model demonstrates
reliable performance across various compression levels of
deepfake videos. However, its effectiveness on high-quality
deepfake datasets has yet to be evaluated.
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2) BIOLOGICAL AND BIOMETRIC ARTIFACTS-BASED
APPROACH

Deepfake detection based on biological artifacts examines
the subject’s physiological and psychological responses to
stimuli. These responses include changes in heart rate and
eye movements. The premise of this approach is that these
responses are difficult to control, and deepfake algorithms
are unable to replicate them accurately. On the other hand,
biometrics-based deepfake detection analyzes video features
such as facial movements, facial expressions, voice patterns,
and lip movements. The key insight behind these deepfake
detectors is that each person has specific characteristics that
a synthetic generator likely cannot reproduce.

Agarwal [130] proposed a biometric recognition method
for distinguishing authentic faces from deepfake faces. They
hypothesized that real Individual’s specific facial movements
and expressions during speech are absent in deepfake faces.
To capture these differences, they employed the OpenFace2
[131] toolkit to extract head and face movements from a
video. Facial features were derived from head rotation axes,
facial action units, and 3D distances between specific mouth
landmarks. Calculating the Pearson correlation between the
head and facial features reduces each 10-second video clip to
a 190-dimensional feature vector. SVM was utilised to predict
this feature vector whether a video featured a real or fake
person. However, it is important to note that the method’s
overall accuracy decreases significantly for detecting heavily
compressed videos. Additionally, the approach is only
applicable to videos that feature a frontal shot of the speaker.
In another study, Agarwal et al. [132] proposed an approach
for detecting deepfake face swap. They developed a Convo-
lutional Neural Network (CNN) to identify inconsistencies in
matching identities by embedding facial movements between
video frames into a 256-dimensional space, capturing head
poses, facial landmarks, and expressions. These features were
used for spatiotemporal biometric behavior analysis. The
CNN was trained to learn identity-specific mappings while
VGG extracted appearance-based facial descriptors. Videos
were classified as real or fake using cosine similarity based
on matched identities and facial similarity. The approach
requires minimal data to construct biometric reference
sets and is robust toward compressed videos. However,
the technique’s applicability is limited to scenarios where
matching biometrics for a given face is available.

Nguyen [133] developed a technique to combat deepfake
attacks using a brow biometrics pipeline. Their research
revealed that deepfakes often contain vulnerabilities in the
eyebrow region. To test this theory, four deep-learning models
were analyzed. After obtaining the feature vectors, a cosine
distance metric was used to compare reference and probe eye-
brows. After analyzing four CNN models [129], [134], [135],
[136], ResNet and SqueezeNet models were found to be more
accurate in detecting eyebrows. Despite its good detection
performance, this method requires a large number of training
samples due to its reliance on identity matching between
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the source and target. Haliassos et al. [137] proposed an
approach focusing on mouth features. In their approach, they
utilized pre-processed lip clip grayscale frames and trained
them using two pre-trained lip reading networks: a Resnet-
18 model and a multiscale temporal convolution network
(MS-TCN). The goal was to fine-tune the recognition model
to identify significant irregularities in mouth movement.
Their approach performs well in cross-dataset analysis across
five diverse datasets [6], [7], [35], [36], [61]. Furthermore,
it exhibited robustness against various perturbations, such as
changes in saturation, contrast, blockwise distortions, white
Gaussian noise, blurring, pixelation, and video compression.
However, their model could not detect fake faces with mouth
occlusion and limited movement.

Liao et al. [138] developed the Facial Muscle Motion
(FAMM) technique to detect compressed deepfake videos by
examining facial muscle motion features from a geometric
perspective. They hypothesised that the curvature of the facial
skin during speech or micro-expressions causes displacement
of facial feature points, resulting in unnatural muscle move-
ments when synthesized. FAMM consists of three modules:
facial landmark extraction, facial muscle motion feature
construction, and prediction probability fusion. Precise land-
marks are extracted through face detection, alignment, and
landmark extraction. Unnatural facial motions are captured
by calculating distance and angle features between adjacent
frames, and time-series features are utilized to enhance
unnatural muscle movements. Statistical measures such as
absolute energy, absolute sum of first-order differences,
time-series complexity, kurtosis, and coefficient of variation
are calculated to reduce noise influence. Two classifiers,
the Gate Recurrent Unit (GRU) and SVM, are trained
using the difference in facial muscle motion and time-series
features, and their results are combined using the Dempster-
Shafer theory. The FAMM approach demonstrates robust
performance for compressed and socially shared videos.
However, the approach does not generalize well on unseen
face manipulations.

Li et al. [21] and Jung et al. [139] proposed a deepfake
detection method using eye blinks as a biological artifact.
They observed that faces in deepfakes blink less often than
in real videos. To determine the authenticity of a video, Li et
al. [21] decomposed the video into frames and extracted
eye regions based on six eye landmarks. These cropped
eye regions were then processed using long-term recurrent
convolutional networks (LRCN) [140] to capture temporal
patterns of eye blinking. The method was evaluated on
a dataset consisting of 49 interviews, presentation videos,
and deepfake videos collected from the internet. However,
the proposed approach did not investigate its effectiveness
in detecting deepfake videos using dynamic blinking pat-
terns. On the other hand, Jung et al. [139] introduced
the DeepVision algorithm, which integrates Fast-HyperFace
[146] and Eye Aspect Ratio (EAR) [147] techniques to
detect and track eyes in consecutive frames. The video’s
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authenticity was verified by estimating the number and period
of blinks. The proposed technique was evaluated using a
dataset incorporating a wide range of blink pattern variations,
considering factors such as cognitive activity, age, gender,
and time of day. However, it is important to note that blinking
is commonly associated with mental illness and dopamine
activation. As a result, this approach is not applicable to
individuals with mental illness or abnormal neural pathways,
limiting the generalizability of the proposed method.

Heart rate estimation from visual content is another
biological artifact for facial video forensics. Fernandes et
al. [141] introduced a method for heart rate estimation from
deepfake videos in facial video forensics. They employed
the Neural Ordinary Differential Equations (Neural-ODE)
model to predict heart rates. They extracted features from
input videos using three techniques: analyzing changes in
facial skin color caused by blood flow, measuring average
optical intensity in the forehead area, and magnifying and
processing temporal changes in facial color using Euler’s
method. However, the proposed method is computationally
intensive, and its robustness and generalizability need further
investigation. It is essential to note that heart rate reflects
hemoglobin content, which changes the skin’s reflectivity
over time. This natural phenomenon is often disrupted or
absent in fake videos, which has prompted researchers [142],
[143], [144], [145] to explore further in this area.

Recently, remote photoplethysmography (rPPG) has
emerged as a promising method for detecting and analyzing
changes in light absorption in facial skin tissue to identify
deepfakes. Ciftci et al. [142] proposed a technique called
FakeCatcher, which employs photoplethysmography (PPG)
maps to capture physiological changes associated with
deepfakes. By extracting rPPG signals from the face
and constructing spatiotemporal representations of signal
variations, PPG maps were created and used to train a CNN
classifier. The approach is designed to be independent of
generative models, resolutions, compressions, content, and
context. The performance of the technique was evaluated
on 140 online videos. The results showed good overall
performance for small video segments, but its performance
decreased with longer segments due to accumulated noise in
biological signals.

Qi et al. [143] developed DeepRhythm, a method for
deepfake detection by analyzing heartbeat rhythms in facial
skin color resulting from blood flow. The approach employs
dual spatiotemporal attention to adapt to changing faces and
fake types. It also includes motion-magnified spatiotemporal
representation (MMSTR) to capture sequential signals in
facial videos, providing specific features for deepfake
detection. However, it is robust against degradation methods
such as JPEG compression, Gaussian blur, Gaussian noise,
and temporal sampling. it still lacks satisfactory general-
ization performance with unseen datasets. Another study
DeepfakeON-Phys [144], was designed to estimate heart rate
from facial video sequences. This deep learning-based model
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TABLE 6. Summary of artifacts-based deepfake detection techniques with highlighted top-performing classifiers and datasets.

Reference  Method Classifier Dataset Best Performance Deepfake Detected Capability
Face-Swap  Expression- G R 1
Swap
[125] Warp Features ResNet-50 DF-TIMIT AUC = 0.99,0.93 v v
(LQ,HQ),
UADFV
[21] Blinking Pattern LRCN UADFV AUC = 0.99 v
[43] Texture Features MLP, Self-Built, AUC = 0.85,0.86 v v v
LogReg FF++(F2F)
[40] 3D Head Poses SVM UADFV, AUC = 0.89 v v
MediFor
[130] Facial Action Units SVM Self-Built, AUC = 0.96 v v v
FF++
[122] DFT Magnitude Aver- SVM, DFD ACC = 0.96 v
aging K-Means,
Logistic
Regression
[132] Facial and Behavioral =~ ResNet101 Celeb-DF, AUC = 0.99 v v
Features and VGG FF++, DFD,
DFDC-P
[141] Skin Color and Opti-  Neural-ODE Self-Built, Loss = 0.0215 v
cal Intensity DF-TIMIT
[139] Blinking Pattern EAR and Self-Built ACC =0.87 v v
HyperFace
[142] PPG Signals of Facial SVM/CNN UADFV, ACC =0.97 v v v
Regions FF++,
Celeb-DF
[143] Skin Color Attention FF++, ACC = 0.98 v v v
CNN DFDC-P
[133] Eyebrow Biometric LightCNN, Celeb-DF EER=20.7% v
ResNet, AUC = 0.88
DenseNet,
SqueezeNet
[144] Spatial and Temporal  Convolution Celeb-DF, AUC = 0.99 v v
Information Attention DFDC-P
Network
[123] 2D-GDCT FCNN FF++(DF- ACC =0.79 v v
Raw),
FF++(Raw),
FF++(C20),
FF++(C40),
Celeb-DF
[124] DCT XceptionNet ~ FF++ Celeb- ACC = 0.96 v v v
DF, DFDC
[119] GLCM SVM DF-TIMIT ACC = 0.92,0.94 v v
(LQ,HQ),
FF++(Raw),
FF++(C20),
FF++(C40),
CelebDF,
DFDC-P
[126] Face and Context XceptionNet FF++ Celeb- AUC = 0.75 v v v v
DF, FSGAN,
FSh
[117] Symmetrical Face DRN FF++(DF), AUC = 0.99 v v
Patches DF-TIMIT,
DFD, DFDC,
Celeb-DF
[145] Multiscale PPG Maps  EfficientNetV2 FF++ (C23) ACC = 0.90 v v v
[137] Lip Clip Frames Resnet-18 +  DF1.0, AUC =0.97 v v v v
MS-TCN Celeb-DF,
FaceShifter,
FF++, DFDC
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TABLE 6. (Continued.) Summary of artifacts-based deepfake detection techniques with highlighted top-performing classifiers and datasets.

Reference  Method Classifier Dataset

Best Performance Deepfake Detected

Face-Swap  Expression-
Swap

Capability
G R 1

[127] Face and Context ~ ResNet-18 FF++(DF),
FF++(F2F),
FF++(DF
C23,C40),
FF++(F2F

C23,C40)

FF++, DF1.0,
FOMM,
Celeb-DF,
DFDC-P,
Mobile-
Application

LBP Self-
Designed

Network

[120]

[138] GRU+SVM Social-
website(DF,
FS, NT,
F2F, Fsh),
FF++(C23),

FF++(C40)

Facial Muscle

Motion

F1=0.99 v v v

ACC =0.99 v v v v

AUC = 0.988 v v v v

captures spatio-temporal information by analyzing color
changes in faces caused by variations in oxygen concentration
in the blood. It utilizes signal-processing techniques to
isolate blood-related color changes from other factors like
illumination and noise. The Convolutional Attention Network
(CAN) has two branches: the Motion Model, which detects
changes between consecutive frames to identify fakes, and the
Appearance Model, which focuses on static information in
frames to guide the Motion Model with relevant information.
Attention masks from the Appearance Model are shared
with the Motion Model at different layers, and the final
output of the Motion Model serves as the output of the
entire CAN. While this approach is robust to external
illumination perturbations, it requires high-quality video
sequences with visible faces and good lighting conditions for
training. Moreover, it is ineffective against unseen datasets
and computationally complex, making it unsuitable for real-
time applications.

Wu et al. [145] presented multi-scale spatial-temporal
photoplethysmography (PPG) maps to create an interpretable
deepfake detector. Their approach assumes that different
video manipulation techniques affect distinct facial regions,
reflected in the PPG map of multi-scale facial regions.
The method involves a two-stage network, which includes
a mask-guided local attention module (MLA) that focuses
on modified regions in the PPG map and a temporal
transformer for capturing long-distance information between
adjacent clips. The process generates a multi-scale PPG map
from facial video frames and performs two-level network
detection. The MLA identifies the corresponding positions in
the PPG feature map for the modified facial areas. However,
the method has limitations in accurately detecting deepfakes
within compressed videos.

Table 6 presents the summary of Artifacts based deep-
fake detection algorithms. The table displays details about
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the author, classifier used, features employed, evaluation
datasets, performance metrics, types of deepfake manip-
ulations detected (Face-Swap and Expression-Swap), and
the detection capabilities denoted by G (generalization for
unseen datasets), R (robustness against perturbation attacks),
and I (interpretability).

B. PIXEL AND STATISTICAL FEATURE APPROACH

In this approach, an image’s pixel values are utilized as
primary features, incorporating its intensity or color as input
values. Statistical features capture the more complex features
and relationships of an image. Table 7 provides an overview
of pixel and statistical features based deepfake detection
techniques. Koopman et al. [148] proposed an approach for
deepfake detection based on photo response non-uniformity
(PRNU) analysis. PRNU is a unique pattern noise in the
camera sensor caused by manufacturing defects in silicon
wafers and pixel sensitivity variations due to the physical
properties of the silicon wafers. The technique suggests that
examining the PRNU pattern in the facial area of video
frames makes it possible to identify deepfakes where the
swapped face alters the PRNU pattern. To implement their
approach, videos were converted into frames and cropped
to focus on the facial region. These cropped images were
then divided into eight groups, and an average PRNU pattern
was computed for each group. Subsequently, normalized
cross-correlation values were calculated to compare the
PRNU patterns among these groups. A test dataset consisting
of 10 original videos and 16 deepfake face swaps using
DeepFacelab [15] was generated to evaluate their approach.
The analysis shows a statistically significant difference in the
mean normalized cross-correlation values between deepfakes
and real fakes. These findings highlight the potential
of PRNU analysis as a promising method for deepfake
detection, but its effectiveness against high-quality deepfakes
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TABLE 7. Summary of pixel and statistic-based deepfake detection algorithms. highly performed classifier and dataset are shown in bold.

Reference  Features Classifier Dataset Best Performance Manipulation Type Detected  Capability
Face- Expression- G R 1
Swap Swap
[148] PRNU - Self-Built Original images v/ v
have higher
correlation  scores
than deepfakes.
[150] Pixel Intensity Feature =~ SVM UADFV ACC = 0.94 v
Descriptor
[149] Statistical Properties SVM DF-TIMIT, ACC = 0.80 v v
FF++, DFD
[151] Statistical Properties XceptionNET  FF++, Celeb-DF, AUC = 0.99 v v v
DFD, DFDC,
DF1.0
[152] Pixel Intensity XGBoost UADFV, FF++ AUC =1.0 v v
(DF), Celeb-DF
[153] Pixel Intensity MTD-Net DFDC, AUC = 0.99 v v v v
FF+(C23),
FF++(C40),
Celeb-DF, DF-
1.0
[154] Pixel Intensity Feature ~ Random For-  DF-TIMIT(LQ), AUC = 0.99 v v v
Descriptor est UADFV,
FF++(DF),
DED, Celeb-DF,
DFDC
[155] Color Statistical Fea- SVM FF++, Celeb-DF AUC = 0.99 v v

tures

is unclear. Another approach investigates the manipulation of
PRNU-based content by analyzing the statistical properties
of PRNUs [149]. This approach investigates the image’s
spectral and spatial characteristics, such as kurtosis, energy,
variance range, and skewness. These features are then fed
into an SVM classifier to classify frames as real or fake.
Although the classifier achieved high accuracy on test
datasets, it lags behind deep learning in performance. Video
compression format differences can also affect classification
accuracy.

Kharbat et al. [150] employed traditional edge feature
detectors to extract feature points from images for deepfake
video detection. These feature points were collected across
video frames and used as training data for an SVM
model. The underlying hypothesis was that feature points
from real videos would exhibit more correlated character-
istics than deepfake manipulated face videos. The results
showed that Histogram of Gradient (HoG) features were
more discriminative than other descriptors. However, the
method has not been evaluated on high-quality compressed
videos.

Chen et al. [152] introduced DefakeHop, a lightweight
detection method that leverages principal component analysis
(PCA) to identify deepfakes. The technique involves extract-
ing features from different face patches using PixelHop++-,
a feature extraction technique. To reduce the spatial dimen-
sion of each patch, subspace approximation with an adjusted
bias (saab) is used. The resulting feature representations were
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then fed into an extreme gradient boosting (XGBoost) classi-
fier for binary classification. Despite its small size, Defake-
Hop has shown good performance across various deepfake
datasets and can handle videos with different compression
qualities. Yang et al. [153] presented a Multi-scale Texture
Difference Network (MTD-Net) designed for deepfake detec-
tion. The model was specifically developed to extract and
integrate multi-scale texture difference information, enabling
robust detection of deepfake images with high compression
and mixed distortion. Initially, texture difference features
were extracted from cropped faces, utilizing pixel intensity
and gradient information. A novel convolution operation
called Central Difference Convolution (CDC) was introduced
to combine intensity and gradient information to represent
texture differences. Finally, the extracted textural difference
features were fused at multiple scales for classification.
The approach demonstrated promising performance on high-
quality datasets, such as DeeperForensics-1.0, Celeb-DF, and
DFDC. However, one limitation of the approach is the lack of
interpretability in its classification.

Xia et al. [155] introduced an interpretable deepfake
detection method. Their method looks for the differences
in facial statistics between real and fake video frames in
various color channels. They converted the input RGB frame
to HSV and YCbCr color spaces to process the face images
and used a texture map. By extracting texture difference
features using first-order differential operators, the approach
was able to identify disparities in the textures of real and
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FIGURE 8. Example of multistack deepfake detection [156].

fake frames. Truncation and co-occurrence matrices were
used to capture texture information while reducing data
size. The combined features from different color channels
were interpretable. Finally, they used SVM to classify the
features. Their method has lower computational costs than
deep learning-based detection, but detection performance
decreases with increased compression ratios due to the loss
of texture information.

According to Luo et al. [151], image noise can expose
evidence of forgery by eliminating color texture. To achieve
this, they developed a method using an Xception-based
detector that includes high-frequency noise features. The
proposed model consists of three functional modules: i.
A multi-scale high-frequency feature extraction module, ii.
A residual-driven spatial attention module, and iii. A cross-
modality attention module. They adopted the proposed
modules to extract more meaningful features and capture
the correlation and interaction between the complementary
modalities. The approach performs well in cross-dataset
evaluation.

Wang et al. [154] proposed a computationally efficient
Fused Facial Region Feature Descriptor (FFR-FD) technique
to detect deepfake face swap. The method leverages the fact
that deepfake face swaps display fewer feature points than
real faces. By using feature points detector descriptors like
SURF, SIFT, ORB, FAST&BRIEF, and A-KAZE, feature
points were extracted from eight facial regions, including
the entire face, mouth, inner mouth, right eyebrow, left
eyebrow, right eye, left eye, and nose. These descriptors
created region-specific vectors without averaging, allowing
for precise information control. The vector’s dimensions
were reduced and connected sequentially to form FFR-FD.
However, it is important to note that FFR-FD relies on
visible feature points in facial images, which may be missing
due to occlusions, low resolution, or other factors. In addi-
tion, the technique is less effective at detecting deepfake
videos with complex backgrounds or challenging lighting
conditions.
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C. GENERIC NEURAL NETWORK APPROACH

The Generic Neural Network (NN) approach uses one or
more neural networks to extract features and classify data.
Unlike other deep learning methods that rely on manually
created features, the Generic NN uses only learned features
for its detections. Table 8 provides an overview of Generic
Neural Network deepfake detection techniques.

Afchar [157] introduced the MesoNet CNN model for
detecting deepfakes by analyzing the intrinsic features of
images. To test their approach, videos were collected from
the internet. However, this approach does not generalize
to a high-quality Celeb-DF [6] dataset. Nguyen utilized a
capsule network to detect deepfakes [158]. The network
consists of three primary capsules and two output capsules
for classifying real and fake images. The model extracted
the feature vector through the VGGI19 backbone network
[128] and distributed it to the three primary capsules. The
results of all three primary capsules are dynamically directed
to the output classification capsules. The proposed network
showed promising results on the FF4++ [7] and DFD [93]
datasets. However, the capsule network had lower detection
rates with previously unseen deepfake videos. In [159],
a self-supervised decoupling network (SDNN) for learning
authenticity and compression features is proposed. As self-
supervised signals, it used the compression ratio of given
input images. The goal is to normalize the model with
different compression rates so that the authenticity classifier
can perform better classification without being influenced
by the input compression. However, since the range of
compression rates can be adjusted, the model’s performance
with an invisible compression rate can still be an issue.

Zhao et al. [160] introduced a method for detecting
deepfakes that exploits the self-consistency of local source
features, which are specific pieces of information within an
image that remain the same regardless of the content. The
hypothesis is that a manipulated image will have different
source characteristics in varying locations, while an original
image will have consistent source characteristics throughout.
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To extract these features, a convolutional neural network
(CNN) was used to create downsampled feature maps, where
each vector represents the source features of a specific
location in the input image. The model was trained using
pair-wise self-consistency learning (PCL), which calculates
the cosine similarity between all pairs of feature vectors
and applies consistency loss based on whether the locations
belong to the same source image. Pairs from the same source
image with low similarity scores and pairs from different
source images with high similarity scores are penalized.
The learned feature maps were fed into a non-linear binary
classifier for deepfake detection. The proposed approach was
evaluated on various datasets [6], [34], [36], demonstrating
its generalizability. However, the approach is ineffective on
fake images that maintain consistent source characteristics
throughout the entire image.

Instead of learning spatial features, Qian et al. [161]
introduced a novel framework called F3-Net, that incorpo-
rates decomposed image components with higher frequen-
cies and local frequency statistics extracted from densely
sampled spatial patches rather than learning spatial fea-
tures. The fusion of these branches is achieved through a
cross-attention module known as MixBlock. The F3-Net
model displays resilience in identifying deeply compressed
deepfake videos. Nevertheless, the proposed technique does
not generalize well across unseen deepfake datasets. Li et al.
[162] presented the Frequency-Aware Discriminative Feature
Learning framework (FDFL) as a solution to the issues
of uncertain feature differentiation with softmax loss and
the inefficiency of manually crafted features in detecting
forgeries. The authors introduced a Single-Center Loss (SCL)
to align neutral face features and repel manipulated ones.
Combining SCL with softmax loss yielded improved results
within the FDFL framework. However, it should be noted that
the model showed poor generalization for expression swap
datasets.

One of the biggest obstacles in training supervised
classifiers to detect deepfakes is keeping them up-to-date
with the latest forgery techniques. Even if they perform
well on specific manipulation methods, they may struggle
with new ones. However, transfer learning offers a solution
by allowing knowledge gained from one task to improve
the performance of related ones. Cozzolino et al. [163]
developed a CNN-based method to generalize different yet
related manipulations, even without specific training for
each manipulation. The approach utilized an autoencoder
to learn a forensic embedding capable of transferring
between different manipulation domains. The network was
trained to differentiate between real and fake images by
activating specific regions of the latent space. By utilizing
these activations, the method effectively determines the
authenticity of input images. Although the proposed approach
shows generalizability and works well with limited training
examples for new manipulations, it has not been evaluated
with compressed deepfakes to demonstrate its effective-
ness for robustness. Chen et al. [164] proposed a novel
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FIGURE 9. Example of multistream deepfake detection [156].

two-stage deepfake detection method called FeatureTransfer
that leverages transfer learning. This approach uses a
CNN model, pre-trained on a dataset of deepfake images,
to obtain transferrable feature vectors in both the source
and target domains. These feature vectors are then fed
to a domain-adversarial neural network based on back-
propagation for domain adaptation (BP-DANN) training.
The proposed approach exhibits improved and comparable
performance compared to previous methods for cross-domain
deepfake detection. However, the method is not an end-to-
end detection solution and demands a large-scale deepfake
dataset for pre-training the CNN, which can be time-
consuming. In the field of deepfake detection, researchers
have introduced multi-stream, multi-stack neural networks.
Figure 8 and 9 provide a comprehensive view of these models.
Multi-stream methodologies primarily rely on the fusion
of multi-level or multi-domain features. Zhou et al. [165]
proposed a method that combines an InceptionNet-based face
classification stream with a triplet stream network to extract
steganalysis features. The proposed approach enhanced
detection by incorporating low-level noise residual features
and high-level tampering inconsistencies. The final detection
score is computed by aggregating the output scores of both
streams. Nonetheless, it is worth noting that the method
does not perform well on high-quality deepfake videos [6].
Another multi-stream network was presented by Kumar et al.
[166]. The network consisted of five ResNet-18 models, each
dedicated to learning specific facial regions and capturing
local details. By combining the learning of these regional
areas with the full-face, the network improved its detection
performance in handling compressed input. However, the
method is computationally intensive and only evaluated
on expression swap deepfakes from the FF++ dataset [7]
without testing its generalizability on other datasets.

The deepfake multi-stack framework, proposed by Rana
et al. [156], is an ensemble of deep learning networks
for detecting manipulated videos. The model incorporates
several state-of-the-art detection methods into a single classi-
fication model. It was divided into two parts: i. Base- Learners
Creation, and ii. Stack Generalization. Seven deep learning
models (XceptionNet, MobileNet, ResNet101, InceptionV3,
DensNet121, InceptionReseNetV2, and DenseNet169) were
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FIGURE 10. Multi-modal deepfake detection approach [168].

used with ImageNet weights to create base learners. These
models were linked by replacing the top layer with two
output layers and the softmax activation function. Greedy
Layer-wise Pretraining (GLP) algorithms were used for
model training. Stack Generalization is a CNN model called
Deepfake Classifier (DFC) that learns from the predictions
of the base learner using sample data on which the models
were not trained. Stack Generalization combined with a larger
multi-head neural network to determine the best detection
result based on each base learner’s predictions. While the
model produced promising results, its generalization and
robustness capacity is unknown. Additionally, the model size
used in the proposed approach is quite large, which may
result in overfitting. Another ensemble approach proposed
by Bonettini et al. [167] captures high-level semantic
information and improves prediction performance using
different CNN models, including a modified version of
EfficientNetB4. Considering hardware and time constraints,
the solution is designed to be computationally efficient.
Moreover, an attention mechanism has been introduced
to identify the most informative parts of the input video
frame for classification, thereby improving the ensembling
process. Siamese training strategies have been explored
with a triplet margin loss to extract additional data
information and improve generalization capabilities. This
training method aims to learn a feature descriptor that
emphasizes the similarity between samples of the same
class, prioritizing descriptive features for each class and
ignoring less discriminatory features. In contrast, end-to-
end training extracts features without determining their
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significance. The proposed solution can analyze thousands of
videos in a limited time and requires less than one gigabyte
of storage space. Recent research has explored attention
mechanisms with CNNs for detecting deepfakes. Zhao et al.
[169] proposed a multi-attention deepfake detection network
that utilized EfficientNet-b4 as a backbone network to
merge low-level texture features and high-level semantic
features. They hypothesized that subtle low-level texture
differences disappeared in the deeper layer and showed
that enhancing texture features from shallow layers helps
stimulate learning of discriminatory features in the forged
region. They employed Bilinear Attention Pooling (BAP),
regional independence loss, and an attention-guided data
augmentation mechanism to regulate attention maps, capture
semantic regions, and non-overlapping discriminatory feature
information. The approach is not evaluated for robustness and
does not generalize well on unseen datasets [6]. In another
study, Ganguly et al. [170] proposed a deep learning model
enhanced with a visual attention technique for distinguishing
fake images from real ones. Their model incorporated a
lightweight soft-attention mechanism built on top of the
Xception network, focusing on identifying inconsistencies
in deepfake manipulations. However, the model encountered
challenges in accurately classifying expression swap face
images and real images with common features, such as closed
eyes. In [171], the authors introduced a Convolutional Vision-
Transformer (CVT) for deepfake detection, demonstrating
significant performance. However, this model still needs
improvement, and further research is required to enhance its
diversity, accuracy, and robustness as a solution. Zi et al. [98]
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TABLE 8. Summary of generic neural network deepfake detection approach. In cases of multiple networks and datasets, highly performed models and
datasets are highlighted in bold.

Reference  Model Dataset Best Performance Manipulation Type Detected  Capability
Face- Expression- G R 1
Swap Swap
[165] GoogLeNet Self-Built AUC = 0.99 v v
[157] Mesolnception-4 Self-Built AUC = 0.91 v v
[158] Capsule Network  FF++/DFD AUC = 0.96 v v
(VGG19)
[163] Auto-Encoder FF++(F2F), FF++(FS) ACC =0.94 v v v
[166] ResNet-18 FF++(F2F(Raw)), ACC =0.99 v v
FF++(F2F(C23)),
FF++(F2F(C40))
[162] XceptionNet FF++(Raw), FF++(C23), AUC = 0.99 v v
FF++(C40), CelebDF,
DFDC
[161] F3-Net FF++(C23), FF++(C40) ACC = 0.98 v v v
[171] CViT FF++, DFDC, UADFV ACC =0.93 v v
[174] OpenFace + Siamese DF-TIMIT(LQ,HQ), AUC = 0.96,0.94 v v v
network + MFCC DFDC
[168] 3D-ResNet+MFCC DF-TIMIT(LQ,HQ), AUC = 0.97,0.96 v v
DFDC-P
[156] XceptionNet, Self-Built ACC = 0.99 v v
InceptionV3,
InceptionResNetV2,
MobileNet, ResNet,
DenseNet
[98] ADDNet-2D FF++(DF(C23)), ACC =0.99 v
ADDNet-3D FF++(DF(C40)), DFD,
WDF, DF-TIMIT(LQ, HQ),
[167] EfficientNet, FF++, DFDC AUC = 0.94 v v v
XceptionNet
[164] BP-DANN DFDC-P, DF-TIMIT, FF++, AUC = 0.98 v v
DFD, Celeb-DF
[169] EfficientNet-B4 FF++(C23), FF++(C40), ACC =0.97 v v
DFDC, Celeb-DF
[159] EfficientNet-B2 FF++(Raw), FF++(C23), ACC = 0.99 v v v
FF++(C40)
[160] ResNet-34 FF++, DFDC-P, DFD, AUC =0.99 v v v
Celeb-DF, DF1.0
[175] R(2+1)D-18 FF++, DFDC AUC = 0.99 v v v v
[172] Efficient-BO and  FF++ ACC = 0.83 v v v
XceptionNet
[176] ResNet-50 and DF-TIMIT(LQ,HQ), AUC = 0.98,0.98 v v v
Inception-v3 FF++(C23), FF++(C40),
Celeb-DF
[170] XceptionNet FF++, Celeb-DF ACC = 0.70 v v
[173] XceptionNet FF++, Celeb-DF, DFDC AUC = 0.99 v v v
[177] Xception, ResNetl8, FF++, Celeb-DF, DFDC-P AUC = 0.99 v v v v

DenseNet121

suggested ADDNets, to identify deepfakes. There are 2D and
3D variants of the model developed to use attention masks
on pristine and fake faces. Compared to the state of the
art, their 2D version of ADDNet (ADDNet-2D) performed
better than the 3D model. However, this method searched for
inconsistencies throughout the image but found no correlation
between different parts of the face.

Contrastive learning techniques have gained attention in
the field of deepfake detection. Contrastive learning aims
to acquire features that can effectively differentiate between
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similar (positive) and dissimilar (negative) data points.
Xu et al. [172] presented a supervised contrastive (SupCon)
learning to capture the contrast between manipulated and
non-manipulated images. This method involves training an
encoder network with augmented data to generate normalized
embeddings. A projection network then uses these embed-
dings to compute the supervised contrastive loss. A linear
classifier is then trained on the learned representations
using cross-entropy loss. Heatmaps and Uniform Manifold
Approximation and Projection (UMAP) are utilized to
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provide an interpretable analysis. However, experimental
results have shown that this approach does not generalize
well on unseen manipulations. Another study by Dong et
al. [173] proposed a framework that combines intra-domain
and cross-domain information to improve the generalization
of deepfake detection. Their approach includes two sub-
networks, each processing a different view of the same input
image. It integrates an SRM (Steganalysis rich model) into
its data augmentation strategy to introduce frequency-aware
features into the RGB feature space. The encoder network
incorporates the Multi-Scale Feature Enhancement engine to
detect inconsistencies in shallow feature maps and establish
inter-region relationships. The model is trained using a
combination of cross-entropy loss and consistency loss,
minimizing invariance between different image views and
supporting supervised classification. While the approach
shows good generalization ability for high-quality datasets
[6], [35], it performs poorly with compressed video.

In deepfake detection, multi-modal approaches, as depicted
in Figure 10, demonstrate the potential of integrating
different data modalities, such as video segments and their
corresponding voice modalities, to enhance the robustness
of inferences. Mittal et al. [174] presented a novel approach
that simultaneously uses the audio (speech), and video (face)
modalities and the perceived emotion features extracted from
both modalities to detect any change in a video. The approach
adopts a Siamese network architecture, where a real video
and its deepfake counterpart were fed to obtain embedding
vectors representing the modalities and perceived emotions.
These vectors are then used to compute a triplet loss function
that aims to minimize the similarity between the fake
video modalities while maximizing the similarity between
the real video modalities. The results provide interpretable
insights, such as the discrepancy in perceived emotion
labels between the manipulated facial modality of the fake
video and the neutral speech modality of the real video.
However, this technique is unable to classify cases where
both speech and face modalities are manipulated. Chugh et
al. [168] proposed another multi-model framework based
on audio-visual dissonance for deepfake detection. Their
approach involves training a bi-stream network consisting
of visual and audio streams. Unlike the Mittal approach,
which relies on real, fake video pairs for training, this
approach uses a more traditional training protocol that is
not limited to such pairs. The visual stream uses a 3D-
ResNet architecture to extract features, while the audio
stream uses mel-frequency cepstral coefficients (MFCC). The
network is trained using a combination of contrastive loss
and cross-entropy loss, ensuring that the audio and visual
streams are closer to real videos and farther from fake videos.
The cross-entropy loss learns discriminative features for
each modality. The modality dissonance score threshold is
calculated during test inference by summing the dissimilarity
scores between audio and visual segments to indicate
authenticity or forgery. Experimental results demonstrate
that the proposed method performs well on datasets such as
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DFDC-P and DF-TIMIT. However, it should be noted that
the approach’s generalization ability on unseen datasets has
not been established. Zhou et al. [175] proposed a two-plus-
one stream model to distinguish video and audio deepfakes
together. Unlike multimodal frameworks [168], [174] that
merge inputs from different modalities, this technique
models the video and audio streams separately with their
labels. The proposed approach includes multiple centralized
connections between the video and audio streams. This
synchronization stream records the synchronization patterns
between modalities. Additionally, intra and inter-attention
mechanisms enhance temporal alignment between audio
and video presentations. The synchronization stream is
trained alongside the video and audio streams, and the final
prediction is based on the output of the synchronization
stream. To evaluate their approach, a new dataset was
created with manipulated audio by synthesizing speech from
existing video deepfake datasets. The proposed approach
demonstrates the ability to generalize to previously unseen
deepfake videos.

Yu et al. [176] introduced Facial Patch Mapping (FPM)
as an alternative approach to training CNN instead of
utilizing the entire face. FPM involves extracting smaller
patches or regions from the face, which are then employed
for training the CNN model. This technique utilizes a
mapping engine to assign the patches to different backbone
networks, reducing redundant convolution operations. The
FPM method applies BM pooling module with bilinear
interpolation to maintain consistent feature map sizes and
minimize quantization errors. The approach trains five patch-
based detectors, each focusing on specific local patches,
and integrates their predictions using a local voting scheme
to improve overall accuracy. While this part-based training
framework provides interpretability, it struggles to generalize
well on visually challenging datasets [6]. Hua et al. [177]
presented an interpretable face forgery detection model
by establishing patch-channel correspondence. The model
includes an encoder, a feature-rearranging layer, and a binary
classifier. The encoder processes a facial image and generates
a range of channels, each containing information about a
specific patch on the face. The feature-rearranging layer
enhances interpretability by decorrelating the channels and
aligning them with the corresponding patches. The model
offers evidence of forgery that links to specific patches
and channels, making the detection process more efficient.
However, the presence of strong channel correlation and
computational complexity poses limitations in terms of
quantifying interpretability and optimizing patch-channel
correspondence.

D. ANOMALY-BASED APPROACH

The majority of existing methods for deepfake detection
focus on binary classification, assuming a clear distinction
between real and fake samples. However, this binary
approach requires a large number of data representing fake
and authentic classes. The challenge becomes much more
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difficult with each new deepfake approach, as only a limited
number of examples for new manipulations are accessible
for training. Some techniques have approached the deepfake
detection problem as a single classification task, treating
real images as normal and deepfakes as anomalies. The
models are solely trained on authentic images and consider
fake images or videos as anomalies during evaluation.
Table 9 summarizes deepfake detection methods that rely on
identifying anomalous patterns.

The FakeSpotter research [178] follows an anomaly-based
technique to evaluate a facial recognition network’s neural
activity (coverage). They employed hierarchical neuron
behavior and found that their approach was highly resistant
to four basic perturbation attacks: Noise, Compression,
Resizing, and Blur. However, the approach is unable to
generalize well on DFDC dataset [35]. Ortiz et al. [179] also
followed this one-class learning paradigm to train VGGFace2
and ResNet50 models, combined with attribution-based
confidence (ABC) metric to distinguish deepfake faces from
real ones. This technique was not evaluated for high-quality
deepfake videos [6], [35].

Khodabakhsh et al. [180] developed a technique to
identify synthetic facial features. Their method involves
splitting the real image and using a PixelCNN+-+ model to
calculate the probability distribution of the pixel intensities.
By considering the relationship between previous pixels, they
create a probability matrix for the image that highlights the
logarithmic probability of observing each pixel’s intensity.
This additional information provides details about the
location and strength of the anomaly. A universal background
model (UBM) is trained with the PixelCNN-++ learned
features, and a simple classifier is trained with the UBM
output. The results show that the log-likelihood images
are efficient in detecting synthetic facial features while
reducing complexity. The model is tested on both seen and
unseen manipulated data to evaluate its overall performance.
However, the approach is not evaluated on challenging visual
datasets [6], [35]. Another interpretable deepfake detection
approach proposed by Wang [181] models the common
patterns of local motion features from real videos and detects
anomalies in fake videos by comparing the extracted motion
patterns with the real ones. They hypothesize that co-motion
patterns extracted from original videos follow the motion
pattern of facial structures and are homogeneous regardless
of video content variance but are less related in fake videos.
To implement this technique, motion features were extracted
from specific locations in the target video. These features
were then categorized and converted into a correlation matrix
to represent the motion patterns frame by frame. Each video’s
correlation matrices were grouped and weighted based on
their grouping performance to create a co-motion pattern.
This pattern represents the overall smoothness and correlation
of video motion. The effectiveness of this approach was
demonstrated on the FF++ dataset [7], which showed that
it can handle high compression and random noise. However,
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FIGURE 11. OC-Fakedect representation [182].

the generalization capability of the approach to high-quality
datasets has not been evaluated yet.

Khalid introduced the OC-FakeDect approach [182] for
detecting DeepFake images. The approach uses a one-class
Variational Auto-Encoder (VAE) to reconstruct authentic
facial images. An anomaly score for the input image is
calculated by comparing the mean component of the encoded
image to the mean component of the reconstructed image
using root mean square error (RMSE). Figure 11 illustrates
the process. The strategy generalizes well to various deepfake
datasets, although its robustness to perturbation attacks is
unknown. Cao et al. [184] proposed the Reconstruction
Classification Learning (RECCE) framework to capture and
interpret the discrepancies between real and fake faces.
This methodology combines reconstruction learning, multi-
scale graph reasoning, and reconstruction-guided attention to
learn compact representations of real faces. During training,
a reconstruction network incorporating white noise is used
to recreate real face images. A multi-scale graph reasoning
(MGR) module is introduced in the framework, which
combines latent features of encoder and decoder blocks in
a bipartite graph. By considering the spatial correspondence
and performing a multi-scale analysis, the MGR module
improves the encoder’s feature representations, thus enabling
reasoning about forgery cues. The methodology uses the
reconstruction difference to identify manipulated traces and
employs a reconstruction-guided attention (RGA) module
that focuses on probable forgery regions, computed through
a difference mask. The evaluation results suggest that it
is possible to distinguish fakes with unknown patterns by
examining common features of real faces. Additionally, the
approach demonstrates robustness against various perturba-
tions, such as compression, blur, contrast, saturation, and
pixelation.

Cozzolino [183] proposed ID-Reveal method to detect
fake face videos by analyzing an individual’s unique facial
expressions during speech. ID-Reveal consists of three key
components: a morphable 3D model to generate compressed
representations of each frame, a temporal ID network to cre-
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TABLE 9. Summary of anomaly-based deepfake detection approach. Highly performed classifiers and datasets are highlighted in bold.

Reference  Model Dataset Best Performance _ Manipulation Type Detected  Capability
Face- Expression- G R 1
Swap Swap
[178] VGG-Face3 +  FF++(DF), F1=0.98 v v
ResNet50 Celeb-DF, DFDC

[179] ResNet50 DF-TIMIT Loss = 0.00768 v

[180] Pixel CNN++ FF++(NT), ACC =0.98 v v v v
FF++(DF),
FF++(FS),
FF++(F2F)

[181] AdaBoost FF++(Raw), AUC = 0.98 v v v v
FF++(C23),
FF++(C40),
FF++(C23+noise)

[182] VAE DFD, FF++ F1=10.98 v v

[183] 3DMM-+ResNET DFD(C23,C40), AUC =0.96,0.90 Vv v v
DFDC-P, Celeb-
DF

[184] Encoder-Decoder FF++(C23), AUC = 0.99 v v v v
FF++(C40),
Celeb-DF, WDF

[185] ResNet50 DF-TIMIT, AUC = 0.99 v v v
DFDC-P, KoDF

ate an embedded vector for facial motion and pose informa-
tion, and a modified ResNet architecture with an adversarial
training strategy to incorporate behavioral information. The
network is trained only on real videos of different subjects.
During testing, the approach requires a set of pristine videos
of the target person in addition to the test video. Using these
pristine examples, it calculates a distance metric to the test
video using the embedding of the temporal ID network for
anomaly detection. This method can detect facial reenactment
even with strong video compression. However, it relies on
the target person’s corresponding real video to detect an
anomaly in the fake video, making it unsuitable for real-world
scenarios. Another anomaly-based technique proposed by
Cozzolino et al. [185] focuses on exploiting the audio-visual
features of the portrayed individual. The proposed technique
trains its model on a large dataset of real videos consisting
of over 5,000 identities with associated audio from the
Voxceleb dataset [95]. The training uses a contrastive learning
approach to extract different embeddings for moving faces
and audio segments. In the training phase, contrast losses
are used for individual modalities (audio or video) and
a common contrast loss considering both modalities. The
multi-way matching loss compares positive matches with all
negative matches, enhancing learning stability. During the
test, the method calculates POI (person of interest) similarity
indices between the features of the target video and a set
of reference videos of the same person of interest. These
indices are normalized using the mean and standard deviation
values calculated from the reference set to estimate the
probability of a false alarm and to make decisions about the
video’s authenticity. The performance of the approach can be
improved by using a diverse set of reference videos rather
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than increasing the quantity of data. The approach is robust
to adversarial noise attacks. However, facial reenactment
manipulations pose a greater challenge for the method than
face-swapping, primarily due to their ability to better preserve
the characteristics of the manipulated identity.

E. SPATIOTEMPORAL APPROACH
Techniques in this category focus on observing that consec-
utive video frames exhibit spatial and temporal consistency
in pixel values. However, the deepfake generator performs
frame-by-frame processing and introduces temporal discrep-
ancies in the synthesized video. As a result, manipulated
regions within a frame lack spatiotemporal consistency
with neighboring frames. These inconsistencies include a
sharp contrast and brightness change within small facial
areas, inconsistent illumination choices, and unnatural mouth
and eye movements across frames within the same video,
as illustrated in Figure 12. Table 12 summarizes techniques
for detecting deepfakes that involve spatiotemporal features.
Guera [39] proposed a recurrent algorithm that analyzes
consistent motion patterns across adjacent frames. The
algorithm utilizes a combination of convolutional neural
networks (CNN5) to extract frame-specific features and long
short-term memory (LSTM) networks to analyze image
sequences. A fully connected network is then employed for
classification using the generated sequence descriptor. The
algorithm’s effectiveness was evaluated on a self-built face
swap video dataset comprising 600 videos and performed
well even on short video sequences. However, due to the
unavailability of a large dataset at the time of the research,
the results were inconclusive regarding generalizability.
Sabir et al. [186] developed a method to detect temporal
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FIGURE 12. Examples of spatiotemporal inconsistencies in consecutive
frames.

incoherence in deepfake videos by extracting facial features
using a combination of CNN and recurrent neural network
(RNN). Unlike Guera’s approach [39], Sabir et al. trained
their model end-to-end, combining CNN architectures such
as ResNet [129] and DenseNet [136] with RNN networks.
After examining different strategies for aligning and merging
CNN features, they discovered that bidirectional-recurrent-
DenseNet, aided by landmark-based face alignment, per-
formed well on FF++ videos [7]. However, the method faced
challenges with heavily compressed videos that disrupted
frame continuity.

Using optical flow, Amerini et al. [187] proposed a tech-
nique to identify discrepancies between frames in deepfake
videos. They utilized the features extracted from optical
flow fields as input to a CNN model to classify deepfake
and original videos. The evaluation using the FF++- dataset
[7] demonstrated that this approach achieves comparable
classification accuracy to state-of-the-art methods. However,
it is important to note that the optical flow method
has limitations in cases where assumptions of brightness
constancy and small object motions are violated [188].
Consequently, the approach is unsuitable for deepfake videos
involving fast-moving objects or post-processing adjustments
in brightness.

Wu [189] introduced the SSTNet model, a novel approach
for detecting face manipulation. This model combines spatial,
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steganalysis, and temporal features to achieve high accuracy,
especially for compressed videos. The model first extracts
faces from each frame to create a face stream. Then, the
spatial and steganalysis features of the faces were extracted
and combined to form the input for the module that extracts
temporal features. Steganalysis suppresses image content
with noisy residuals, resulting in a more concise and precise
statistical explanation. The combination of residual infor-
mation and temporal characteristics yields good detection
accuracy, particularly for compressed videos. Montserrat et
al. [190] proposed a similar method that combines RNN and
CNN to extract visual and temporal features. Only frames
displaying human faces were fed into the network, and a
weighting method, along with a gated recurrent unit (GRU),
is used to select the most informative frames for change
detection automatically. This approach can process videos
quickly, taking less than eight seconds on a single GPU.
The weighting mechanism improves detection performance,
even for high-quality deepfake videos [34]. Masi [2] also
presented an approach that involves a recurrent network with
two branches that remove facial content while propagating
the original information. They apply Gaussian Laplacian
amplification at a bottleneck layer to enhance multiband fre-
quencies. The method analyzes aligned video face sequences,
extracts discriminative features using a backbone network,
and employs bi-directional LSTM for recurrent modeling
supervised by a novel loss function. Experimental results
on various datasets demonstrate this detection algorithm’s
effectiveness and generalization capabilities. Chen et al. [193]
introduced the Xception-LSTM algorithm, which utilizes a
novel spatiotemporal attention mechanism and Convolutional
Long Short-Term Memory (ConvLSTM) to leverage intra-
and inter-frame information. The spatial and temporal
attention mechanism enhances spatiotemporal correlations
before dimension reduction with XceptionNET. Additionally,
ConvLSTM incorporates frame structure information to
capture temporal dynamics. Compared to other RNN-based
approaches [39], [186], this method demonstrates reduced
computational requirements. However, spatiotemporal atten-
tion and increased model complexity increase the risk of
overfitting, and their generalization ability is somewhat
reduced.

Detecting spatiotemporal deepfakes typically involves
using deep recurrent neural networks. These models learn
video encodings in two stages: spatial features and sequential
associations. Nguyen [192] utilizes a 3DCNN to simultane-
ously convolve spatial and temporal dimensions, allowing
for the extraction of spatiotemporal features from just a
few images. This technique also demonstrates robustness to
compressed videos. However, it’s challenging to determine
whether spatial or temporal information contributes to the
model’s performance. Additionally, the performance of this
method aligns with that of visual artifact based detectors,
which exhibit high accuracy but poor generalization. Tariq et
al. [191] proposed a deepfake video detector utilizing trans-
fer learning. Their approach introduced the Convolutional
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TABLE 10. Summary of spatiotemporal approach for deepfake. Highly performed classifier and dataset are shown in bold.

Reference  Model Dataset Best Performance Manipulation Type Detected  Capability
Face- Expression- G R 1
Swap Swap
[39] CNN +LSTM  Self-Built ACC =097 v
[186] CNN+RNN FF++(DF), FF++(F2F), ACC =0.96 v v
FF++(FS)
[187] VGG16+ FF++ ACC = 0.81 v v
ResNet50
[189] SSNET FF++(C23), FF++(C40) ACC =0.98 v v v
[190] CNN+LSTM DFDC ACC =091 v v
[191] CLRNet FF++(DEFS,NT,F2F), F1=10.99 v v v
DFD
[2] Bi-directional FF++(C23), FF++(C40), AUC = 0.99 v v v v
LSTM Celeb-DF
[41] DPNET FF++(C23), FF++(C40), EER=3.41% v v v v
DFD, Celeb-DF, DF-1.0 AUC = 0.99
[192] 3DCNN VidTimid(HQ,LQ), ACC =0.99 v v
FF++(C23,C40)
[47] MesoNet+ FF++(DF(C23,C40)), ACC = 0.84,0.88, V v v
ResNet FF++(F2F(C23,C40)), ACC = 0.86,0.79
FF++(FS(C23,C40)),
FF++(NT(C23,C40)),
Celeb-DF(C23,C40))
[193] Attention+ FF++(DF), FF++(FS), ACC =1.0 v v
XceptionNet+ FF++(NT), FF++(F2F),
ConvLSTM Celeb-DF, DFDC
[194] Transformer FF++(C23), FF++(C40), ACC = 0.99 v v v v Vv
Celeb-DF, DFDC
[195] ResNet34 DFDC-P, FF++(C23), AUC = 0.99 v v v
FF++(C40),  Celeb-DF,
WDF
[196] Graph FF++(DF NT,F2EFS), AUC = 0.99 v v v
Network Celeb-DF, DFDC-P

LSTM-based Residual Network (CLRNet), which combines
Convolutional LSTM and Residual Network architectures.
CLRNet used 3D tensors to extract spatial information
across consecutive frames, and then ConvLSTM cells were
employed to capture temporal dependencies between frames.
The core components of CLRNet consist of two types
of building blocks, namely CL Block (ConvLSTM) and
ID Block (Identity), resembling those found in ResNet.
Through an evaluation of the CLRNet model using different
transfer learning strategies, the authors demonstrated the
generalizability of their approach compared to existing
methods. However, it is important to note that methods
based on 3D convolutions tend to have a significantly higher
number of parameters than their 2D counterparts, making
them computationally intensive.

To provide insight into deepfake detection predictions,
a novel approach called Dynamic Prototype Network
(DPNet) [41] has been proposed. DPNet integrates a
prototype layer and a temporal logic verifier with a neural
network architecture. This combination captures key features,
including erroneous motion and temporal artifacts. By learn-
ing prototypical temporal inconsistencies within the latent
space, the network organizes them into groups based on their
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proximity. During prediction, DPNet correlates a small set
of learned dynamic prototypes with a test video, leading to
a decision. Notably, the prototypes are matched to the most
representative video patch in the training dataset, yielding a
human-understandable representation of the trained dynamic
prototypes. DPNet exhibits resilience to compressed, noisy,
and distorted videos from the FF++ [7] and DF-1.0 [36]
datasets. However, the approach does not generalize well on
visually challenging dataset [90].

Hu et al. [47] introduced a deepfake detection approach
designed explicitly for compressed videos, leveraging both
temporal and frame-level properties. Their approach utilizes
both frame-level and temporal properties. It combines a
frame-level stream, called MesoNet stream [157], with data
removal of redundant links to reduce faulty connections
and minimize video compression artifacts. To reduce the
size of the training dataset and decrease training time and
cost, they focus on faces within frames instead of using
the entire frames in their frame-level stream. Additionally,
their technique incorporates a temporal stream that analyzes
inconsistencies between frames by examining time-varying
residual properties using ResNet [129]. The combination
of these two streams determines the authenticity of the
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video. The proposed technique’s effectiveness is evaluated
through the Celeb-DF [6] and FF++ [7] datasets. The results
demonstrate that the proposed method is computationally
efficient and robust to different compression rates, indicating
good cross-compression detection performance.

Zhao et al. [194] proposed a novel architecture of
Interpretable Spatial-Temporal Video Transformer (ISTVT)
for deepfake detection. This architecture includes a feature
extractor that utilizes Xception blocks to extract texture
features from sequences of frames. The self-attention module
is divided into temporal and spatial components to address
temporal inconsistencies, which is further enhanced by a self-
subtraction mechanism. Moreover, the relevance propagation
rules determine the relevance of the temporal and spatial
self-awareness modules in each transformer block. This
approach enables the creation of class-activation heatmaps
for both spatial and temporal self-attention, providing
interpretability. The ISTVT architecture displayed both
robustness to perturbations such as JPEG compression,
downscaling, and random dropout, as well as generalization
ability on unseen datasets. However, the approach is compu-
tationally expensive.

A framework called Multi-Rate Excitation Network
(MRE-Net) was introduced by Pang et al. [195] to detect
deepfakes by capturing spatial and temporal information.
To achieve this, MRE-Net uses a Bipartite Group Sampling
(BGS) strategy that divides the video into multiple groups
with varying sampling rates to identify inconsistencies
across different distances. The framework consists of the
Momentary Inconsistency Excitation (MIE) module and the
Longstanding Inconsistency Excitation (LIE) module. The
MIE module analyzes RGB frames and motion flows within
a group, detecting short-term temporal inconsistencies.
Meanwhile, the LIE module detects long-term temporal
inconsistencies between neighboring groups. By integrating
the outputs of both modules, MRE-Net predicts the authen-
ticity of the video. The evaluation of MRE-Net demonstrates
its performance in generalizing to unseen datasets of high
quality [6], [98]. Additionally, MRE-Net exhibits robustness
in handling video compression artifacts and challenging
WDF dataset [98].

Shang et al. [196] developed a Spatiotemporal Graph Net-
work (STGN) that can detect facial manipulation and forgery
in videos. Their approach utilizes the Spatial Relation Graph
Unit (SRGU) to model spatial relationships and capture
global spatial inconsistencies through graph convolution. The
Temporal Attention Graph Unit (TAGU) treats features from
different frames at the same spatial location as a fully con-
nected graph, using a cosine distance-based similarity matrix
to detect temporal incoherence. The STGN architecture
includes projection blocks, chart blocks, and back-projection
blocks, which create a latent spatiotemporal relation space,
stack SRGUs, and TAGUs to model inconsistencies, and
map features back to the original space. Feature aggregation
is achieved through global spatiotemporal average pooling,
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followed by prediction using a fully connected layer. The
approach demonstrates generalization capacity for unseen
manipulation. However, STGN incurs computational costs
due to increased model parameters and additional graph
convolution operations.

F. DEEPFAKE LOCALIZATION APPROACH

In contrast to binary classification deepfake detection models,
deepfake localization approaches not only determine the
authenticity of the video but also identify the exact facial
areas that have been manipulated. Accurately localizing
regions in facial images allows a better understanding of
deepfake forgeries and the type of manipulation used, such as
face or expression swaps. Table 11 summarizes the deepfake
localization approaches.

Nguyen [197] developed a multi-task learning approach
using autoencoders to detect and locate modified regions
in facial images. Despite using a Y-shaped decoder to
share information between tasks, the overall performance
improvement was insignificant. Dang et al. [198] presented
a CNN-based deepfake detection and localization approach
incorporating an attention mechanism to optimize feature
maps in the classifier model. Their proposed attention map
is easy to build and can be integrated into existing back-
bone networks by adding a single convolutional layer that
masks high-dimensional features, improving classification
performance and reducing error rates. The effectiveness
of their methodology was evaluated using a combination
of the FF++ dataset [7] and an online video collection.
Comparing this approach fairly with other techniques is
difficult due to the diverse experimental protocols considered
in the proposed approach. Roy-Chowdhury [199] proposed
an approach to detect and localize fake facial manipulation
based on a Face Expression Recognition (FER) system.
The proposed approach uses a two-stream network to detect
tampering. First, the FER stream extracts important infor-
mation about facial expressions. Then, the second stream,
responsible for manipulation detection and segmentation,
uses an encoder-decoder architecture to locate manipulated
regions within the facial image. While promising, this
approach showed a high propensity to overfit certain datasets
and is not transferrable to other unseen deepfakes.

In contrast to the encoder-decoder architecture for deep-
fake localization, the Face X-ray technique [42] adopted
a different approach by considering noise and error levels
analysis to identify blending artifacts. A fully convolutional
neural network was trained to detect changes around the
boundaries of deepfake generated faces with manipulated
identities and expressions. The localization results of this
approach are illustrated in Figure 13. While this approach
aimed to generalize well on high-quality deepfake videos, its
performance on low-quality data was negatively affected by
compression, noise, or blur, which could remove blending
boundaries and result in poor localization accuracy. In
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FIGURE 13. Localization of deepfake facial manipulation on FF++
dataset [42]. DF (Deepfake) and FS (Faceswap) refer to face swap
manipulation, while NT (NeuralTexture) and F2F (Face-To-Face) represent
expression swap manipulation.

deepfake detection and localization, traditional approaches
have commonly followed a two-step pipeline involving face
detection followed by face forensics. However, this approach
suffers from the limitations of employing multiple models
and redundant feature extraction. To address these challenges,
Peng Chen et al. introduced the DLFMNet framework [200].
DLFMNet takes a different approach by integrating face
detection and face forensics into one model. The framework
leverages the complementary capabilities of the RGB and
noise domains to capture manipulated cues. It incorporates
constrained convolution layers to extract local noise features
from RGB images and employs bilinear pooling to fuse
multi-domain features from both streams. The Manipulation
Classification Branch (MCB) at the output performs face
forensics using RolAlign features from both RGB and
noise streams. The Manipulation Localization Branch (MLB)
predicts pixel-level masks for the identified manipulated
regions. The effectiveness and robustness of the DLFMNet
framework were evaluated using the FF++ dataset. The
results demonstrated that DLFMNet can detect fake faces,
even in videos containing multiple faces. However, it is
important to note that the performance of DLFMNet on
high-quality deepfakes remains unassessed [6], [35]., leaving
room for further investigation in that area.

Jian Wang et al. [202] proposed a Localization Invariance
Siamese Networks (LiSiam) to ensure consistent localization
across images with varying levels of quality degradation.

117896

LiSiam utilized data augmentation techniques to generate
degraded images, which were processed by Siamese net-
works to produce segmentation maps. A novel localiza-
tion invariance loss function was introduced to maintain
consistent localization despite different degradation levels.
Additionally, a mask-guided transformer localized sus-
pected manipulated regions and their surroundings, while a
multi-layer perceptron head incorporated co-occurrence fea-
tures to make the final binary decision. LiSiam demonstrated
robust and generalized localization of modified regions.
However, the approach’s effectiveness could be influenced by
the diversity and quality of the augmented data, which should
adequately represent the variations in deepfake manipulation.
Waseem et al. [204] presented a novel encoder-decoder
architecture based on a multi-attention mechanism designed
for manipulation localization and detection. The multi-stream
network concurrently captures spatial and frequency-related
patterns to address deepfake detection in images with varying
compression degradation. The proposed methodology uses
spatial and channel attention blocks in an autoencoder stream
to localize forged face regions at the pixel level. In parallel,
another stream integrated spectral features with localized
spatial attributes from the decoder layer through Bilinear
pooling, resulting in a detection label. Although the method
is resilient to compression-induced distortions, it lacks broad
applicability across high-quality deepfake datasets.

M2TR, a multistream, multiscale transformer, was devel-
oped by Wang et al. [203] for deepfake detection and localiza-
tion. This approach employed a two-stream architecture, with
the RGB stream capturing inconsistencies between different
regions within an image at multiple scales in the RGB
domain, while the frequency stream used learnable frequency
filters to filter out forged features in the frequency domain.
A cross-modality fusion block merges information from both
streams. The integrated features are then processed by fully
connected layers and a decoder network for binary classi-
fication and localization of manipulated regions of the face
image, respectively. Although computationally demanding,
the approach has demonstrated acceptable generalization and
robustness on high-quality deepfake videos.

Yu et al. [201] proposed a method for detecting and
locating fake faces by identifying common traces left by
different forgery methods, such as face boundary warp,
PRNU noise, and biological signals. The approach involves
training Specific Forgery Feature Extractors (SFFExtractors)
to extract distinctive features for known forgery methods and
a Common Forgery Feature Extractor (CFFExtractor) to learn
shared characteristics among the SFFs and generate Common
Forgery Features (CFFs). The optimization of the CFFExtrac-
tor involves multiple modules and loss functions, including
feature similarity loss, domain classification loss, forgery
classification loss, forgery location loss, and Automatic
Weighted Loss (AWL). The Forgery Classification Module
(FCM) and Forgery Location Module (FLM) perform forgery
classification and localization tasks using the generated
CFFs. The method demonstrates improved performance
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TABLE 11. Summary of deepfake localization approach. Highly performed classifiers and datasets are highlighted in bold.

Reference  Model Dataset Best Manipulation Type Detected  Capability
Performance
Face- Expression- G R 1
Swap Swap
[197] Encoder-Decoder  FF++ AUC = 0.76 v v
[198] VGGl16 and  Self-Built(FS), EER=3.1 v v
XceptionNet FF++(F2F), UADFV, AUC = 0.99
Celeb-DF EER= 34
AUC = 0.99
[42] HRNet FF++, DFDC-P, AUC = 0.98 v v v
DFDC, Celeb-DF
[200] ResNet50 FF++(F2F(Raw,C23)), AUC = 0.99 v v v
FF++(DF(Raw,C23)),
FF++(FS (Raw,C23)),
FF++(NT(Raw,C23))
[199] Xception-Net +  FF++(C23), ACC = 0.99 v v
FER FF++(C40), DFDC
[201] EfficientNetBO, FF++(C23), AUC = 0.92 v v v
EfficientNetB3, FF++(C40),
Resnet50 FF++(Raw), DFDC,
Celeb-DF
[202] XceptionNet Celeb-DF, AUC = 0.99 v v v v
FF++(Raw),
FF++(C23),
FF++(C40)
[203] Transformer FF++, Celeb-DF, FN ACC = 0.99 v v v
[204] ResNet FF++(C23), AUC=0.97 v v v
FF++(C40), Celeb-

DF, DFDC-P, DFD

in deepfake manipulation detection. However, there are
limitations to consider. The approach relies on the assumption
that deepfake forgery techniques always leave similar traces.
The proposed approach cannot detect and locate forgery if a
forgery method does not share such common characteristics.
Second, the diversity of original video sets can affect the
system’s performance.

V. DISCUSSION

The analysis shows that an increasing number of researchers
are utilizing deep learning approaches instead of traditional
handcrafted features-based techniques. This is because of
the recent improvement in deepfake quality, which results in
minimal traces and anomalies within the intrinsic feature of
deepfake images or videos. It is harder to perform handcrafted
feature extraction. Additionally, with the introduction of more
efficient CNN architectures in recent years, many researchers
have shifted their focus to learned feature extraction. Table 12
displays the experimental parameters obtained from the
information presented in the referenced detection papers.
Most of the detection approach utilizes Cross-entropy loss
and Adam optimizer for their model training.

Different researchers use various metrics, such as Accu-
racy, F1-Score, AUC, EER, etc., to measure deepfake detec-
tion performance. Hence, a common benchmark is required
to compare different tampering detection algorithms. The
datasets used to evaluate the performance of deepfake
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detection algorithms must be standardized. To improve the
evaluation of algorithms, the datasets must contain fake
images and videos with a variety of different tampering
attacks to increase the diversity of the test set.

VI. FUTURE DIRECTIONS

With the advancements in deep learning, creating deepfakes
has become easier and social media platforms have made
it easier for them to spread rapidly. Even if deepfakes are
not shared widely, they can cause negative consequences.
To address this issue, researchers are working on developing
algorithms to detect deepfakes. Although significant progress
has been made in this area, there are still various challenges
and limitations that researchers need to overcome.

With new deepfake generation methods emerging, detect-
ing deepfakes will become increasingly challenging, and
the accuracy and efficiency of current deepfake detection
approaches will decline. Most existing deepfake detection
methods for face and expression swaps train and evaluate
their performance on datasets that mainly include first-
and second-generation deepfake datasets. These datasets,
such as FaceForensic++ [7], DeepFake-TIMIT [90], and
DFDC-P [34], contain low-quality controlled deepfakes with
obvious artifacts, making them easy to detect. These artifacts
can be removed by using post-processing techniques on
the manipulated video to make them appear more natural
to humans while reducing detection performance [205],
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TABLE 12. Overview of experimental configuration for analyzed deepfake detection methods, with BS, LR, TE, LF, and Opt denoting Batch Size, Learning
Rate, Training Epochs, Loss Function, and Optimizer respectively.

Reference  Input Size Parameters Configuration GPU/CPU
BS LR TE LF Opt
[125] 224 x 224 64 le—3 100 Cross-entropy SGD -
[21] 224 x 224 16 le—2 100 SGD, -
ADAM
[43] 256 x 256 - - - - ADAM -
[141] 128 x 128 - le=* 5000, - ADAM -
10000
[143] - 32 le—2 500 Cross-entropy ADAM Xeon ES5-1650-v4 CPU and
NVIDIA GP102L

[133] - - le—3 200 - - -
[123] 256 x 256 32 le=3 40 - SGD Xeon W-2123 CPU
[124] - - 2¢3 - - ADAM -

299 x 299 - - - Cross-entropy, logis- - -
[126] tic
[117] 64 x 64 600 le=* 60 Multi-margin angular ~ADAM NVDIA Tesla-P100

loss
[145] - 32 le=2 30 Cross-entropy and At-  SGD GTX-1080Ti
tention mask

[137] 96 x 96 32 2¢~4 10 Cross-entropy ADAM -
[127] 256 x 256 32 le—4 100 Cross-entropy ADAM Intel Xeon(R) E5-2630

@2.20GHz CPU, Nvidia
GeForce GTX 1080 Ti

[120] 256 x 256 32 le—2 25 - ADAM NVIDIA P5000
[138] - 1024 le=3 - - ADAM -
[150] 200 x 200 - - - - - Intel(R) Core(TM) i7-8750H
CPU
[151] 256 x 256 32 2¢~4 - AM-Softmax ADAM -
[153] 224 x 224 64 le—2 50 Cross-entropy ADAM Intel (R) Xeon (R) CPU ES5-
2620 V4 and two NVIDIA
GTX Titan XP GPUs
[154] 256 x 256 - - - - - Nvidia GeForce RTX 2080 Ti,
Intel Core 17-9700 K CPU
[165] 299 x 299,128 x 128 32 le—t 16k Triplet loss - -
[157] 256 x 256 75 le=3 - - ADAM -
[158] 128 x 128 - - - Cross-entropy -
[163] 256 x 256,128 x 128 64 le—3 - Mean squared error ADAM -
[166] 224 x 224 32 le=* - Self-Designed  and ADAM -
Cross-entropy
[162] - 64, 128 2¢~3 36 Single-center SGD -
[161] 299 x 299 128 2¢~3 150k Cross-entropy SGD -
[171] 224 x 224 32 0.1e73 50 log-loss ADAM -
[174] - 128,32 le—2 500,100  Triplet ADAM NVIDIA GeForce GTX1080 Ti
[168] 3 X 25x224x224 16 0.1e73 50 Cross-entropy ADAM Nvidia Titan RTX GPU 32
[98] 224 x 224 32 le=* - Cross-entropy ADAM -
[167] 224 x 224 32 le™® 20k Triplet-margin ADAM Intel Xeon E5-2687W-v4 and a
NVIDIA Titan V
[164] - 128 le=* 10 - ADAM -
[169] 380 x 380 48 le™3 - Regional- ADAM 4 RTX 2080Ti GPUs
independence
[159] 224 x 224 48 le—3 100k Cross-entropy, SGD NVIDIA GTX GeForce 1080
Adversarial-Loss Ti
[160] 256 x 256 128 5e~5 150 Cross-entropy ADAM -
[175] - 64 5e~4 - Cross-entropy ADAM -
[172] 224 x224,299x299 - - 30 Contrastive and  Greedy -

Cross-entropy
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TABLE 12. (Continued.) Overview of experimental configuration for analyzed deepfake detection methods, with BS, LR, TE, LF, and Opt denoting Batch
Size, Learning Rate, Training Epochs, Loss Function, and Optimizer respectively.

Reference  Input Size Parameters Configuration GPU/CPU
BS LR TE LF Opt
[176] - 16 2¢~4 200 Cross-entropy ADAM NVIDIA TITAN V GPU
[170] 299 x 299 32 Dynamic 50 - ADAM Nvidia Tesla K80
[173] - 32 2¢—4 - Cosine-similarity, ADAM NIVIDA GeForce RTX 3090
Consistency, Cross-
entropy
[177] 256 x 256 32 5e~4 40 Cross-entropy SGD -
[178] - - le=* - Cross-entropy SGD 2.20GHz Xeon CPU with
260GB RAM and two NVIDIA
Tesla P40 GPUs with 24GB
[180] 64 x 64 - le=* 25 - - -
[182] 100 x 100 128 le=3 300 Cross-entropy -
[184] - 32 2¢~4 - Metric-learning, ADAM -

Reconstruction, and
Cross-entropy

[185] - 2304 le—4 12 Contrastive ADAM -
[39] 299 x 299 20,40,80 1le® - - ADAM -
[186] 224 x 224 - le=*- - Cross-entropy ADAM -
[187] 224 x 224 256 le—* - - ADAM -
[189] - - le™* - Cross-entropy ADAM -
[190] 224 x 224 2000 le—3 - ArcFace, and Cross- ADAM -
entropy
[191] 240 x 240 - le—® 100 Cross-entropy ADAM Intel(R) Xeon(R) Silver 4114
CPU@2.20GHz with 256.0GB
RAM and NVIDIA GeForce
Titan RTX.
[2] - - le=3 50 Self-Designed ADAM -
[41] - - 2¢™4, - Cross-entropy, - -
le=3 Clustering,
Separation, and
Diversity
[192] 128 x 128 x 16 x 3 20 le=* 30 - SGD -
[47] 256 x 256 8 le—3 - Cross-entropy ADAM NVIDIA Titan Xp
[193] - 1 le=5 - Cross-entropy ADAM -
[194] 300 x 300 - 5e~4 100 Cross-entropy SGD 4 Tesla V100
[195] 320 x 320 3,5 le—? 50 Focal SGD NVIDIA A100
[196] 224 x 224 4 le=4 90 Cross-entropy SGD -
[197] - 64 le—2 - Cross-entropy and Re- ~ ADAM -
construction
[198] - 16 2¢~4 - - ADAM NVidia GTX 1080Ti
[42] 256 x 256 32 204 200k Cross-entropy ADAM
[200] 640 x 640 16, 8 10e~% 40k Box-regression, ADAM NVIDIA V100 (32GB)
Cross-entropy, Focal
[199] - 16 le™3 20 Cross-entropy, ADAM -
Segmentation
[201] 320 x 320 25 le=* 20 Triplet, Cross- - -
entropy, Dice,
Automatic Weighted
[202] 299 x 299 32 2e3 324k Self-Designed, Cross- - -
entropy
[203] 320 x 320 24 le=* 90 Cross-entropy, ADAM -
Segmentation,
Contrastive
[204] 224 x 224 16 le=4 - Cross-entropy, L2 ADAM NVIDIA GeForce RTX-3060
Ti
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[206]. However, existing deepfake detectors rarely use
high-quality deepfakes like OpenForensics [102], ForgeryNet
[101], and DeepForensic 1.0 [36] for assessing the detection
approach’s robustness and generalization. To improve the
effectiveness of deepfake detection models, they should be
trained on datasets from various sources, including examples
of both new and older deepfake datasets. In the future,
researchers should focus on developing reliable, scalable, and
generalizable detection techniques to address these issues.

Most deepfake detectors primarily focus on ensuring their
robustness against compression, while they often overlook
other types of perturbation attacks. Even minor changes in the
input video or image can significantly affect the performance
of detection models, causing them to deviate from expected
behavior. Moreover, recent adversarial techniques aimed at
misleading deep neural network-based detectors have further
complicated the task of deepfake detection [111], [112],
[114]. Adversarial samples are instrumental in enabling deep-
fake data to evade detection. Adversarial attacks are classified
into two threat models: black-box and white-box, depending
on the attacker’s access and knowledge of the target detec-
tor. Reference [111] highlights vulnerabilities in deepfake
detection by employing adversarial attacks to confuse neural
network classifiers. The white-box attack reduces a specific
classifier’s accuracy to nearly 0% [111]. Using the Distortion-
minimizing attack, only a small percentage (4%11%) of pixel
modifications are needed to misclassify 89.7%100% the fake
images [111]. In real-world scenarios, the black-box transfer
attack is more relevant as the adversary lacks knowledge
of the specific detection method. The authors assume the
adversary is aware of the defense strategy. They develop an
attack that achieves higher accuracy reduction and diminishes
the classifier’s AUC from 0.96 to 0.22 [111], rendering
it unreliable. As deepfake detection relies more on neural
network training, there is a valuable opportunity for research
to explore robust defense mechanisms against adversarial
attacks in the deepfake domain. This area holds immense
potential for further investigation.

In various situations, real-time detection of fake facial
content is crucial. Detection methods that are very accurate
but take a long time to infer are unlikely to find widespread
acceptance. As the number of social media users continues
to grow and the creation and use of deepfakes become more
accessible, the need for computationally efficient deepfake
detection becomes even more important. Real-time function-
ality is essential for these approaches, as deepfake technology
has the potential to cause irreversible damage. Prioritizing
real-time actions is necessary because damage can be done
before people realize it’s fake, and the speed of social media
can amplify the impact. Since smartphones play a crucial role
in sharing content on social media, it is imperative to develop
fast, reliable, and smartphone-compatible deepfake detection
methods.

Compared to face-swap datasets, publicly available
expression-swap datasets are lacking. In order to improve
the accuracy of deepfake detection methods, it is crucial
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to train models to recognize a wider range of manipulated
facial expressions, which can significantly increase the
effectiveness of deepfake detection systems in identifying
complex videos and images. Therefore, researchers should
consider creating a more comprehensive and diverse expres-
sion exchange data set in the future.

As deepfake manipulations continue to improve, it becomes
increasingly difficult to rely on a single solution to combat
the multitude of deepfake threats. Addressing this problem
effectively requires a combination of multiple detection
systems, networks, and approaches for optimal results.
In addition, research should prioritize identifying the most
effective strategy to integrate all available information.
Achieving this requires performing multi-asset analysis and
leveraging multi-tool fusion. To counter the proliferation of
deepfake, it is crucial to scrutinize all media content and
supporting evidence. It is important to develop deepfake
detection techniques that can recognize the input video
or image based on all available supporting evidence and
contextual information in which it is presented on a given
platform to spread misinformation.

Current deepfake detection methods rely on machine
learning techniques such as supervised classification and
unsupervised clustering to detect attack patterns. However,
these methods have difficulties in detecting new and
unknown deepfakes. Reinforcement Learning (RL) could
fundamentally change the detection of deepfakes in the
future. Combining RL with game theory can help to detect
and defend against anti-forensic attacks. RL can simulate
an autonomous agent that can make optimal decisions even
without prior knowledge of the environment. This makes it
useful for tracking attacks and implementing attack-aware
detectors. Deepfake detection can be modeled as a two-
player zero-sum game where the sum of both players’ utilities
remains zero at each time step. Deep Reinforcement Learning
(DRL) is particularly effective in addressing complex cyber
defense challenges [207], [208], and can potentially be used
to detect deepfakes and defend against anti-forensic attacks
on detectors.

To counteract the far-reaching effects of deepfakes, it is
crucial to integrate detection systems into social media
platforms and distribution channels. These platforms can
implement screening or filtering processes based on reliable
detection techniques, and companies operating them can
be legally obligated to remove deepfakes upon discovery
[12]. Deep-fake-o-meter [209] is an example of a web-based
platform that hosts over ten state-of-the-art deepfake detec-
tion models, allowing users to upload videos and receive
detailed reports via email after processing by the platform’s
back-end algorithms. This platform serves as a valuable
resource for developers and researchers to benchmark their
detection algorithms against the latest methods. Another
platform [210], customized for journalists, uses a video
detection model and a temporal-based approach considering
frame-level artifacts. The platform detects fake audio and
offers an intuitive application for journalists to assess video
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authenticity. Collaborating these detection systems with
social media platforms can further mitigate the adverse
impact of deepfakes. Moreover, watermarking technologies
can be integrated into content creation devices, providing
a foolproof method of authenticating multimedia files and
verifying when and where they were created [12]. Imple-
menting this integration is a challenge. However, it may be
possible to overcome this challenge by using blockchain
technology. While blockchain technology has numerous
potential applications, few current research projects focus on
its use for deepfake detection. It is an excellent tool for digital
provenance solutions as it can provide a sequence of unique,
immutable metadata. Using blockchain technologies to solve
this problem has had some success [211]. However, this field
of research is still in its infancy.

VII. CONCLUSION

Advances in Al have made it easy for anyone with a
smartphone to create realistic deepfake images and videos.
However, the two-player nature of this research area has also
led to the use of Al to detect manipulated content. Neverthe-
less, the quality of deepfake videos is constantly improving
and posing new challenges. The two most well-known
deepfake face manipulation techniques are face swapping and
expression swapping can lead to harmful consequences such
as revenge porn, bullying, video and news forgery, blackmail
and political sabotage, making the target’s life more difficult.
In this article, we presented a comprehensive overview
and detailed analysis of the research work on deepfake
generation and detection, particularly focusing on face and
expression manipulation. Furthermore, we have examined
the benchmark dataset deeply for detecting these facial
manipulations. The article allows a fresh perspective on the
current state of deepfake research, providing valuable insights
into the challenges and opportunities, as well as the trends
and directions for further exploration in the field of deepfake
generation and detection. We strongly aspire that this review
paper can empower and accelerate the efforts of researchers
and practitioners in this domain. It aims to assist them in
identifying the most critical research areas while inspiring
a larger community of researchers to participate in this
rapidly expanding and evolving field actively. This review
primarily focuses on face and expression manipulation in
deepfake videos. Future studies could explore a wider range
of manipulations, including voice and context alterations,
to provide a more holistic understanding of the evolving
deepfake landscape.
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