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ABSTRACT The continuous scaling of silicon technology has enabled many-core systems to
become ubiquitous, offering enormous computational power for various applications spanning from
high-performance computing to mobile devices. However, this advancement resulted in increased power
density that exacerbated the thermal challenges of dark silicon, where certain cores are turned off or become
dark due to thermal constraints. While various methods have been put forward to enhance the performance
of thermally constrained 2D many-core systems, 3D designs introduce more serious thermal issues due
to heightened power density and challenges with heat dissipation in vertically stacked configurations.
This paper introduces a dynamic neighbor-aware performance enhancement for thermally constrained 3D
many-core systems (3D-DNaPE). 3D-DNaPE is a technique that improves the performance of a thermally
constrained 3D many-core system where only a limited number of cores can be activated. Initially, it uses
the proposed neighbor-aware pattern (NaP) algorithm to select the coldest core among the four adjacent dark
cores suitable for task migration. Subsequently, it uses the proposed 3D dynamic thermal management (3D-
DTM) algorithm to optimize system performance by considering the core and memory bank temperatures.
A static non-uniform cache access (S-NUCA) configuration mitigates cache misses resulting from task
migration. Comprehensive evaluations indicate that 3D-DNaPE performs better than its contemporaries,
showing improvements reaching up to 43% in execution time, a 34% decrease in performance slowdown,
and an up to 51% enhancement in energy efficiency. This research not only underscores the challenges faced
by 3D many-core systems but also provides a robust solution with promising implications for future 3D
many-core designs.

INDEX TERMS 3D-stacked, dark silicon, many-core system, neighbor-aware, performance enhancement,
thermally constrained.

I. INTRODUCTION
The continual scaling of silicon technology in recent years
has given rise to the emergence of many-core systems, which
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integrate many processor cores onto a single chip. These
systems offer great computational power and have become
the driving force behind various applications, encompassing
a broad spectrum from high-performance computing to
mobile devices [1]. However, this increase in computational
power has also led to an increase in power density, which
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has caused significant thermal challenges. One of these
challenges is the dark silicon issue, which refers to the
portion of cores that cannot be fully utilized due to
thermal constraints [2]. In this paper, the terms dark silicon
and thermally constrained are used interchangeably. The
dark silicon issue is further exacerbated by the transition
from 2D to 3D many-core architectures, a move aimed
at overcoming off-chip memory bandwidth limitations.
In these 3D architectures, cores and main memory/cache
layers are vertically stacked [3], leading to even higher
power density and decreased heat dissipation capabilities
when layers are active [4], [5], [6], [7]. Consequently, 3D
many-core systems face more significant thermal challenges
compared to their 2D counterparts. Moreover, external
environmental conditions, such as ambient temperature, play
a pivotal role in influencing the system’s thermal behavior.
Additionally, within the many-core system itself, distinct
zones or sections can exhibit varied thermal behaviors, neces-
sitating targeted thermal management strategies for each
zone.

Several techniques have been suggested to cope with
the challenge of dark silicon or thermally constrained
many-core systems, with a predominant focus on the per-
formance improvement of 2D thermally constrained many-
core systems. Some of these 2D optimization techniques
concentrate on mapping and pattern techniques to enhance
the performance of 2D thermally constrained many-core
systems [8], [9]. Another set of techniques involves the use
of the computation sprinting mechanism, which temporarily
boosts the frequencies of cores utilizing dynamic voltage
and frequency scaling (DVFS) [10], [11], [12], [13], [14],
[15], [16]. Other techniques [17], [18], [19] leverage the
dark cores to aggressively lower the system’s temperature
by migrating the tasks from the active cores to these dark
cores and turning off the active cores. In addition, these
techniques use DVFS to progressively decrease the system
temperature. However, all the 2D optimization techniques
only focus on the temperature of cores and ignore the
temperatures of memory. On the other hand, only a few
methods have been suggested to improve the performance
of 3D many-core system [20], [21], [22]. However, some
use a fixed power budget, ignoring transient temperature
fluctuations and heat transfer across cores. Others depend
on the applications’ performance models being available
at design time. Therefore, it cannot be used for unknown
applications. Moreover, to the best of our knowledge, no one
has proposed task migration in a 3D dark silicon many-core
system.

This study presents a dynamic neighbor-aware perfor-
mance enhancement for thermal-constrained 3D many-core
systems (3D-DNaPE). The proposed technique comprises
two stages. The first stage utilizes the proposed neighbor-
aware pattern (NaP) algorithm to select one coldest core
of the four adjacent dark cores suitable for task migration.
This allows 3D-DNaPE to selectively perform task migration

only for the hot cores rather than migrating all cores as
was in our previously proposed DTaPO [17] for 2D dark
silicon many-core. In the second stage, a 3D dynamic thermal
management (3D-DTM) algorithm is used. This algorithm
utilizes task migration to enhance the performance of many-
core system while ensuring that the operating temperature
remains within safe thermal limits. However, unlike DTaPO,
which focuses solely on core temperatures, 3D-DNaPE
considers both core and memory bank temperatures in 3D
many-core architectures. In case there is no surrounding
cold core, DVFS is used to progressively reduce the system
temperature.

It is known that using task migration leads to cache misses.
To address this, a shared last-level cache (LLC) can be used to
mitigate the cache misses resulting from task migration [17],
[23]. In DTaPO, the tasks were only migrated horizontally
among the two adjacent cores that shared the same L3 cache.
In contrast, the 3D-DNaPE technique allows tasks to be
moved in all directions among the four adjacent cores, based
on the coldest neighboring core. To enable this, a static
non-uniform cache access (S-NUCA) [24] configuration is
utilized as the LLC. In the S-NUCA architecture, the LLC
banks are physically distributed across all cores within the
many-core system. However, they still logically form a
singular and vast cache shared by all cores. Such architecture
can be found in commercially many-core processors [25].
During task migration in an S-NUCA many-core system
setup, only the cache lines from the source core’s private
caches, from which the task is migrating, must be flushed
to the LLC. Subsequently, the core to which the migrated
task relocates can access these cache lines via the shared
LLC. Thus, this strategy effectively reduces the overhead
associated with task migration stemming from cache misses.
In summary, the key contributions of this paper can be
outlined as follows:
• We introduce a performance enhancement technique
specifically designed for thermally constrained 3D
many-core systems.

• We propose a neighbor-aware pattern (NaP) algorithm
that selects the coldest core among the four adjacent dark
cores suitable for task migration.

• We develop a 3D dynamic thermal management (3D-
DTM) algorithm that leverages both task migration
and DVFS to dynamically manage thermal conditions,
taking into consideration the temperature profiles of
cores and memory banks.

• We validate the efficacy of our proposed 3D-DNaPE
technique through an exhaustive evaluation utilizing
both compute- and memory-intensive multi-threaded
applications.

The subsequent sections of this paper are organized as
follows: Section II discusses related work. Section III
presents the systemmodel and problem definition. Section IV
describes the proposed work’s methodology, while Section V
evaluates its performance. Lastly, Section VI summarizes
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the final remarks and provides insights into future research
directions.

II. RELATED WORK
The dark silicon problem raises a vital question: how can
we use available computational resources effectively in the
face of power and thermal limitations? This issue has gained
significant attention in computer architecture and design.
Researchers and engineers are searching for innovative
methods to enhance the performance of many-core systems
within these power and thermal limitations.

Recent years have seen several studies improving the
performance of thermally constrained many-core systems.
Some have employed mapping and pattern techniques [8],
[9], [26], [27], while others have harnessed the computation
sprinting mechanism, briefly increasing core frequencies
using DVFS [10], [11], [12], [13], [14], [15], [16].
Kanduri et al. [28] introduced adBoost, a thermal-aware
performance-boosting technique that patterns dark cores
among active ones to create thermal headroom. Raghunathan
and Garg [29] developed a scheduler using queuing
theory and job arrival rates to make run-time decisions
for task and cluster optimization. Mohammed et al. [17],
[18] introduced a dynamic thermal-aware performance opti-
mization technique that uses task migration and DVFS to
enhance the performance of thermally constrained many-
core systems. Moreover, in [30], the researchers proposed
a prediction-based early wake-up of dark cores to reduce
the dark cores’ wake-up latency and improve the overall
performance of thermally constrained many-core systems.
Several other researchers have also proposed techniques
emphasizing dynamic power budgeting [31], [32], [33].
All aforementioned techniques target thermally con-

strained 2D many-core systems. However, 3D many-core
systems face more significant thermal challenges compared
to their 2D counterparts. This is primarily due to higher
power density and reduced heat dissipation when active
layers are stacked vertically. Moreover, in addition to
the cores, non-core components, such as memories and
caches, play a significant role in generating heat [20],
[22]. Several task scheduling-based techniques for dynamic
temperature management in 3D many-core systems have
been proposed [34], [35], [36], [37], [38]. The authors of [39]
and [40] proposed performance optimization techniques
under power and thermal constraints. Thermal management
and performance optimization techniques for 3D many-
core systems with hybrid SRAM/MRAM L2 caches were
proposed by Lee et al. [41], [42]. By considering thermal-
induced stress, Zou et al. [43] introduced a thermal managing
approach for 3D systems. Wang et al. [44] proposed an
artificial neural network-based run-time stress estimator.
Also, STREAM was presented to optimize the 3D many-
core performance considering the thermal-induced reliability
issues [45]. However, the techniques above were not
aimed at thermally constrained 3D many-core systems,

where only a part of the system’s units can be active
simultaneously.

There are currently limited techniques to improve the
performance of thermally constrained 3D many-core sys-
tems [20], [21], [22]. Asad et al. [20] consider the power
consumption of cores and non-core components concurrently
to enhance the performance of thermally constrained 3D
many-core systems. However, they use a fixed power budget,
which over-constrains the system’s performance at run-
time. Wan et al. [21] proposed a greedy-based core-cache
co-optimization algorithm to optimize the performance of
thermally constrained 3D many-core systems at run-time.
However, it depends on the applications’ performancemodels
being available at design time. Therefore, it cannot be used for
unknown applications.

Siddhu et al. [22] proposed a dynamic thermal man-
agement approach called CoreMemDTM. CoreMemDTM
is a joint approach to managing the thermal levels of a
computing system’s processor cores and memory. Based
on the idea that the core and memory are interdependent,
a dynamic thermal management (DTM) decision made for
one can reduce the temperature of the other, thereby lowering
overheads. CoreMemDTM does this by utilizing a multi-
level slack-balanced DVFS technique to control the cores
(CoreDTM) and low-power states to manage the memory
(MemDTM). CoreMemDTM activates an appropriate DTM
policy if the temperature of the core or memory rises.
When both the core and memory components overheat,
CoreMemDTM executes DTM for the component with the
lowest thermal slack. However, CoreMemDTM uses only
DVFS and power gating and does not use task migration.
Our previous work [17] has shown that task migration can
substantially lower chip temperature without compromising
overall system performance. This approach balances thermal
loads across the cores, allowing for efficient utilization of
system resources while adhering to thermal constraints.

In summary, most previous performance optimization
techniques for thermally constrained many-core systems
targeting 2D are not suitable for 3D stacked layers, where
they only concentrate on the temperatures of cores and
ignore the temperatures of memory. On the other hand, 3D
system performance optimization techniques do not target
dark silicon problems, where only part of a many-core
system can be activated at the same time. Only a few
works are aimed at thermally constrained 3D many-core
systems. However, some use a fixed power budget, ignoring
transient temperature fluctuations and heat transfer across
the cores. Others depend on the applications’ performance
models being available at design time. Therefore, they
fail to accommodate unknown applications that are not
characterized at design time. Moreover, to the best of our
knowledge, no one has used task migration in a 3D dark
silicon many-core system. Our previous work [17] proves
that using task migration can aggressively decrease a chip’s
temperature while getting good overall performance from a
thermally constrained many-core system.
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FIGURE 1. An illustration of the proposed system model.

III. SYSTEM AND APPLICATIONS OVERVIEW
This section describes the proposed system model for a
3D dark silicon many-core system, the applications under
consideration, and the problem definition and formulation.

A. PROPOSED SYSTEM MODEL
This work focuses on addressing the thermal challenges and
performance enhancement in 3D many-core systems. The
proposed systemmodel shown in Fig. 1 is used for evaluating
the effectiveness of the proposed techniques.

While the specific configuration may not directly reflect
the exact architectures available in the market, the research
provides insights into the challenges and potential solutions
for thermally constrained 3D many-core systems. The 3D-
stacked many-core system consists of three layers: one core
layer and two memory layers. The core layer comprises
64 homogeneous cores, while the memory layers consist
of 128 memory banks. An 8 × 8 mesh-based network-on-
chip (NoC) is utilized as a communication medium. The
memory layers are vertically stacked and interconnected
through vertical channels. These channels consist of path-
ways utilizing through-silicon vias (TSVs) [46], facilitating
data transfer between the memory layers and the cores.
As this study targets to improve the performance of the
thermally constrained many-core system, we assume that
only half of the cores can be activated simultaneously.
Previous studies [17], [18] show that the use of half of
the cores in a thermally constrained environment can give
better results than using all of the cores. Initially, the active
and dark cores and memory channels are organized in
a checkerboard pattern, where dark cores surround each
active core to enhance heat dissipation by providing thermal
headroom [47]. However, this pattern keeps changing during
the execution time according to the temperature of the cores
using task migration. More details on how task migration

changes the active and dark core patterns are discussed in
Section IV.
The proposed 3D-DNaPE comprises two stages. The first

stage aims to identify the coldest neighboring core to which
tasks can be migrated using the neighbor-aware pattern (NaP)
algorithm. The second stage involves performing DTM on
the thermally constrained 3D many-core system, taking into
account the individual temperatures of cores and memory
banks, facilitated by the 3D-DTM algorithm. It is necessary
to monitor the temperatures of cores and memory banks
separately due to their varying heat dissipation character-
istics, which are influenced by the specific applications
being run. More details about the proposed algorithms are
presented in Section IV. 3D-DNaPE continuously monitors
the status of the many-core system at predefined control
intervals while multi-threaded applications are running.More
details about these multi-threaded applications are provided
in the following subsection. Specifically, 3D-DNaPE tracks
the locations of active and dark cores, the DVFS level, the
power consumption of both cores and memory banks, as well
as the transient temperatures of these components. Assuming
that the many-core system supports preemptable tasks, 3D-
DNaPE intervenes when potential thermal violations are
detected. It halts the tasks and relocates them to another core
selected by the first stage for continued execution. It modifies
the voltage/frequency level by utilizing DVFS if no thermal
headroom is available.

B. MULTI-THREADED APPLICATIONS
We focus on multi-threaded applications, drawing from a
range of scientific computing and engineering domains.
These applications are not inherently designed with
strict real-time constraints. They are represented in the
SPLASH-2 [48] and PARSEC [49] benchmark suites. The
SPLASH-2 suite encompasses multi-threaded applications
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FIGURE 2. An illustration of a multi-threaded application.

spanning engineering, scientific, and graphic applications.
Conversely, the PARSEC suite introduces a collection of
emerging applications in recognition, mining, and synthesis
(RMS) [50]. This suite also presents multi-threaded appli-
cations characteristic of commercial programs, including
animation, media processing, enterprise servers, computer
vision, and computational finance applications. Utilizing
both SPLASH-2 and PARSEC offers diversity in aspects
like working set size, cache miss rate, and instruction
distribution [51].

A multi-threaded application encompasses multiple
threads. Each thread is an independent task, and while all
threads share a common data space, each possesses a unique
thread ID, a register set, a stack, and a program counter [52].
This structure is visualized in Fig. 2. In this paper, the
terms thread and task are used interchangeably. In this
work, we utilize nine compute- and memory-intensive multi-
threaded applications from the PARSEC and SPLASH-2
benchmark suites to assess the efficacy of our proposed work.
These applications are Blackscholes, Bodytrack, Cholesky,
Dedup, FFT, Fluidanimate, Ocean, Radix, and Raytrace. For
more details about these applications’ characteristics, please
refer to Ref. [53].

C. PROBLEM FORMULATION
Consider a 3D many-core system, which consists of C
cores and M memory channels, that runs multi-threaded
applications. Given that only 50% of the cores and memory
channels can be active at any given time due to the thermal
constraints, the goal of our proposed technique is to minimize
the total execution time Et , which refers to the overall time
taken for the execution of the multi-threaded applications in
a 3D many-core system. Simultaneously, we aim to ensure
that the temperatures of the cores and memory banks do not
exceed a specified threshold temperature Tth. This goal can
be expressed in mathematical terms as follows:

Minimize Et s.t. Tc,Tm < Tth,

for all c ∈ {0, · · · ,C − 1}, m ∈ {0, · · · ,M − 1} (1)

Here, Tc represents the transient temperature of core c and Tm
represents the transient temperature of memory channel m.

This formulation takes into account the transient temperatures
of both the cores and memory banks.

IV. PROPOSED 3D-DNaPE TECHNIQUE
This section outlines the methodology of our proposed
3D-DNaPE technique. The objective of our technique
is to dynamically enhance the performance of thermally
constrained 3Dmany-core systemswhile considering thermal
constraints. Thus, it is crucial for our suggested technique to
be computationally lightweight. Task migration and DVFS
are suitable lightweight options for managing chip thermal
conditions in real-time if used efficiently. Task migration
can effectively lower the system temperature by shutting
off hot cores and moving tasks to cooler ones. In contrast,
DVFS can gradually reduce the system temperature by
incrementally lowering the DVFS level of hot cores when
there is insufficient thermal headroom for task migration.

The proposed 3D-DNaPE takes into account vertical heat
transfer across all layers of the 3D stack. Therefore, the
DTM techniques, namely task migration and DVFS, should
consider the temperatures of both the core and memory bank
layers in the 3D many-core system. Unlike DTaPO [17],
which migrates tasks across all cores to maintain the checker-
board pattern, 3D-DNaPE uses a neighbor-aware pattern.
It checks all the dark neighbor cores of the current core and
selects the coldest one as the migration destination.Migrating
tasks only to neighbor cores in thermally constrained 3D
many-core systems has the advantage of reducing the search
complexity and minimizing data transfer overhead.

To simplify the search for all surrounding neighbors, their
indexes need to be found. To do that, first, the coordinates
(x, y) of the current core on the NoC are calculated based on
the current core’s position using Eq. (2, 3).

x = ⌊C index ÷ w⌋,Cindex = 0, . . . ,C − 1 (2)

y = Cindex %w,Cindex = 0, . . . ,C − 1 (3)

where x is the row coordinate of the current core, y is the
column coordinate of the current core, Cindex is the current
core index, and C is the total number of cores. After finding
the current core coordinates, the surrounding neighbor core
coordinates (nx , ny) are calculated based on the current core’s
coordinates. Finally, Eq. (4) is used to find the neighbor core
index.

Nindex = nx × w+ ny (4)

where Nindex is the index of the neighbor core, nx is the
row coordinate of the neighbor core, and ny is the column
coordinate of the neighbor core. Further details regarding the
use of these equations can be found in Algorithm 1.

The proposed 3D-DNaPE uses task migration to transfer
tasks to the coldest dark neighbor under two distinct condi-
tions. The first condition is when the temperatures of both
the coldest neighbor and its associated memory channel are
lower than the predefined threshold temperature by a specific
margin. The second condition is when the temperature of
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the coldest neighbor and its associated memory channel are
lower than the current core temperature by a specific margin.
In scenarios that do not meet these conditions, 3D-DNaPE
uses DVFS to reduce the frequency level of the current core.

3D-DNaPE uses heuristic algorithms to optimize per-
formance while managing thermal conditions in a com-
plex, dynamic 3D many-core system. The complexity and
dynamism of the system justify the choice of a heuristic
algorithm instead of finding an optimal solution. These
algorithms aim to quickly find satisfactory solutions by
leveraging problem-specific knowledge and simplifying
assumptions. They are adept at providing practically good
solutions, particularly in the dynamic environments typical of
many-core systems. In these environments, cores experience
heating and cooling phases, tasks exhibit varying arrival and
execution patterns, and what may be an optimal configuration
at one moment might lose its optimality shortly thereafter
due to these dynamic changes. In essence, the deployment
of heuristic algorithms in this context represents a prudent
trade-off between optimality and computational efficiency,
ensuring robustness amid uncertainty and dynamic change.
The details of the proposed algorithms are explained in the
following subsection.

A. PROPOSED ALGORITHMS
The proposed 3D-DNaPE first identifies the coldest desti-
nation core and then applies DTM techniques, specifically
task migration and DVFS. Therefore, we have proposed two
algorithms: Algorithm 1 (NaP) and Algorithm 2 (3D-DTM).
All symbols used in these algorithms are defined in Table 1.
Algorithm 1 is used to find the index of the neighbor that
has the lowest temperature. This information is crucial for
3D-DNaPE to pattern the active and dark cores based on
their neighbor temperatures. Algorithm 1 takes an index
of current core Cindex , a width of NoC w, a vector of all
core temperatures Tc, and a vector of all core statuses S.
It searches for the destination indexDindex that has the lowest
temperature. Initially, the active and dark cores are distributed
evenly so that dark cores encircle each active core, as shown
in Fig. 1.

To find the current core’s coordinates on the NoC,
Eq. (2, 3) are used (lines 1-2). A minimum temperature Tmin
is initialized to the temperature of the current core (line 3). All
coordinates of the eight neighboring cores around the current
core are stored in the N array (line 4). The algorithm then
iterates over each neighbor in the N array. For each neighbor,
it retrieves the row coordinate nx and column coordinate ny.
If the neighbor coordinates are within the bounds of the NoC
(i.e., 0 ≤ nx < w, and 0 ≤ ny < w), it calculates
the neighbor index Nindex using Eq. (4). If the temperature
value at the neighbor index T [Nindex] is less than Tmin and it
is a dark core, it updates the destination index Dindex with
the neighbor index and updates Tmin with the temperature
neighbor. Finally, the algorithm returns the index of the core
that has the minimum temperature among the neighbors,
which is used by Algorithm 2.

TABLE 1. Definitions of symbols used in the proposed work.

Algorithm 2 utilizes task migration to move tasks from
hot active cores to cooled dark cores, allowing the 3D
many-core system to operate at high performance without
exceeding thermal limits. If there is insufficient thermal
headroom for task migration, the algorithm applies DVFS
for more progressive thermal reduction. The algorithm takes
several inputs, including all cores’ transient temperatures,
represented by Tc; the transient temperature of all memory
channels, represented by Tm; an active cores’ set, denoted
as Ac = {a0, . . . , an−1}; a dark cores’ set, denoted as Dc =

{d0, . . . , dn−1}; and a set of all active cores’ frequency levels,
denoted as F = {f0, . . . , fn−1}. Additionally, the algorithm
reads threshold temperature Tth, threshold frequency fth,
a safe-margin value α, and a frequency level step δ from a
configuration file.

At a predefined control interval, the algorithm checks
the temperature of each active core and its associated
memory channel (lines 1-3). If any of them exceed the
threshold temperature, Algorithm 1 is utilized to determine
the destination index of a candidate dark core with the lowest
temperature among its neighboring dark cores (line 4).

If the temperature of the candidate dark core and its
associated memory channel is lower than the threshold
temperature by a sufficient margin α, the candidate dark
core is activated, and the current core is deactivated (lines 5-
8). In case the previous condition is not met, the algorithm
proceeds to check if the temperature of the candidate dark
core and its associated memory channel is lower than the
threshold temperature by α. If this condition holds, the
algorithm activates the dark core, reduces its frequency using
DVFS, and deactivates the current core (lines 9-14).

Otherwise, if there is no thermal headroom available for
the task migration, the algorithm uses DVFS to reduce the
frequency of the current core by δ (line 17). In cases where
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FIGURE 3. An illustrative example demonstrating the functionality of the proposed algorithms.

Algorithm 1 Neighbor-Aware Pattern Algorithm
Data: Cindex , w, Tc, S
Output: Dindex

1 Use Eq. (2, 3) to find (x, y);
2 Tmin← Tc[Cindex];

3 N ←



x − 1 y
x + 1 y
x y− 1
x y+ 1

x − 1 y− 1
x − 1 y+ 1
x + 1 y− 1
x + 1 y+ 1


;

4 for k=0 to 7 do
5 nx ← neighbors[k][0];
6 ny← neighbors[k][1];
7 if (nx ≥ 0 and nx < w) and (ny ≥ 0 and ny< w)

then
8 Use Eq. (4) to find Nindex ;
9 if Tc[Nindex] < TminandS[Nindex] == dark

then
10 Tmin← T [Dindex];
11 Dindex ← Nindex ;
12 end
13 end
14 end
15 return Dindex ;

there are no thermal violations and the frequency is less than
fth, the algorithm increases the frequency of the current core
by δ to improve system performance (lines 20-21).
In summary, the 3D-DNaPE algorithm periodically mon-

itors the temperature of active cores and their associated
memory channels, initiating appropriate actions based on the
temperature readings of the cores and memory banks. Fig. 3
provides a visual representation of the proposed algorithms
in action. For simplicity, while not losing generality, this
illustration focuses solely on core temperatures. As depicted,

Algorithm 2 3D-DTM algorithm
Input: Ac, Dc,Tm, Tc, f , Tth, Fth, α, and δ

Output: Updated Ac, Dc, and f
1 while true do
2 for ∀ ai ∈ Ac do
3 if Tc[ai] > TthorTm[ai] > Tth then
4 Use Algorithm 1 to find the destination

index (Dindex);
5 if Tc[Dindex] < Tth − αandTm[Dindex] <

Tth − α then
6 S[Dindex]= active;
7 Move the task from Ac[ai] to

Dc[Dindex];
8 S[ai]= dark;
9 end
10 else if Tc[di] < Tc[ai]− αandTm[di] <

Tm[ai]− α then
11 S[Dindex]= active;
12 Reduce f [Dindex] by δ;
13 Move the task from Ac[ai] to

Dc[Dindex];
14 S[ai]= dark;
15 end
16 else
17 Reduce f [ai] by δ;
18 end
19 end
20 else if Tc[ai] < Tth − α and f [ai] <fth then
21 Increase f [ai] by δ;
22 end
23 end
24 end

the temperature of Core 27 (C27) exceeds the threshold—
set at 65◦C for this example—prompting the NaP algorithm
to find out the coldest core among the neighboring inactive
ones, which include C19, C26, C28, and C35. In this scenario,
Core 19 (C19) is identified as the coldest. Subsequently, the
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3D-DTM algorithm activates C19, facilitates the migration of
task from C27 to C19, and then deactivates C27 to allow it to
cool.

B. COMPLEXITY ANALYSIS
The time complexity of the NaP algorithm is constant time
O(1) irrespective of the input size. It performs a fixed
sequence of operations to evaluate the thermal conditions
of neighboring cores and identify a suitable candidate for
task migration. The fixed-size array of neighboring cores and
the iteration through this array, along with other operations
within the algorithm, all contribute to the constant time
complexity. On the other hand, the 3D-DTM algorithm
primarily hinges on the inner for loop that iterates through
all active cores in the set Ac, resulting in a linear time
complexity of O(n) where n is the number of active cores.
Within this loop, various operations are performed, including
temperature checking and invocation of Algorithm 1, both of
which operate in constant timeO(1). The taskmigration steps
and frequency scaling operations within this loop are also
constant-time operations, thereby maintaining the overall
linear time complexity of O(n).

Regarding space complexity, the NaP algorithm exhibits a
constant space complexity O(1). It utilizes a fixed-size array
to hold the coordinates of neighboring cores and a few other
variables to perform its operations that do not scale with the
input size, thereby rendering a constant space complexity.
Conversely, the 3D-DTM algorithm’s space complexity is
linear O(n), primarily due to the data structures used to
represent the active and dark cores, transient temperatures,
and frequency levels. These data structures are likely to scale
with the number of cores and memory channels in the system.

V. EXPERIMENTAL EVALUATION
Numerous experiments were carried out to assess the validity
and efficacy of our proposed work. This section presents the
details of the experimental setups, the obtained comparison
results, and a thorough discussion and analysis of these
outcomes.

A. EXPERIMENTAL SETUP
The proposed 3D-DNaPE was validated on a 3D many-
core system comprising three layers: one core layer and two
memory layers. The core layer contains 64 cores, which
are evenly split into 32 active cores and 32 dark cores, all
interconnected via an 8 × 8 mesh-based NoC. It’s worth
noting that despite their shared instruction set architecture
(ISA), these cores operate at heterogeneous frequencies.
Their maximum clock frequency reaches 4 GHz. Each core
occupies a space of 8.70 mm2, based on McPAT [54]
modeling designed for the 22-nanometer technology node.
Each core is equipped with a 32-kilobyte private L1 data
cache, a 32-kilobyte private L1 instruction cache, and a
64-kilobyte private L2 cache. Additionally, an 8-megabyte
S-NUCA cache is used as an LLC. The S-NUCA cache is
shared among all cores, i.e., 128-kilobyte per core. As for

TABLE 2. Summary of system settings.

the memory layers, they contain 128 memory banks, divided
evenly into two layers with 64 memory banks each. In terms
of memory channels, there are 64 in total, with each channel
servicing two memory banks. Table 2 provides a summary of
this system’s settings.

Fig. 4 illustrates the experimental framework of this
study. We utilized the state-of-the-art CoMeT simulator
for 3D many-core systems [55]. CoMeT is a toolchain
that integrates Sniper [56], McPAT [54], CACTI [57], and
HotSpot [58]. Sniper is a high-performance parallel simulator
designed for x86-64 architecture, capable of simulating
multi or many cores efficiently. In the realm of integrated
power, area, and timing modeling, McPAT has garnered
significant adoption, as evidenced by recent utilization [59],
[60]. Its prominence stems from its ability to furnish
exhaustive low-level configuration insights for processors
operating in the multi/many-core domain. CACTI represents
an innovative architecture-level integrated framework for
modeling power, area, and timing aspects of cutting-
edge memory technologies, including 3D-stacked memories,
as well as traditional 2D DRAM and caches. This frame-
work significantly simplifies the integration process with
architectural-level core performance simulators, facilitating
comprehensive evaluations of novel memory technologies.
HotSpot simulator is one of the most commonly used tools
for thermal simulations. This simulator is based on the well-
known stacked-layer packaging technology.

To enable the modeling of thermally constrained many-
core system, some modifications were made to the Sniper
simulator. Specifically, adjustments were made to the Sniper
scheduler, allocating tasks exclusively to active cores through
a core mask pattern. Additionally, modifications were carried
out in McPAT, allowing it to quantify only the dark cores’
static power to model the dark silicon state. Moreover, the
wake-up latency, which is the time it takes to transition from
a dark state to an active state for each task migration, was
modeled by adding 200µs, following Linux’s intel_driver.
These enhancements allowed us to effectively study the
implications of thermally constrained 3D many-core system
in our experiment.
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FIGURE 4. Experimental framework of the proposed work.

FIGURE 5. Normalized performance in terms of execution time.

FIGURE 6. The percentage of serial and parallel execution phases within
the studied applications.

The efficacy of the suggested technique was assessed
through experimentation involving individual applications
sourced from the PARSEC and SPLASH-2 benchmark

FIGURE 7. The performance slowdown percentage.

FIGURE 8. The average transient temperature of the studied applications.

suites. The studied applications are Blackscholes, Bodytrack,
Cholesky, Dedup, FFT, Fluidanimate, Ocean, Radix, and
Raytrace. Furthermore, a combination of compute- and
memory-intensive applications is utilized to represent a
diverse spectrum of computing demands, memory access
patterns, and workload sizes. Within compute-intensive
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FIGURE 9. The temperature distributions of the 3D-DNaPE and CoreMemDTM techniques for the studied applications.

applications, tasks of elevated temperature can rapidly
increase the temperature of cores. On the contrary, memory-
intensive applications, characterized by a high volume of

memory accesses, tend to drive up the temperature of
the memory banks. The mixed applications, grouped as
MixApps, are Blackscholes, Bodytrack, Cholesky, and FFT.
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These applications are a mix of compute- and memory-
intensive applications. Although our experiments mainly
focus on specific applications from these benchmark suites,
the underlyingmechanisms and techniques are designed to be
generalizable to large-scale real-world applications.

In our experimental setup, we configured the threshold
frequency fth and the frequency level δ to 200 MHz
and 3800 MHz, respectively.The threshold temperature Tth
was set to 65◦C . The safe margin value ε was set to 5% of
the threshold temperature. The control period interval was
set to 1 ms. The values of fth, δ, and ε were empirically
determined by conducting several experiments in which
different values were tried. These values were chosen to
ensure that the system does not frequently switch between
active and dark cores. The value of Tth was selected to
show the efficiency of the proposed work by considering
the temperature characteristics of the studied applications
as observed on the target platform. Ref. [17] provides
additional details regarding the impact of the threshold
temperature on the application of DTM techniques. The
results presented in this paper are an average outcome of
running the experiment ten times to mitigate the potential
impact of random variations.

B. PERFORMANCE METRICS
The performance metrics used in our experiment validations
are execution time Et , performance slowdown Perfslow,
temperature, and power/energy. The execution time is the
simulated execution time spent running a single simulation
that starts at ts until it finishes at tf .

Et = tf − ts (5)

The performance slowdown Perfslow is the penalty for using
DTM techniques. Perfslow is the difference between the
execution time when a DTM technique is used Et(DTM ) and
when no DTM is used Et(noDTM ).

Perfslow = Et(DTM ) − Et(noDTM ) (6)

The MIPS/W is the ratio between the instruction execution
rate and the power consumption rate [61]. The MIPS/W
metric is used to measure the energy efficiency of the
proposed work. The instruction count Icount and execution
time Et are provided by Sniper. The power P is provided by
McPAT and CACTI.

MIPS/W =
Icount
P× tE

× 106 (7)

C. COMPARATIVE RESULTS AND ANALYSIS
In this study, we evaluate the performance of the pro-
posed 3D-DNaPE in comparison to the state-of-the-art
CoreMemDTM [22], which takes into account both the
cores and memory banks. Moreover, we compute the
performance overhead for both our proposed 3D-DNaPE and
CoreMemDTM by comparing their performance with the
baseline, which does not incorporate any DTM technique.

FIGURE 10. Normalized performance in terms of MIPS/W.

The performance results in terms of execution time
were obtained by running the studied applications on the
simulation setup outlined in the previous section and are
shown in Fig. 5. This figure illustrates the normalized
execution times of the studied applications when using
our proposed 3D-DNaPE and CoreMemDTM. As can be
seen, the proposed 3D-DNaPE outperformsCoreMemDTM’s
performance, demonstrating an improvement of up to 43%
with an average enhancement of 20%. The extent of
improvement is contingent upon the specific characteris-
tics of each application [53]. Notably, applications with
compute-intensive demands that benefit from heightened
instruction-level parallelism capitalize on the increased
frequencies offered by 3D-DNaPE, leading to substantial
performance enhancements.

Conversely, CoreMemDTM activates all cores, presenting
an advantage for applications that require substantial thread-
level parallelism. Fig. 6 provides a depiction of the execution
phases of the studied applications. Notably, applications
like Bodytrack, Ocean, and Radix exhibit considerable
parallel phases, benefiting from the large number of cores
facilitated by CoreMemDTM. However, the disadvantage
emerges when all cores are deactivated upon surpassing the
maximum temperature threshold, resulting in overall system
performance degradation.

To evaluate the performance slowdown caused by the
DTM techniques, we use a baseline scenario. In this baseline
scenario, the studied applications are executed without any
thermal constraints, representing the maximum performance
situation. Then, the execution time results of the proposed
3D-DNaPE and CoreMemDTM are compared against the
baseline scenario according to Eq. (6). The percentage of
performance slowdown for our proposed 3D-DNaPE and
CoreMemDTM is shown in Fig. 7. Notably, our proposed
3D-DNaPE technique demonstrates a significantly lower
performance slowdown, with reductions of up to 34% and
an average of 13% when compared to CoreMemDTM.
As highlighted in the previous discussion, the percentage of
improvement varies depending on the unique characteristics
of each application. Typically, applications with a high
percentage of parallel phases tend to increase the temperature
of themany-core system. Thus, this, in turn, prompts themore
frequent activation of a DTM technique.

In terms of thermal management, both of our proposed
3D-DNaPE and CoreMemDTMmanage tomaintain the aver-
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FIGURE 11. The statistical distribution of power consumption for the studied applications.

age system temperature lower than the predefined threshold.
Fig. 8 shows the average transient temperature of running the
studied applications under 65◦C thermal constraint. As shown
in our results, the proposed 3D-DNaPE outperforms

CoreMemDTM in most of the studied applications by up to
9% and an average of 2%. In some applications like FFT,
Fluidanimate, and Ocean, CoreMemDTM manages to lower
the system temperature by 3%, 3%, 5.7%, respectively. This
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temperature reduction is due to the deactivation of all cores.
However, this leads to lower overall performance, as shown
in Fig. 5.

The thermal statistical distribution of the proposed
3D-DNaPE and CoreMemDTM techniques can be observed
from the box plots in Fig. 9. This figure shows the thermal
behavior of cores and memory banks for the applications
under study. Each subfigure represents the thermal dis-
tribution of the cores and memory banks for a specific
application. For the majority of applications, the 3D-DNaPE
technique exhibits up to 11◦C less thermal variability
compared to the CoreMemDTM technique. This observation
implies that the 3D-DNaPE technique has a more consistent
temperature profile for these applications. However, there
are exceptions like Bodytrack and Fluidanimate, where
CoreMemDTM demonstrates a reduced thermal variability
by 3◦C, 2◦C, respectively. Also, applications like FFT and
Fluidanimate show a slightly lower median temperature for
CoreMemDTM. On the other hand, the range, as indicated
by the whiskers, for the 3D-DNaPE technique is generally
tighter in compute-intensive applications like Blackscholes,
Cholesky, and Radix. This indicates that extreme tempera-
tures are less frequent with our proposed 3D-DNaPE for these
applications.

The energy efficiency is measured by MIPS/W according
to Eq. (7). Fig. 10 shows the normalized performance in terms
of MIPS/W of the proposed 3D-DNaPE and CoreMemDTM
techniques. The proposed 3D-DNaPE shows higher energy
efficiency for almost all the studied applications. The
improvement is up to 51% and an average of 24% compared
to CoreMemDTM. This is because the proposed 3D-
DNaPE activates only half of the cores, which leads to
less power consumption. However, for memory-intensive
applications, CoreMemDTM matches the performance of
3D-DNaPE.

Similar to thermal statistical distribution analysis, we have
also made box plots that show how cores and memory
banks behave in terms of power for the applications being
studied to look at the statistical distribution of power for the
proposed 3D-DNaPE and CoreMemDTM techniques. Fig. 11
shows the statistical distribution of power consumption for
the studied applications, where each subfigure represents the
power consumption distribution of the cores and memory
banks for a specific application. For compute-intensive
applications, the 3D-DNaPE technique demonstrates up
to 90 W less variability in power consumption compared
to the CoreMemDTM technique. This suggests that the
3D-DNaPE technique has a more consistent power con-
sumption profile for these applications. However, there are
exceptions, such as Fluidanimate, where the variability for
CoreMemDTM seems comparable to 3D-DNaPE. The range
(as indicated by the whiskers) for the 3D-DNaPE technique is
generally tighter in applications like Blackscholes, Cholesky,
and Radix. This indicates that extreme power values (both
high and low) are less frequent with 3D-DNaPE for these
applications.

VI. CONCLUSION
This paper presents 3D-DNaPE, an innovative method to
enhance the performance of thermally constrained 3D many-
core systems. It selectively migrates tasks from hot cores
to cooler dark cores, leveraging S-NUCA to reduce cache
misses from thread migrations. Additionally, it adjusts DVFS
to lower system temperature when no nearby cold dark cores
are available. In a comprehensive assessment against Core-
MemDTM, 3D-DNaPE consistently outperforms, improving
execution time by up to 43% and reducing performance
slowdown by up to 34%. It also excels in temperature
regulation, with up to a 9% reduction in system temperature
and a 51% enhancement in energy efficiency, achieved by
activating only half of the cores. For future work, we plan to
integrate a broader range of use cases representing different
workload sizes. We also plan to do an in-depth analysis
to enhance 3D-DNaPE’s core activation strategy, potentially
utilizingmachine learning algorithms for application-specific
core activation. Furthermore, we plan to propose a hybrid
DTM technique, combining the strengths of 3D-DNaPE and
CoreMemDTM to achieve superior performance across a
broader range of applications.
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