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ABSTRACT Silicon wafer defect classification is crucial for improving fabrication and chip production.
Although deep learning methods have been successful in single-defect wafer classification, the increasing
complexity of the fabrication process has introduced the challenge of multiple defects on wafers, which
requires more robust feature learning and classification techniques. Attention mechanisms have been used
to enhance feature learning for multiple wafer defects. However, they have limited use in a few mixed-type
defect categories, and their performance declines as the number of mixed patterns increases. This work pro-
poses an attention-augmented convolutional neural networks (A2CNN) model for enhanced discriminative
feature learning of complex defects. The A2CNN model emphasizes the features in the channel and spatial
dimensions. Additionally, the model adopts the focal loss function to reduce misclassification and a global
average pooling layer to enhance the network’s generalization by reducing overfitting. The A2CNN model
is evaluated on the MixedWM38 wafer defect dataset using 10-fold cross-validation. It achieves impressive
results, with accuracy, precision, recall, and F1-score reported as 98.66%, 99.0%, 98.55%, and 98.82%
respectively. Compared to existingworks, the A2CNNmodel performs better by effectively learning valuable
information for complex mixed-type wafer defects.

INDEX TERMS Anomaly detection, deep learning, mixed-type defects, multi-defect classification, pat-
tern recognition, channel attention, spatial attention, wafer map classification, semiconductor fabrication
defects.

I. INTRODUCTION
The demand for silicon chips is increasing because of their
use in various applications, including emerging technologies
such as the Internet of Things (IoT), autonomous vehicles,
and 5G/6G networks. To meet this demand, semiconduc-
tor companies target enhanced production by addressing
yield-limiting factors, such as wafer defects. A significant
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approving it for publication was Byung-Gyu Kim.

cause of wafer fabrication defects is flawed manufacturing
equipment and processes [1], [2]. In chip manufactur-
ing, integrated circuits (ICs) are built on a single-crystal
silicon wafer through hundreds of steps in front-end (wafer
fabrication and probe) and back-end (assembly and test)
operations [3]. Front-end operationsmay cause wafer defects,
risking circuit failure. Defective chips are discarded, reduc-
ing the overall chip production. Minimizing defects will
prevent the waste of flawed chips, resulting in increased
production [4], [5].
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Wafer defects are identified during the post-fabrication
wafer probe or die-sorting phase. Integrated circuits undergo
a circuit probe (CP) test to generate a wafer map highlighting
the failed circuits [6]. This map forms the foundation of wafer
bin maps (WBMs) that are color-coded to distinguish faulty
and intact dies/ICs. WBMs are used for defect monitoring,
analysis, and root-cause assessment.

Wafer defect monitoring approaches include man-
ual inspection by domain experts [7] and automated
visual inspection (AVI) using computer-aided methods [8].
Manual inspections are costly, inefficient, and inaccurate,
pushing for more suitable solutions for shrinking chip sizes.
AVI, specifically through machine learning, is a preferred,
efficient, and reliable choice. However, machine learning
methods require feature engineering and struggle with large-
scale, low-quality, noisy data. With its automatic feature
acquisition ability, deep learning methods, such as convolu-
tional neural networks (CNNs), excel in AVI for large, noisy,
and incomplete datasets. In industrial defect inspections [9],
deep learning can be used for defect classification, localiza-
tion, and segmentation [10]:

A. DEFECT CLASSIFICATION
Defect classification identifies image-level defects using
supervised or unsupervised learning to determine defect pres-
ence (anomaly detection) [11] or specify the exact defect
label. Classification ensures early defect detection for swift
product quality assessment and is ideal when defect-type
understanding suffices for further actions. However, it does
not offer intricate defect orientation information and faces
challenges with images containing multiple non-uniformly
shaped defects.

B. DEFECT LOCALIZATION
Defect localization determines the precise location of the
defects within an image and marks the defect category.
It is typically carried out by object detection methods [12]
grouped into two-stage and one-stage object detectors:
Two-stage detectors first generate candidate boxes through
methods such as selective search or region proposal networks
(RPNs) and then apply classification. Examples include
R-CNN [13], Fast R-CNN [14], Faster R-CNN [15], and spa-
tial pyramid pooling (SPP-net) [16]. They offer high detection
accuracy due to their refined two-step process, adeptly
handling size variations and complex defect scenarios. How-
ever, they are slower, with more intricate architectures and
resource-demanding training pipelines. One-stage detec-
tors, exemplified by models such as You Only Look Once
(YOLO) [17] and Single Shot MultiBox Detector (SSD) [18],
perform simultaneous predictions of object bounding boxes
and classification in a single step. This approach yields faster
inference speeds and simpler architectures, making it suit-
able for speed-critical real-time applications. However, their
localization accuracymight be lower than two-stagemethods,
particularly for smaller or densely packed defect instances.

On the whole, defect localization furnishes precise spatial
information for corrective measures. However, it necessitates
annotated training data, which is labor-intensive and time-
consuming. Moreover, it is unsuitable for defects in close
proximity or those that overlap without distinct boundaries.

C. DEFECT SEGMENTATION
Defect segmentation [19], [20] provides intricate insights
into defect attributes; size, shape, and precise extent via
pixel-level outlining. It is effective for capturing irregular or
non-uniform defects that lack predefined shapes. However,
training and deploying segmentation models can impose
substantial computational demands and require annotated
pixel masks for training and assessment. Semantic segmen-
tation and instance segmentation are prevalent strategies.
In semantic segmentation, each pixel within an image is cat-
egorized as part of the defect class or background. FCN [21],
U-Net [22], and SegNet [23] are commonly employed archi-
tectures for semantic segmentation. Instance segmentation
identifies defect regions and distinguishes between distinct
instances of the same defect class. Example architectures
include Mask R-CNN [24] and Mask-refined R-CNN [25].
Several studies have demonstrated the effectiveness of

deep learning for silicon wafer defects [26], [27] with a focus
on single-type defects [28], [29], [30], [31], [32]. However,
there is a need to investigate more mixed-type defects, which
are becoming common with the increasing complexity of
fabrication processes. The current deep networks perform
well for wafers with few simple defects. However, their accu-
racy decreases with the defect intricacy and the number of
defects, for example, three and four defects on a wafer. This
is because the CNN-based models suffer spatial information
loss and necessitate refinement mechanisms to improve their
performance for closely located multiple smaller defects with
similar features [33], [34].

D. CONTRIBUTIONS
This work proposes a CNN-based model for mixed-type
wafer defect classification, which maintains accuracy despite
increasing defect complexity and count. To augment CNN’s
ability for minute defects and discriminative learning of
similar classes, an attention module comprising spatial and
channel attention is integrated, ensuring a more compre-
hensive feature set. The attention module emphasizes the
most pertinent and informative features for enhanced detec-
tion accuracy. The focal loss function is employed instead
of the cross-entropy function to minimize false negatives.
The misclassification rate is reduced by emphasizing harder
examples of each class. The global average pooling (GAP)
layer is adopted as a regularization method, improving gen-
eralization and mitigating overfitting. All these measures
ensure that the model is efficient and accurate in handling
complex multi-pattern defects commonly found in wafer
maps. The proposed model is thoroughly evaluated on the
MixedWM38 dataset, which encompasses 38 different defect
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classes. Comparative analysis with previous models is con-
ducted to showcase the efficacy of the proposed model in
accurately detecting and classifying complex multi-defect
patterns. The main contributions of this work are summarized
as follows:

• A novel CNN-based model is proposed that integrates a
convolutional (Conv) module with an attention module
to enhance the accuracy of mixed-type wafer defect
classification. The Conv module extracts feature maps,
which are further refined by incorporating channel
and spatial information. This augmentation results in a
more representative feature set, particularly beneficial
for identifying small-sized defects that resemble one
another. The model is named the attention-augmented
convolutional neural network (A2CNN).

• The focal loss function is used instead of categorical
cross-entropy to reduce false negatives and enhance the
model’s ability to correctly classify challenging exam-
ples in each class.

• A global average pooling layer is adopted as a regular-
ization technique to enhance generalization capabilities,
prevent overfitting, and reduce the model’s parameters
and training time.

• An operative evaluation of the A2CNN on the
MixedWM38 dataset is performed, and the performance
is compared against notable existing models through
accuracy, precision, and recall.

The rest of the paper is arranged as follows. Section II
reviews the related literature on mixed-type defects, atten-
tion mechanisms, focal loss function, and GAP. Section III
describes the dataset, preprocessing and distribution pro-
cedures, proposed model architecture, and performance
measures. Section IV presents the results, comparison, and
analysis. Finally, Section V concludes the work and presents
the findings.

II. RELATED WORK
This section examines literature concerning deep learning for
mixed-type wafer defect classification. Additionally, it delves
into attention mechanisms, focal loss function, and GAP for
advanced deep-learning models.

A. DEEP LEARNING FOR MIXED-TYPE WAFER MAP
DEFECT CLASSIFICATION
To identify mixed-type wafer defects, Tello et al. [35] applied
a splitter to differentiate single and mixed patterns. Then,
a randomized general regression network is used to classify
single defects, and a CNN (Convolutional Neural Networks)
for mixed patterns. Kyeong and Kim [36] proposed an
ensemble of four CNNs trained on basic single defects to
identify their appearance in mixed-type defects. However,
training multiple CNNs is computationally expensive and
time-consuming, particularly with many single defect types.
Kong and Ni [37] focused on overlapped and non-overlapped
multi-pattern wafers. A seed-filling method was employed
for non-overlapped pattern segmentation followed by CNN

classification. Overlapped patterns were classified through
pattern-matching. The subsequent work [38] introduced pat-
tern segmentation via a UNet-based boundary detection
and pattern unwrapping before CNN-based classification.
Further, quantitative analysis by pattern remapping and
impact calculation is conducted. These approaches involve
several intermediate steps, wherein the outcome of each step
relies on the proper working of the previous ones.

Byun and Baek [39] adopted pre-trained CNNs with con-
volutional auto-encoders as weight initializers. Separating the
single and mixed-type defects first and then classifying the
exact pattern. Themodel is trained on the single defect dataset
and tested on a few synthetic mixed-type defects with only
two patterns. The accuracy for the single patterns is sufficient
but dissatisfactory for the mixed patterns. Lee and Kim [40]
presented a semi-supervised convolutional generative model
for labeled and non-labeled data. Zhuang et al. [41] employed
a real and private dataset of six individual types to train an
ensemble of deep belief networks. Shin et al. [42] produced
mixed-type wafer maps through data augmentation, combin-
ing WM-811K single defect wafer maps for CNN training.
These studies were based on limited data collected from own
sources or generated synthetically, unavailable in the public
domain for model benchmarking.

Wang et al. [43] introduced MixedWM38, a mixed-type
wafer defect dataset and employed a deformable convolu-
tional network (DC-Net) for classification. DC-Net inte-
grated positional information and displacement adjustment
through a deformable convolutional kernel to improve CNN-
based classification. In another study, a multi-scale infor-
mation fusion transformer (MSF-Trans) [44] was proposed
in which a multi-head self-attention mechanism assigned
weights to feature values for an optimized feature set learn-
ing. Wei andWang [45] proposed a multi-resolution wavelet-
integrated attention network (MRWA-Net) expanding the
learning of frequency components from the wavelet domain.
In [46], WaferSegClassNet (WSCN), an end-to-end encoder-
decoder-based defect segmentation network, was proposed
for MixedWM38. WSCN employed N-pair contrastive loss,
BCE-Dice loss (binary cross-entropy + Dice loss), and cat-
egorical cross-entropy loss for encoding, segmentation, and
classification, respectively. A U-Net with residual attention
block was proposed for segmentation in [47]. Segmentation
masks were generated by the defect masking technique,
but the model was evaluated only for a few classes of
MixedWM38. These studies demonstrated good accuracy for
single and a few simple multi-defect wafers but could not
cater to many small defects with complex patterns.

In summary, the previous deep learning methods for
mixed-type wafer recognition are based on resource-intensive
ensemble networks, methods with multiple intermediate
steps, and pre-trained networks adopted from other domains
through transfer learning. They have only been evaluated on
smaller datasets with fewer defect types and exhibit good
results for single and two mixed defects but need to be
optimized for wafers with three and four mixed patterns.
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In contrast, the current work proposes A2CNN, a custom-
made CNN, which combines channel and spatial information
into the feature maps for more comprehensive defect features.
The focal loss function addresses the classification of chal-
lenging class samples, and a GAP layer prevents overfitting
and increases generalization. The proposed model offers a
one-shot solution for the diverse MixedWM38 patterns.

B. ATTENTION MECHANISM
Attention mechanisms originally introduced for machine
translation [48] have a transformative impact in various
domains, enabling models to focus on specific elements
within input data [49]. The concept of attention is based on
human perception. From the available information, human
beings select the relevant part for processing, ignoring
the remaining, thus greatly improving the efficiency and
accuracy of perceptual information processing [50]. Its
application in disaster assessment is a difference-aware
attention network (D2ANet) [51] for building localization
and change detection using dual-temporal satellite imagery.
The Difference-Aware Attention (D2A) block integrates the
Dual-Temporal Aggregation (DTA) and Difference-Aware
(DA) modules to investigate multi-level transformations
within pre- and post-disaster features. The DTA module
selectively amplifies change-sensitive channels to extract
global change information, while the DA module is a
localized attention block that captures correlations across
positions and channels to discern various damage scales.

Attention mechanisms have substantially shaped object
classification and detection tasks, effectively merging with
machine vision applications for enhanced defect identifi-
cation. An edge and multi-scale reverse attention network
(EMRA-Net) is proposed in [52] for tiny and low-contrast
surface defect detection. For improved detection accuracy,
global dynamic convolution features, global multi-scale
fusion features, and local pyramid edge features were
obtained and fused by self-learning weight and spatial and
channel attention modules. The Defect-Aux-Net [53], built
uponmulti-task learning with an attentionmechanism, under-
takes the concurrent tasks of classification, segmentation, and
detection of industrial surface defects. The feature pyramid
network (FPN) and ResNet-50 inspired the network architec-
ture. By incorporating positional and channel attention, the
network enhances the learning of subtle defects, enriching
feature maps with global context. The dynamic weighting of
each task’s loss collectively serves to refine the network’s
overall loss function. Subsequently boosting accuracy and
efficiency across all tasks.

Two renowned architectures which utilize channel-spatial
attention mechanisms are the bottleneck attention module
(BAM) [54] and the convolutional block attention module
(CBAM) [55]. BAM adopts a bottleneck structure, extracting
channel and spatial attention maps via the global aver-
age pooling of feature maps. This enables the module to
concentrate on fine-grained features and global context.

In contrast, CBAMsequentially integrates channel and spatial
attention, capturing inter-channel relationships and spatial
dependencies. CBAM employs MaxPooling and AvgPooling
to compute feature map statistics, leading to enriched feature
representation and enhanced contextual comprehension.

C. FOCAL LOSS FUNCTION
The focal loss function, first applied in RetinaNet [56], has
proven valuable for object detection in dense scenes and
several other studies [57], [58]. Built upon the cross-entropy
loss, it addresses foreground-background class imbalance
and effectively boosts performance of minority classes for
class imbalanced data. The model enhances object detec-
tion or classification tasks focusing on challenging cases by
down-weighting easy instances and amplifying hard ones
during training.

D. GLOBAL AVERAGE POOLING (GAP)
GAP is a widely employed technique in deep learning to
enhance feature extraction and boost classification accu-
racy [59]. It serves as a means to mitigate overfitting
by incorporating spatial information regularization. GAP
replaces the spatial dimensions of feature maps with a single
value per channel. It offers improved generalization, reduced
overfitting, quicker convergence, and robustness to image
translation and scaling.

III. MATERIALS AND METHODS
This section provides the design and development details of
the A2CNNmodel. The whole process is illustrated in Fig. 1.
It includes two main phases:

• Data Preprocessing and Distribution: This encom-
passes the methods applied to the initial wafer map
dataset, rendering it suitable for CNN compatibility
and partitioning it into training, validation, and testing
subsets.

• A2CNN Development: This entails model design, iter-
ative training, and validation on the designated dataset

FIGURE 1. Block diagram of the A2CNN development process; the model
was trained and validated iteratively on the preprocessed data and
evaluated on the test set for performance assessment.
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portions and evaluating its performance on the test
set to produce an operational model for wafer map
classification.

A. DATASET
MixedWM38 is a public domain wafer map dataset of single
and mixed-type defects. Comprised of real and artificially
generated 38,015 wafer maps in 38 defect classes, divided
into four groups: Group_1 consists of nine single-type defect
classes, encompassing a normal class and eight distinct
classes featuring a solitary defect pattern. The remaining
three groups combine fundamental defect types in config-
urations of two, three, and four defect patterns. Group_2
comprises 13 classes with two mixed-type defects, Group_3
presents 12 classes with three mixed-type defects, and
Group_4 entails four classes featuring four mixed-type
defects. Class sizes vary; C7 with 866, C9 with 149, C24
with 2,000, and the remaining 35 classes have 1,000 wafer
maps in each. Wafer maps have consistent dimensions of
52 × 52 pixels. A pixel is assigned a value of 0, 1, or 2;
0 signifies background/non-wafer pixels, 1 represents qual-
ified/good dies, and 2 denotes flawed/defective dies. Image
samples in the four class groups are illustrated in Fig. 2.

FIGURE 2. Data preprocessing steps: wafer maps were transformed into
images and divided into training, validation, and test sets.

B. DATA PREPROCESSING AND DISTRIBUTION
In data preprocessing, the wafer maps were transformed into
grayscale images by mapping pixel values from [2, 0, 1] to
[0, 127, 255] and subsequent conversion into images. These
images were split into training and test sets following an
80/20 ratio, maintaining a balanced representation across
classes. For 10-fold cross-validation, the training set was
divided into 10 distinct non-overlapping training and vali-
dation subsets. This iterative process led to ten datasets by
combining nine folds for training while utilizing the remain-
ing one for validation. Data preprocessing steps are illustrated
in Fig. 3, and the distribution of class samples across sets is
outlined in Table 1.

TABLE 1. Division of class samples into training, validation, and test sets.

C. THE ATTENTION-AUGMENTED CONVOLUTIONAL
NEURAL NETWORK (A2CNN)
The A2CNN architecture is illustrated in Fig. 4 with an elab-
orated design of the modules and blocks inside the modules.
The Convmodule extracts feature maps from the input image,
which are passed to the Attention module for more contextual
information on salient, class-specific features. The attention
blocks within this module blend feature maps across the
channel and spatial dimensions. The refined features obtained
from each attention block are aggregated and passed to the
Classification module, where the final decision on the image
label is made.

The Conv module consists of three Conv blocks, each
having a Conv layer with Batch Norm (batch normalization),
and ReLU (Rectified Linear Unit). Batch Norm expedites
training, mitigates internal covariate shifts, and aids in avoid-
ing local minima [60], [61]. Also, zero padding is employed
in convolutions to retain information on defect patterns at the
wafer edges. Maxpooling layers in the last two Conv blocks
downsize the feature maps.

The Attention module comprises eight Attention blocks,
each having a Conv block with channel and spatial attention
layers, added sequentially based on the CBAM architec-
ture. This module enhances the significant features extracted
by the Conv module, emphasizing the most pertinent ones.
This enhancement is achieved by amalgamating channel and
spatial attention maps in the feature maps, generating inter-
mediate channel-refined and fully refined attention maps,
as summarized in (1) and (2):

F ′
= Mc (F) ⊗F (1)

F ′′
= Ms

(
F ′

)
⊗ F ′ (2)

Here, F and F ′ denote feature maps and intermediate chan-
nel refined attention maps, while F

′′

represents fully refined
attention maps. Mc, Ms and ⊗ represent channel attention
maps, spatial attention maps and element-wise multiplica-
tion. Mc andMs can be expressed by (3) and (4) as:

Mc(F) = σ (MLP (AvgPool (F)) + MLP (AvgPool (F)))

(3)
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FIGURE 3. MixedWM38 image samples in four class groups based on number of defect patterns on wafer surface.

FIGURE 4. A2CNN architecture with the configuration of the sub-modules and blocks: (a) Three main modules, (b)-(c) Conv and attention blocks,
(d)-(e) Channel and spatial attention.

Here, MLP (Multi-Layer Perceptron) stands for multi-
layer perceptron, while AvgPool(F) and MaxPool(F) refer to
the operations of average pooling and max pooling applied to
the input feature maps F , respectively.

Ms (F) = σ
(
conv(concat

[
AvgPool (F) ;maxPool (F)

]
)
)
(4)

Equation (4) illustrates that the feature maps obtained by
concatenating average and maxpooled representations of F
underwent a convolution operation before being subjected to
a sigmoid function.

The outputs of the Attention blocks were summed and
forwarded to the Classification module, which includes a
GAP and three dense layers. The GAP layer calculates the
average of each feature map, reflecting in a global feature
vector with reduced dimensionality that represents the entire

input image. This operation is formally defined by (5):

GAP (Ci) = 1
/
N ×

∑
xj (5)

Here, Ci represents the value of the i-th channel following
the global average pooling, N denotes the total number of
spatial locations within the feature map, xj represents the
activation value at the j-th spatial location of the i-th channel.
Averaging a feature map transforms it into a confidence map
category, enhancing its resilience to spatial translations in
the input data. This process, in turn, boosts the network’s
ability to generalize while concurrently reducing parameters
to prevent overfitting.

After the GAP layer, the Classification module contains
three dense layers featuring 1024, 256, and 38 nodes. The
38 nodes in the output layer correspond to the 38 classes of
the MixedWM38. The activation function employed here is
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Softmax, which yields class probabilities between 0 and 1,
with the sum of all probabilities equating to 1. The optimiza-
tion is performed by Adam [62] with a learning rate of 0.001.
As for the loss function, categorical focal loss, with default
settings, is employed, which can be expressed by (6):

FL (p) = −α (1 − p)γ log(p) (6)

Here, α is the balancing factor that adjusts a class’s con-
tribution based on its frequency. P represents the predicted
probability of the correct class, and γ acts as the focusing
parameter, governing the rate at which the loss decreases with
an increase in predicted probability. The (1 − p)γ is the mod-
ulation factor that amplifies the contribution of challenging
or, conversely, the contribution of well-classified examples.

During training, the network was presented with batches of
normalized images augmented by horizontal and vertical flips
for increased robustness. However, in validation and testing,
only normalized images were provided. The model was sub-
jected to ten tests following a 10-fold cross-validation. Each
test involved training the model for 100 epochs using a batch
training method with 32 images in each batch. At the end of
each epoch, the model was validated and saved only if it per-
formed better on the validation data than the previously saved
model. The best-validated model was then evaluated on the
test set. Table 2 conveniently encapsulates the configuration
hyperparameters employed in the A2CNN model.

TABLE 2. The hyperparameter values of the proposed A2CNN.

D. PERFORMANCE EVALUATION METRICS
The model’s performance is assessed by accuracy (7) and (8),
precision (9), recall (10), and F1-score (11), which depend on
TP (true positive), TN (true negative), FP (false positive), and
FN (false native):

Accuracy = (TP + TN)/(TP + TN + FP + FN) (7)

Equation (7) gives the model’s overall accuracy. Here,
TP+TN counts to the correct predictions for all classes, and

TP+TN+FP+FN is the total prediction made by the classi-
fier (total samples in all classes). Similarly, the accuracy of a
single class is given by (8).

Class Accuracy = TP/P (8)

Here, P stands for the positive samples of a particular class,
and TP represents the correctly predicted samples of that
class.

Precision = TP/(TP + FP) (9)

Equation (9) defines precision, TP represents the correctly
predicted class samples and TP+FP the total number of posi-
tive predictions for the class (including samples not belonging
to the class).

Recall or the True Positive Rate (TPR), is defined as:

Recall = TP/(TP + FN) (10)

Here, TP is the correctly predicted sample, and TP+FN
represents the total number of class instances (including sam-
ples predicted as belonging to another class).

The F1-score or F1-measure combines precision and recall
by the harmonic mean as given by (11).

F1 − score = [(1 + β2)×Recall × Precision)]/

× [β2
× Recall × Precision] (11)

Here, coefficient β adjusts the relative importance of pre-
cision versus recall, and its value is 1.0 for the F1-measure.

IV. RESULTS AND DISCUSSION
This section presents experimental results and a detailed
analysis of the outcomes. The first part of this section focuses
on the performance evaluation of A2CNN, including a com-
parison with previous studies. The findings are analyzed to
determine the approach’s effectiveness in achieving accurate
classification results. Additionally, an in-depth examination
of the model components is conducted to assess their role in
improving the classification performance.

A. EXPERIMENTAL RESULTS
The A2CNN’s stability and robustness were ensured through
ten repetitions of the experiment, varying training and valida-
tion sets while keeping the test set consistent. Comprehensive
results of all repetitions in 10-fold across-validation can be
seen in Appendix (Tables 4 and 5). Fig. 5 presents the aggre-
gated values of the tests. Fig. 5(a) illustrates the average
accuracy of the tests (training 99.59%, std. dev. 0.12; vali-
dation 98.97%, std. dev. 0.13; testing 98.81%, std. dev. 0.1).
Fig. 5(b) illustrates the average percentage of class accuracy
(98.47%, std. dev. 0.18), precision (98.77%, std. dev. 0.14),
recall (98.27%, std. dev. 0.20), and F1 score (98.59%, std. dev.
0.14) for the test set. The values were stable across the trest
with minimal deviation, which underscores A2CNN’s relia-
bility, robustness, and generalization across diverse datasets
and unseen data.
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FIGURE 5. Aggregated results of the 10-fold cross-validation: (a) Average accuracy of the Training, Testing, and Validation in ten repetitions of the
experiment, (b) Average Accuracy, Precision, Recall, and F1-Score for test set in ten repetitions.

FIGURE 6. The training and validation graphs of the A2CNN: (a) Accuracy graphs, (b) Loss graphs.

Test three produced the highest values for the performance
measures, which are compared to prior studies. The training
and validation accuracy graphs of this test are displayed
in Fig. 6(a). Training accuracy exceeded 90% initially and
steadily rose to approximately 99%. Validation accuracy,
while subject to occasional dips, maintained its value during
training, showcasing A2CNN’s rapid convergence and maxi-
mum accuracy attainment. Fig. 6(b) reveals nearly zero train-
ing and validation loss. The overlap of the curves confirms
the avoidance of overfitting and the stability of the model.

Table 3 presents A2CNN’s accuracy, precision, and recall,
along with comparisons to WSCN [46], MSF-Trans [44],
and DC-Net [43]. A2CNN achieved an average classifica-
tion accuracy of 98.66%, outperforming the other meth-
ods (98.34%, 97.17%, and 93.20%). Its average precision
(99.00%) and recall (98.55%) also surpassed the others, with
precision gains of 1.00%, 1.86%, and 5.00%, and recall gains
of 0.37%, 1.84%, and 3.55% with lower standard deviations
for these metrics. A2CNN’s lower precision bound is 97%,
compared to WSCN’s 92%, MSF-Trans’s 92.78%, and DC-
Net’s 60%, which suggests fewer false positives for A2CNN.
Similarly, A2CNN’s recall rate is significant, with only minor
recognition errors. Specifically, it exhibits superior recall
rates for defects like C14, C20, C27, C33, C37, and C38.

C37’s 99% recall rate surpasses WSCN by approximately
4%, MSF-Trans by 6.87%, and DC-Net by 10%.

As for the defect groups, A2CNN excelled in single-pattern
classes (C1-C8), achieving flawless classification for C1
and C6. However, performance on C9, with only 149 sam-
ples, showed room for improvement, possibly due to limited
training data. A2CNN consistently outperformed in mixed
patterns (C10-C38). Notably, it effectively classified three
and four mixed-pattern classes (C23-C38), known for their
complexity. For example, WSCN had 99%, MSF-Trans
95.65%, and DC-Net only a 92% precision for C38 compared
to the 100% of A2CNN. WSCN, MSF-Trans, and DC-Net
struggled more with such patterns, where A2CNN excelled,
demonstrating its recognition strength.

Fig. 7 displays a performance comparison among the mod-
els using bar graphs to present accuracy across the four class
groups. In Fig. 7(a), A2CNN excels in recognizing single-
type defects, except for C9, where it outperforms MSF-Trans
but not the other models. Fig. 7(b) shows A2CNN’s con-
sistently high accuracy for most classes with two defect
patterns, while other models exhibit varying accuracy levels.
Fig. 7(c) and (d) highlight A2CNN’s consistent superiority
in recognizing three and four mixed-type defects, a notable
achievement.
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TABLE 3. The test set results of the proposed A2CNN and a comparison with WSCN [46], MSF-Trans [44], and DC-Net [43].

The attention module within A2CNN contributes to this
success by facilitating the extraction of class-specific features
and reducing irrelevant noise. Combining local information
from CNN feature maps with global features in the channel
and spatial dimensions results in a more comprehensive and
representative feature set.

Further, the GAP computes an average representation
of features, providing a more generalized and robust
understanding of input features. Additionally, the loss func-
tion’s focus on hard examples reduces misclassification. All
this enhances the model’s ability to distinguish between
small defects in different classes and improves generalization.
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FIGURE 7. The comparison of A2CNN, WSCN, MFS-Trans, and DC-Net based on the percentage of class accuracy in four defect
groups: (a) Single type defects, (b) Two mixed-type defects, (c) Three mixed-type defects, and (4) Four mixed-type defects.

Please refer to the confusion matrix in Appendix for detailed
class-wise results (Fig. 12).

In the ablation study, removing the Attention module while
keeping other parameters constant resulted in maximum
validation accuracy of 95.89% and training accuracy of
98.73%. Evaluation measures on the test set; accuracy
(95.33%), precision (95.74%), recall (95.08%), and F1-score
(95.21%), were significantly lower compared to the model
with the Attention module. Also, the overfitting was observed
in the training and validation graphs as displayed in Fig. 8.

B. ANALYSIS AND DISCUSSION
The overall remarks of this work based on the obtained results
are as follows:

1) THE EFFECT OF THE ATTENTION MECHANISM ON
FEATURE LEARNING
To investigate the impact of attention on feature learning of
complex defects, feature maps from the last convolutional
layer of the attention module were extracted for defects in
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FIGURE 8. The ablation experiment training and validation graphs, removing the Attention module results in
overfitting: (a) Accuracy graphs, (b) Loss graphs.

FIGURE 9. The class samples from C35-38 and corresponding feature maps: (a) -(d) C35-C38 class samples,
(e)-(h) Feature maps of C35-C38.

FIGURE 10. The defect types with the pattern on wafer edges: (a) C4, (b) C5, (c) C6, (d) C12, (e) C4 Feature map,
(f) C5 Feature map, (g) C6 Feature map, (h) C12 Feature map.

FIGURE 11. The difficult class examples: (a) C10 (C+EL) resembles (b) C11 (C+ER), (c) C14 (D+EL) resembles
(d) C15 (D+ER), and (e) C19 (EL+S) resembles (f) C21 (ER+S).

Group_4. These maps demonstrate the network’s sensitivity
to the defect area, with varying intensities of grey indicating
the strength of the response for a particular defect type.
Fig. 9 (a)-(d) displays the class images of C35-38, while
Fig. 9 (e)-(h) shows the corresponding feature maps. The
emphasis on the defect region in the feature maps demon-
strates the role of the attention mechanism in highlighting

meaningful features, thus improving the model’s ability to
distinguish between complex defect types.

2) THE EFFECT ON DEFECT PATTERNS ON WAFER MAP
EDGES
To evaluate A2CNN’s performance for defect patterns on
the wafer edges, some example images and feature maps
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TABLE 4. The training, validation, and test accuracy and loss for 10-fold cross-validation.

TABLE 5. The test performance of 10-fold cross-validation.

from the network’s last layer are presented in Fig. 10. Thirty
defect types have such patterns, including three in single
defects (C4-C6), 11 in two mixed types (C10-C12, C14-C16,
C18-C22), and all three and four mixed types (C23-C38).
Since these patterns comprise a large proportion of the
dataset, achieving high precision for them indicates an overall
good performance. A2CNN achieved relatively higher values
for the three basic patterns and, consequently, for all types that
appear in combination. A2CNN achieved good recognition
rates for these patterns due to the zero-padding applied in
convolutional layers, which retains information at the edges.

3) THE EFFECT OF FOCAL LOSS AND GLOBAL AVERAGE
POOLING
A2CNN has shown improved recognition rates for difficult
class samples that resemble other classes. For instance, the
defect patterns in Fig. 11 (a), (c), and (e) resemble those
in Fig. 11 (b), (d), and (f), respectively. A2CNN correctly
classified them because of the focal loss function, which
assigns more weight to the difficult class samples.

Difficult-to-classify samples contribute most to the mis-
classification rate. The focal loss function made the model
focus on such samples while giving less weightage to well-
classified samples. Furthermore, the GAP layer improved
the classification accuracy by regularizing the spatial infor-
mation of the feature maps, which resulted in improved

generalization. These results highlight that refinement
mechanisms in the A2CNN architecture have effectively
contributed to its overall performance in facilitating the
recognition of complex multi-defect patterns.

4) LIMITATIONS AND POSSIBLE IMPROVEMENTS
The proposed A2CNN model is designed to classify fabrica-
tion defects using only wafer map images, providing the class
label as the classification result. However, it does not provide
information on the attributes of the defect, such as the number
of patterns on a wafer, their size, and spatial orientation.
Additionally, it does not relate the defect patterns to their
cause of generation, typically done by a defect inspection
system. The model is evaluated on a single dataset, and its
generalizability to other datasets needs further investigation.

V. CONCLUSION
This study proposed the A2CNN model, an attention-
augmented CNN, for complexmulti-pattern wafermap defect
classification. The model maintains classification accuracy
as the defect patterns increase on the wafer surface. The
architecture leverages multiple channels and spatial atten-
tion layers to focus on critical areas of the defect image
and extract fine discriminative features for improved defect
classification. The focal loss function further refines the
results, producing good precision for difficult class samples.
Additionally, a GAP layer reduces the number of trainable
parameters, improving network generalization and reduc-
ing overfitting. The experimental results demonstrate that
A2CNN outperforms existing works, particularly in accu-
racy, precision, and recall. Specifically achieving 98.66%,
99.0%, and 98.55%, respectively, compared to lower values
in existing works. The proposed model exhibits high per-
formance on easy defect categories and effectively handles
complexmixed-type defects, particularly those with three and
four mixed-type defect patterns. This was accomplished by
accurately capturing essential class features for predicting the
class label. While the A2CNN has shown promising results
in detecting multi-pattern defects in a single dataset, further
investigations are required to evaluate its performance on
more datasets. Additionally, the current model outputs only
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FIGURE 12. Confusion matrix of test set illustrating the number of class samples.

the defect label without further information regarding the
root cause analysis, hindering its usefulness in real-world
applications. Future work will focus on addressing these lim-
itations. Efforts will be made to provide more comprehensive
information with defect segmentation and faster response
time for more effective root cause analysis and efficient
problem-solving in real-world applications.

APPENDIX
See Table 4, Table 5, and Fig. 12.
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