IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 June 2023, accepted 19 July 2023, date of publication 27 July 2023, date of current version 7 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3299497

== RESEARCH ARTICLE

Recent Trends in EEG-Based Motor Imagery
Signal Analysis and Recognition:
A Comprehensive Review

NEHA SHARMA', MANOJ SHARMA', (Senior Member, IEEE),

AMIT SINGHAL“2, (Member, IEEE), RITESH VYAS 3,

HASMAT MALIK 4>, (Senior Member, IEEE), ASYRAF AFTHANORHAN 6,
AND MOHAMMAD ASEF HOSSAINI7

Electronics and Communication Department, Bennett University, Greater Noida 201310, India

2Electronics and Communication Department, Netaji Subhas University of Technology, Delhi 110078, India

3Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar 382007, India

*Department of Electrical Power Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
SDepartment of Electrical Engineering, Graphic Era Deemed to be University, Dehradun 248002, India

SFaculty of Business and Management, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak, Kuala Terengganu, Terengganu 21300, Malaysia
"Department of Physics, Badghis University, Badghis 3351, Afghanistan

Corresponding author: Mohammad Asef Hossaini (asef.hossaini_edu@basu.edu.af),
Asyraf Afthanorhan (asyrafafthanorhan @unisza.edu.my), and Hasmat Malik (hasmat.malik @ gmail.com)

This work was supported by Intelligent Prognostic Private Limited Delhi, India, and the Universiti Sultan Zainal Abidin-UniSZA
(UniSZA) Malaysia.

ABSTRACT The electroencephalogram (EEG) motor imagery (MI) signals are the widespread paradigms
in the brain-computer interface (BCI). Its significant applications in the gaming, robotics, and medical fields
drew our attention to perform a detailed analysis. However, the problem is ill-posed as these signals are
highly nonlinear, unpredictable, and noisy, hence making it exceedingly hard to be analyzed adequately. This
paper provides a first-of-its-kind comprehensive review of conventional signal processing and deep learning
techniques for BCI MI signal analysis. The review comprises extensive works carried out in the domain
in the recent past, highlighting the current challenges of the problem. A new categorization of the existing
approaches has been presented for better clarification. An all-inclusive description of the signal processing
techniques has been corroborated by relevant works in the area. Moreover, architectures of various standard
deep learning algorithms along with their merits and demerits are also explicated to assist the readers. The
tabular representations of the numerical results are also readily provided. This work also presents the open
research problems and future directions.

INDEX TERMS Brain-computer interface (BCI), convolutional neural network (CNN), electroencephalo-
gram (EEG), motor imagery (MI), variational autoencoders (VAE).

I. INTRODUCTION

Recent advancements in biomedical signal processing tech-
niques in healthcare have shifted the paradigm towards the
development of algorithms to attain better precision, sustain-
ability, and less computational time. The signals obtained
from various living beings due to their physiological pro-
cesses are called biomedical signals [1]. There are several
types of electrical signals generated by various body parts.
Some of them are electrocardiogram (ECG), electromayo-

The associate editor coordinating the review of this manuscript and

approving it for publication was Norbert Herencsar

gram (EMGQG), electroretinogram (ERG), electroencephalo-
gram (EEG), and electrooculogram (EOG).

A brief overview of the recent history of biomedical signals
is provided here. ECG test is performed for examining the
heart’s electrical activity to determine whether it is function-
ing properly [2]. Several types of ECG can be performed such
as resting ECG, exercise ECG, and 24-hour ECG. With the
help of ECG, heart diseases (heart attack, enlargement of the
heart, blockage in veins), and arrhythmia can be detected.
EMG is an experiment that examines the functioning of
muscles and nerve cells that controls motor neurons. It takes
sensory nerves and motor nerves into account to determine
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whether they are functioning properly. EMG can be surface
or intramuscular EMG. Its main drawbacks are that it depends
on how much body fat a person has and how cooperative
he is [3]. EOG is the study of the existing resting potential
between the cornea and Bruch’s membrane. It is used to study
eye movements. During EOG, electrodes are attached to the
skin on both sides of the eyes [4], [5]

In this paper, our focus is on EEG signals which allow
us to investigate the brain’s electrical activity [6]. These are
electrical, and non-electrical signals that we can capture and
monitor as shown in Table 1. But, electrical signals are pre-
ferred over non-electrical signals because of the availability
of less invasive and portable machinery. The basic principle
of obtaining amplitude of brain signals is by calculating
the potential difference from the two electrodes that are
affixed to the skin using a differential amplifier [7]. We can
detect multiple diseases with the help of EEG like epilepsy,
head injury, brain tumor, encephalopathy, sleep disorders,
and strokes [8]. For recording EEG signal, various electrode
placement methods are there such as 10-10, 10-20 [9]. Their
nomenclature is generally according to the position of the
electrodes. To record an EEG signal, the most commonly
used method is the international 10-20 system, as shown in
Fig.1. Each electrode placement site letter represents the part
of the brain from where it is reading the data, for exam-
ple, letters FP, F, T, O, and C stand for the frontal-parietal,
frontal, temporal, occipital, and central regions of the brain,
respectively. Behind the outer ear, reference electrodes Al
and A2 are used. A distance of ‘10" and ‘20’ of all the skull
are used to position adjacent electrodes. That is why it is
termed as 10-20 electrode placement system [10]. We can
record various categories of EEG such as sleep deprived EEG,
ambulatory EEG, routine EEG, and video EEG. When doing
routine EEG recordings, subjects are typically encouraged to
relax or take a deep breath. The duration of a routine EEG
is 20-30 minutes. It is immensely helpful in distinguishing
seizures and epilepsy. Sleep EEG is used for sleep disorders
if there is not much information available from routine EEG.
Sleep EEG is performed when subject is asleep. Whereas
sleep-deprived EEG provides satisfactory results while the
subject acquires less sleep than usual before undergoing for
the test. When recording is done throughout the day and night,
then it is called ambulatory (24-hour).

Artifacts often occur during the aforementioned EEG
recording owing to things like eye movement and body part
movement, which might cause the EEG data to be inaccurate.
This can be easily avoided with video EEG. A video EEG is
the EEG in which a subject is filmed during the EEG record-
ing. A small EEG recorder is attached to clothes so that the
EEG signal can be recorded during all the activities. With the
help of this, it is easy to detect the reason for the occurrence of
the artifacts. The brain generates different signals for different
tasks and actions. These various types of generated waves by
the brain are called EEG waves (delta (§), theta (9), alpha
(), beta (B), and Gamma (y)). These waves may be seen
across the brain’s lobes., and their frequencies and amplitudes

VOLUME 11, 2023

are also different [11], [12]. Table 2 provides the comparison
of EEG waves generated by the brain in accordance with
frequency.

The brain-computer interface (BCI) is a system that mon-
itors and analyzes brain signals before converting them to
commands that are sent to output devices to accomplish the
specified task. BCI system helps in interacting with the out-
side world by apprehending the brain signal [13]. Therefore,
the study of BCI provides an exciting opportunity to study the
correspondence between the motor movements of a person
and the electrical signals of the brain. The fundamental idea
underpinning BCI is to rebuild a new system rather than
restoring the old one.

At divergent consideration, BCI has itself inspired dif-
ferent works, such as, related to hardware development,
signal processing, and classification algorithms, studying the
underlying neural mechanisms, and applications. There are
various types of approaches for a BCI. Asynchronous and
synchronous BCI are the two categories of BCIs [14]. Syn-
chronous BCI is also called a system-paced BCI as all the
procedure is done according to the system. It leads with the
advantages of easy design and easy control of user artifacts.
But it also yields a disadvantage that users cannot decide
when to perform and when to take a rest. Asynchronous BCI
is also called self-paced BCI. It is a real-time system as the
user is free to relax or act according to himself. Its drawbacks
include heavy computational requirements and sensitivity for
artifacts. Various other paradigms of electrical brain activ-
ities are steady-state visual evoked potential, event-related
P300, N400, and slow cortical potential. One of the popular
BCI archetypes is motor imagery (MI) where movements
are imagined to elicit neural activity [15]. BCI has produced
notable accomplishments that provide patients, who are fully
paralyzed and those with severe motor difficulties, with a way
of communication using computers that enables their com-
mand and control over the environments [16]. Itis also used in
gaming and robotics for efficient work. BCILAB, MATLAB
toolboxes, Open Vibe, BioSig, and EEGLAB are available
online and offline tools for processing EEG data [17].

The block diagram of the EEG based BCI systems has
been shown in Fig.2, where the raw signal is preprocessed,
decomposed, and features are retrieved. The classifier is used
to process these retrieved features. This pipeline is used for
the BCI signal processing approach. The block diagram com-
prises of four parts as follows:

o Signal acquisition: It is the part where the signal is

captured from the brain.

« Signal processing: It consists of two sub-parts, one is
preprocessing, where the artifacts present in the signal
are removed, and the other one is extraction of features
from the clean signal.

o Classification: After signal processing, the signal must
be classified in order to identify the control signal using
the previously obtained features.

« Feedback/Application: It is used to provide information
on the outcome of brain activity.
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TABLE 1. Different techniques to acquire brain signal.

Features Neurosurgery ECoG EEG MEG fMRI

Technique Invasive Partial Invasive Non-Invasive Non-Invasive Non-Invasive
Signal Electrical Electrical Electrical Magnetic Metabolic
Portability Yes Yes Yes No No

Spatial resolution Very high High Low Medium High

Temporal Very high High High Medium Low

resolution

Risks Surgery needed Surgery needed No Risk High Magnetic ~ High Magnetic field

field

FIGURE 1. 10-20 electrode placement for recording EEG signal.

TABLE 2. Types of brain waves.

*  FP-Frontal Parietal
* F-Frontal

*  P-Parietal

* T- Temporal

* (- Central

*  O- Occipital

*  Left axis odd number
* Right axis even numbers

Type of waves Frequency(Hz) Amplitude(uV) Lobe of brain Available in

Delta (9) upto 4 20 — 200 Cortex/Thalamus It appears when we are energetic after
waking up.

Theta(0) 4-7 10 Hippocampal It occurs when we are disappointed.

Alpha(a) 8—10 2 —100 Parietal occipital It occurs when our mind is alert.

Beta(3) 13 - 30 5—10 Frontal It occurs in the most active state like in
reasoning.

Gamma(y) 30 — 100 - Between frontal and It occurs when we combine different

parietal lobe senses like sound and sight.

This review article builds a strong platform for research
in the related domain. Our main contributions are listed
below:

« A new perspective to categorize existing techniques for
MI-EEG signals.

« An exploratory overview of conventional signal decom-
position approaches and deep learning methods for
MI-EEG signal analysis is discussed.

e The review comprises of extensive discussion on the
existing works and the active challenges in MI-EEG
signal analysis.

« Additionally, open research problems and future direc-
tions for MI-EEG signals are also presented.

The various techniques used for MI-EEG signal analy-
sis are listed in Fig. 3. MI signals can be processed with

80520

conventional signal processing techniques as well as deep
learning based techniques. In conventional techniques, raw
EEG data is provided for processing, where it is either decom-
posed or transformed to another domain. From the resultant
output, various attributes are extracted and given to classi-
fiers for predicting the class of the input signal. However,
in deep learning based techniques, raw EEG signal is fed
to the deep neural network (DNN) which extracts features
and classifies the signal automatically by optimizing the loss
function.

This article is presented in the following structure:
Section II includes the brief overview of the prepossessing
of the signal where various artifacts, reason of occurrence,
and method of removal are discussed along with signal
processing techniques. Additionally, feature selection and
feature transformation are discussed where selected features
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Preprocessing

Signal Acquisition Classification

U EEG

Application

Feedback

FIGURE 2. Block diagram for EEG signal processing.

are passed through various classifiers. Deep learning-based
techniques are also discussed in this section. Section III
contains detailed study of various databases of EEG signals.
Furthermore, Section IV includes performance measures that
are used for the evaluation of the signal. Section V comprises
of a comparison of the state-of-the-art (SotA) conventional
signal processing and deep learning techniques. Thereafter,
Section VI presents the challenges associated with MI-EEG
data, and recent trends and applications are also discussed.
Finally, Section VII provides a summary and critique of the
findings.

Il. ALGORITHMS FOR MI-EEG ANALYSIS

The MI-EEG Analysis techniques can be categorised as: con-
ventional approaches and deep learning-based approaches,
as shown in Fig. 3. These approaches are discussed in detail
as follows.

A. CONVENTIONAL APPROACH FOR MI-EEG
RECOGNITION TECHNIQUES

In the conventional approach, the signal is preprocessed
before applying signal decomposition techniques. Feature
extraction, feature dimensionality reduction, and feature
selection processes are performed on the decomposed signal
before passing it to the classifier. All these processes are
aligned to fulfill the criteria of the optimal classification
result. The conventional signal processing techniques are
usually employed to analyse, characterize, and investigate the
EEG signals.

The categorization of distinct signal processing techniques
for EEG signal processing and analysis is shown in Fig. 4. The
raw EEG data is processed through these techniques to get the
most indicative features. There are various signal processing
techniques such as Fourier transform (FT), wavelet transform
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(WT), empirical mode decomposition (EMD), variational
mode decomposition (VMD) and Fourier decomposition
method (FDM).

1) PREPROCESSING

When we record an EEG signal, various types of noises and
artifacts may occur, which may be reduced by certain prepro-
cessing steps. Following are the several kinds of artifacts that
may be observed in EEG recordings.

« Physiological artifact
e Muscle artifact
o External artifact

Electrosurgical noise

Electrode contact noise

Power line interference

Noise produced by electronic equipment used in
signal acquisition/processing

Physiological artifacts arise due to eyeball movement, eye
blinking, and eyelid movement [18]. The presence of physio-
logical artifacts is reflected by the enhanced amplitude of the
EEG signal. Muscle artifacts result due to chewing, tongue
movement, yawning, and swallowing. The amplitude of the
temporal electrode signal changes due to the presence of
muscle artifacts. External artifacts occur due to the presence
of electronic sources in the vicinity of EEG recording equip-
ment. Movement of the electrode, use of phone, displacement
of the electrode, and fluctuation in the power line may be
the reason for external artifacts. Numerous filters are used
to remove various noises and artifacts [19]. Power line inter-
ference is made up of harmonics that may be described as
sinusoids of 50 Hz (in India). It does not change the detec-
tor analysis. Typical parameters for this are the fundamen-
tal frequency with harmonics and peak-to-peak amplitude
upto 50%. Electrode contact noise is the transient hindrance
engendered due to the least or no contact between the elec-
trode and skin. Typical parameters for electrode contact
noise are frequency (50 Hz), amplitude (maximum recorder
output), and duration (1 second). Removal of artifacts is
performed using manual and automated methods. The manual
method indulges the involvement of the technologist to either
remove or ignore the artifacts for a particular time slot (when
they occur) by inspecting the EEG recording [20] wheres
automated artifact removal technique’s popular method is
Filtering. A single filter is not useful for the removal of all
the noises and artifacts due to their occurrence at different
frequencies within the entire bandwidth of the EEG signal.
Different types of filters are used for different types of arti-
facts. A high pass filter (HPF) removes high-frequency noises
and artifacts such as power line interference [21]. A low
pass filter (LPF) extricates DC offset which is engendered
due to electrode/electrode gel/body interface. LPF is usually
preferred for baseline wander noise removal. Notch filters
may also be used to extricate power line interference. Median
filters are used to remove outliers and shot noise. Further,
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FIGURE 3. The proposed categorization for MI EEG signal analysis.

‘ Conventional Techniques ‘

| | Frequency Domain Time-Frequency

Domain
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Filtering

* FFT
e STFT
* WT
* EMD
+ FDM

Fourier
Transform

FIGURE 4. Categorization of conventional signal decomposition
techniques.

adaptive filters may be considered to remove different types
of noise [22].

2) SIGNAL DECOMPOSITION TECHNIQUES

Fourier transform (FT) is employed for the majority of
signal processing approaches for stationary signals. FT trans-
forms a time-series vector into frequency domain. Therefore,
it is also referred as a frequency-domain method. It produces
a complex-valued function, i.e., it includes both magnitude
and phase parameters. Fast Fourier transform (FFT) is a fast
way to compute the discrete Fourier transform (DFT) or
inverse DFT of a signal. The DFT converts a sequence of N
real/complex numbers x[n],0 < n < N, into a different com-
plex number series, X(k), 0 < k < N, can be represented as,

N-1

X(k) = Zx[n]eiﬂﬂk”/lv ()

n=0
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FFT works by decomposing the DFT matrix into a product
of sparse factors which results in reduced computational
complexity. It is used for processing of stationary signals
and is befitted to narrowband signals. It possesses some dis-
advantages, such as, it cannot extract frequency component
along with the time information. It cannot analyze the non-
stationary signal. This technique is not suitable for extracting
spatial information of a signal. It cannot reveal localized
spikes and complexes. It suffers from large noise sensitiv-
ity [23].

Short-time Fourier transform (STFT) overcomes the
disadvantages of FT. As compared to FT, STFT can better
deal with non-stationary signals. Here, we divide the signal
into a smaller segments and then apply FT to each segment.
Here, x(n) is a input signal, w(n) is the window function, then

N-1
Xk, w) = Zx [nlw[n — k] e 7" 2)
n=0

Here, a chosen finite-length window function is placed first
on top of the signal at + = 0. Next, the window function is
dragged to the right. After this truncation is done until the
window approaches the end of the signal. It is quite simple
to implement. But it suffers from the limitations of fixed
window function and confusing resolution due to which it
becomes difficult to differentiate the time of various fre-
quency components [24].

Wavelet transform decomposes the signal into wavelets
and also overcomes the disadvantages of STFT. Wavelets are
defined by their basis functions. A well-localized function in
time and frequency is required for reliable analysis of signals
and images with abrupt changes, as these changes cannot be
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efficiently analyzed by FT. In this approach, we can change
the size and location of the wavelet by scaling and translation
of the mother wavelet. Different types of mother wavelets
include Haar wavelet, Mexican hat wavelet, biorthogonal
wavelet, Gaussian wavelet, and Shannon wavelet [25]. For
the purpose of calculating the correlation coefficient, the
wavelet under consideration is compared to a segment at the
beginning of the original signal. The wavelet is then slided
and then the above steps are repeated till completion of the
signal. Thereafter, the signal is scaled and all these steps are
repeated. If u is scaling factor, v is translating factor, ¥ *(¢)
is mother wavelet function, the wavelet function Wy (f) is
represented as

1 o0
W,/,(f)zX(u,v):ﬁ/ x(t)\IJ*(

It provides us a way for analyzing a function in both
time and frequency domains. It accurately deconstructs and
reconstructs the signal. It can also represent the function that
has discontinuities and sharp peaks. But there are also some
limitations like oscillations at discontinuity, aliasing, and less
effective in capturing directional information [26].

Fourier decomposition method (FDM) [27] provides us
with an algorithm, based on Fourier representation, for non-
linear and non-stationary data. FDM generates a small set of
Fourier intrinsic band-limited functions (FIBFs) [28]. FIBF
must fulfill the following criteria:

¢ - V)) dr (3)
u

« It should be a zero-mean function.

« It should be an orthogonal function.

o It should admit the analytic FIBF (AFIBF) representa-
tion, i.e.,

x; (1) + jXi (1) = a; (t) exp (ji (1)) , “

where a;(t) and ¢;(¢) denote the instantaneous amplitude
and phase, respectively.

The algorithm for low to high-frequency scan (LTH-FS)
is:

— Obtain
X (k) = FFT {x [n]} ®)]
— Set AFIBF; as
Mi 27 ki
> X[kl 6)
k=M;_1+1

— Acquire the maximum value of M; such that
M
Mi—1+1SMi§?_1 (7

— AFIBF phase is a monotonically increasing func-
tion, and the instantaneous frequency is

(¢i[n+1]—¢i[n—1]
w;[n] = 2

)20 ®)

Synchro-squeezing wavelet transform (SSWT) [29],
Empirical mode decomposition (EMD) [30], and Variational
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mode decomposition [31] are also very popular and robust
signal decomposition techniques.

Table 3 provides us the comparison of popular conven-
tional techniques used in the literature.

3) FEATURE EXTRACTION
Some popularly used features are listed below:

Energy represents the strength of a signal to locate series
in the power curve at any time [32],

N
E=> () ©)
i=1

where x; represents samples, E represents energy, and N is
the total number of samples.

Entropy is a measurement that assesses the unpredictabil-
ity of a signal [35] and is calculated as

EN = i (+7) 102 (+7) - (10)
i=1

Variance is defined as the mean squared difference
between each data point and the center of the distribution
represented by the mean [35].

1 N
o= N%“(x,»—xf (11)

where % represents the mean value and o represents the
variance of the signal.

Measures of central tendency are the mode, median, and
mean. The total of all of the scores divided by the total number
of scores is the mean (also known as the arithmetic average).
The median is the midpoint value in a list that is ordered from
the smallest to the largest value. The mode is the value that
occurs most frequently in the list [36].

Correlation is the parameter used to analyze the strength
of the relationship between the variables that are under con-
sideration [36].

> (i — %) 0 — )
JE -0 0i—9?
where x and y represent the mean of two random variables
X and Y, respectively, and N is the number of samples, Ryy
represents the correlation of these two random variables.

Root mean square is the square root of the squared func-
tion’s mean value [36], i.e.,

Rxy =

(12)

13)

Maximum minimum distance (MMD) is the distance
between the maximum and minimum points [36] and is cal-
culated in the kth sliding window by the Pythagorean formula

as:
— 2 2
Dy =/ Ax{ + Ayg, (14)
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TABLE 3. Comparison of transforms.

Transform Hilbert [32] Wavelet [33] Fourier [34]

Basis Frequency Adaptive Priori Priori

Frequency Convolution: local, certainty Convolution: regional, uncertainty Convolution: global, uncertainty
Representation Time -Energy Time -Energy Energy

Nonlinear Yes No No

Non-stationary Yes Discrete: No No

Extracted features Yes Continuous: Yes No

Approach Empirical Theory Theory

where Ax; and Ayy are the x-axis and y-axis differences.
Total MMD [37], [38] can be obtained by summing over all
the sliding windows:

N
MMD =" Dy (15)
k=1
The log root sum of sequential variation (LRSSV) is a

measure of sequence variation between samples of the signal
[36]. LRSSV can be calculated as

N
LRSSV =logyy | D (x(m—x@n—1)>  (16)

n=1

Phase mean and phase standard deviation is the measure
of angle associated with an analytic signal [37], [38]. The
Hilbert transform of the real part of the complex analytical
signal is the signal’s imaginary component. From the analyti-
cal signal y(z), the phase is retrieved, where y(¢) is represented
as

y(O) =x(0)+jx @), 7

with X (¢) is the Hilbert transform of x(¢). y(¢) is expressed in
polar form as

y(t) = At) 0 (18)

where A(#) and ¢() are magnitude and phase of the analytic
signal.

Power spectral density describes the distribution of power
amongst frequency components of a time-series [38], i.e.,

Sx (f) = /Oo Ry (v) e 47 g, (19)

—00
where Sx(f) represents the FT of the auto-correlation func-
tion R, (7). The expected power of x(¢) can be obtained by

E[?®]=r© = / S, () df - (20)

If X and Y are two random variables, then cross-spectral
density is obtained as

oo
Sxr () = / Ry (0) e ¥ dr. @1
—00

4) FEATURE DIMENSIONALITY REDUCTION
Algorithms for feature dimension reduction are mentioned
below.

Principal component analysis is a statistical procedure,
where the first principal component has the highest variance.

80524

Successors are chosen with decreasing order of variance but
with the condition that the they should be orthogonal to the
previous one. Therefore, the resulting vectors form a set of
uncorrelated orthogonal basis. Its limitation is that it captures
only linear correlations [39].

Linear discriminant analysis optimizes the ratio of
within-class variance to class variance. It offers us the best
performance in terms of discernment between the various
classifications. It is also known as normal discriminant anal-
ysis or discriminant function analysis. It is related to regres-
sion and variance analysis. LDA seeks to model the differ-
ence between the classes of data rather than the similarities
between them [40].

Independent component analysis measures multi-
dimensional data into features that are statistically indepen-
dent of each other and exhibit Gaussian character as well [41].
This is an exclusive case of blind source separation (BSS).
Independent source signals with non-Gaussian distribution
values provide the best results with ICA.

Spatial filtering is a technique for enhancing the signal-
to-noise ratio of EEG signals for MI based BCI applications.
There are different methods for spatial filtering in MI-EEG
BCI, such as common spatial pattern (CSP), filter bank com-
mon spatial pattern (FBCSP), and Riemannian transform.
The spatial domain is also considered one of the important
domains for extracting good features but the main drawback
associated with CSP is the need for multichannel infor-
mation and loss of information in the frequency domain.
It allows for identifying components in which the variance
in the two classes is most different. Nowadays, researchers
are combining CSP with the time domain and frequency
domain methods, which undoubtedly provides good results
compared to earlier. But still, it suffers from a lot of draw-
backs such as settling issues, end effects, and unexplained
negative frequencies. Researchers are exploring new variants
of CSPs to improve accuracy such as CSP-LDA [42], fil-
terbank CSP (FBCSP) [43], regularized CSP (R-CSP) [44],
common spatio CSP (CSSP) [45], common sparse spatio CSP
(CSSSP) [46], and sub-band CSP (SBCSP) [47].

5) PATTERN CLASSIFIERS
Once we have the optimal set of features, then we need to
investigate different types of classifiers for decision-making.
Some of the well-known classifiers are discussed as follows.
Support vector machine (SVM) is one of the foremost
and classic algorithms for classifying various data points.
Data points, also known as support vectors, are categorized
using this method. The kernel function is used to design
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FIGURE 5. SVM for binary classification.

a hyperplane for the support vector. There are many kinds
of kernel functions, including radial, polynomial, radial-
integral, and linear. A plane that crosses the center of the data
points is known as a hyperplane. Its function is to produce
the correct separation class for the data set. The maximum
margin will be in the region enclosed by the hyperplane. The
separating hyperplane and the slab’s edge are where support
vectors of groups +1 and -1 are located closest as shown
in Fig. 5. Using the appropriate techniques for recognizing
support vectors, the margin may be increased to the fullest
extent [48], [49].

k-nearest neighbor (kNN) is a nonlinear classifier
employed in the process of classification. Euclidean and
Mahalanobis distance metrics are adopted for achieving the
best results. Here, the data points are compared with already
trained data sets. The data points are classified by the max-
imum number of nearest neighbors, with k representing the
number of neighbors being compared. Firstly, two-third of the
total data is trained, and the remaining one-third is tested for
optimal results. The two classes are defined as class A and
class B, as shown in Fig. 6. When we need to classify the
new data, its distance is measured with neighbors based on
the nearness of data, and the calculated distance is compared
with the trained data. Then accordingly it is labeled in one
class [50].

Artificial neural network (ANN) is a commonly used
classifier. A minimum of three layers make up the network
which are referred to as input, hidden, and output layers. The
primary layer is the input layer which consists of neurons.
The hidden layer performs all the data processing consisting
of neurons. There may exist more than one hidden layer in a
system and the signal’s classification outcome is determined
by the output layer, which is the final layer. The important
parameter involved in the classification of an ANN-based
classifier is the activation function and learning rule. The
basic structure is shown in Fig. 7. Recurrent ANN is a
closed-loop structure ANN that can perform the highly non-
linear mapping.There exist some other networks as well [51].

Decision tree (DT) is a classification and regression tool.
It uses a tree-like structure, with each node representing for
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FIGURE 7. ANN classifier for MI EEG classification.

a test performed on the data, and each branch for the test’s
result. The leaf node denotes the class label of the data as
explained in Fig. 8. There are two basic types of algorithms
for constructing a decision tree, i.e., iterative dichotomiser
3(ID3) and collection regression tree (CART) [52]. Entropy,
information gain and Gini impurity are used as metrics by
ID3 and CART [53].

Table 4 provides a comparison of the features and limita-
tions of the above-mentioned classifiers.

B. DEEP LEARNING TECHNIQUES

As the dataset gets bigger it becomes difficult to attain
appropriate results with conventional signal processing tech-
niques. However deep learning-based approach works better
in such cases. Some deep learning-based approaches have
been listed in Fig. 9. These techniques can be used for
multiple purposes in BCI data analysis. For the purpose of
denoising, restricted Boltzmann machine (RBM), autoen-
coders and its variants can be used; for data augmentation,
variational autoencoder (VAE) and generative adversarial
network (GAN) can be used; and for classification, multilayer
perceptron (MLP), long short-term memory (LSTM), gated
recurrent unit (GRU), bi-LSTM, and convolutional neural
network (CNN) can be used.

80525



IEEE Access

N. Sharma et al.: Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition

{ 1
Decision Decision
Node Node
Terminal Decision Terminal Terminal
Node Node Node Node
Terminal Decision
Node Node

FIGURE 8. Approach of decision tree classifier.

Deep learning-based approaches for MI-EEG signal pro-
cessing have been categorized as supervised, unsupervised,
generative, and hybrid approaches. In the current section,
MLP, CNN, recurrent neural network (RNN) and transform-
ers will be discussed for classification under the supervised
approaches. Autoencoders (AE) and RBM algorithms are
used for denoising and dimensionality reduction under unsu-
pervised approaches. VAE and GAN are used for data aug-
mentation under generative approaches. Hybrid approach is
a combination of supervised and unsupervised approaches,
supervised and generative approaches, and unsupervised and
generative approaches.

1) SUPERVISED APPROACH

Supervised algorithms require the training dataset which con-
tains input MI-EEG data with its classification label. The
training of these supervised algorithms requires following
steps:

o Algorithm will take the pre-processed MI-EEG as input.

o These signals are passed though model to extract fea-
tures.

o These features help in getting classification predicted
output probability vector by SoftMax layer.

o Compare the predicted output vector from the desired
label and calculate the loss.

« Gradient of loss is back-propagated to update the model
parameters.

o Repeat steps 2 to 5 until the loss converges.

o After loss convergence, one can use trained model to
compute the accuracy on testing dataset.

We now discuss the models that have been used for
bio-medical classification tasks.

MLP has been used for classification for biomedical sig-
nals in [54]. It has input and output layers along with hidden
layers as shown in Fig. 10. An arbitrary activation function
is used for imposing a threshold. Activation functions decide
whether neurons should be fired or not. The major limitations
associated with MLP are gradient diminishing problem [55],
long training time on large data set, and the converging loss
is not optimal. These issues hinder the classification perfor-
mance on MI-EEG signal classification and processing.
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CNN: It is an eminent dense neural network architecture
that performs the convolutional operation. CNN architectures
are used by [56]for binary and multiclass classification for
MI EEG signals. This network can work on images [57],
audios [58], videos [59] and EEG as specific signal [60].
Its architecture comprises the input layer, a combination of
convolution and pooling layers, a fully connected layer, and
an output layer. Convolution helps in extracting high-level
features. A deeper network suffers from a problem of over-
fitting though it can be resolved easily by using ReLU as
an activation function [61]. The basic architecture of CNN
is shown in Fig. 11.

The important parameters of CNN are kernels, stride,
padding, pooling, and flattening. A kernel is a matrix that
slides by stride value over the data and executes the dot
product with the sub-region of data and gets the dot product
matrix as output. It is a sort of filter which extracts features
from images. Stride is the amount with which kernel slides
over data. It is symmetrical in height and width dimensions.
A kernel is passed across the image towards the right hand
and then top to bottom with pixel column and row change
in horizontal and vertical movements. Padding is the best
technique where convolutional kernel pixels are needed for
processing edge pixels. Generally, padding of zeros is added
at the edge of the image. It also solves the problem of the bor-
der effect. With the preservation of significant characteristics,
pooling is employed to reduce the dimensionality. The maxi-
mum value is chosen during pooling, which is known as max
pooling. Min pooling is one option where the minimum value
is picked. The average value may be selected via average
pooling. Flattening is the last step where the entire feature
matrix is converted into a column or row vector. Later, this
vector is fed to a fully connected layer, followed by SoftMax
layer.

RNN is used for time-series data. It plays a vital role in
extracting features from sequential data. In RNN, output of
each neuron depends upon its input and previous output of
that neuron and this feedback works as a memory unit [62].
RNN has the problem of exploding and vanishing gradi-
ents [63]. These problems may be resolved by using three
advance variants of RNN [61], [62]: LSTM, GRU, and bi-
LSTM.

LSTM model comprises three gates: The input gate, forget
gate, and the output gate, as shown in Fig. 12. Unlike RNN,
it can work in both directions to form unidirectional and
bidirectional LSTM [64]. LSTMs work as a building block
for deep RNN architecture [62]. It can read, write, and delete
information from memory. Memory is used as a gated cell that
decides to allow new input in (input gate), eliminate or keep
the data by observing its importance (forget gate), and check
the impact of output (Output gate). LSTM learns its weights
with time to segregate the information that is needed.

GRU is a current generation of RNN. In comparison to
LSTM, it has a reset gate and an update gate [65]. There is no
cell state in GRU, only a hidden layer is used for transferring
information. Here, reset gate concludes which past data to
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FIGURE 9. Classification of deep learning signal processing techniques for MI EEG signals.
TABLE 4. Comparison of classifiers.
Algorithm Features Limitation

Support vector machine algorithm
(SVM) [48]
k-nearest neighbor algorithm

(KNN) [50]

Artificial neural network algorithm (ANN) [51]

Decision tree
(DT) [53]

It works well even if data is not linearly separable
It stipulates high accuracy to us.
It is well delineated for multimodal classes.

It has zero cost for training. Unlike SVM it is
subtle if data is not linearly distinguishable. It is
vigorous to noisy data.

It applies to a wide range of applications Unlike
SVM it is subtle if data is not linearly distinguish-
able. It is vigorous to noisy data.

It is easy to implement.

Once it is trained then there is no need of repro-
gramming it.

Once change parameters, it is quite easy to use
this.

It provides good accuracy.
Its detection rate is less.
Its space consumption requirement is less.

For testing and training purposes it requires more
speed and size

It requires high complexity and memory for clas-
sification purposes

Its performance depends upon several dimen-
sions we use in the dataset.

Its performance depends upon several dimen-
sions we use inthe dataset. It is very delicate
to noise and irrelevant features. It takes a huge
amount of time for the larger dataset

Its learning can be slow.

It takes a long time for a large data set.
We cannot predict how many neurons and layers
are to be needed.

It needs large memory to store the decision tree.
Sometimes rules are extensive to prune.
Its searching period is high.

Input layer

Hidden layer

FIGURE 10. Architecture of multilayer perceptron (MLP) for classification.

forget and the update gate decides which data to forget and
add to the reset gate. The basic GRU block is shown in Fig. 13.
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Bi-LSTM architecture is generated by keeping two inde-
pendent RNNs together as shown in Fig. 14. It gives us
the benefit of transferring information in both backward and
forward directions, unlike other RNNs. This type of RNN has
been successfully implemented on speech data. This input is
fed in an unusual way that is one from past to future and the
other is from future to past [66].

Transformer processes sequential data and its architec-
ture includes encoder and decoder like other neural network
architecture as shown in Fig. 15 [67]. Input provided in
encoder is a combination of input embedding and positional
information. Positional information is necessary for proper
sequence of data. Encoder consists of self-attention and feed
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FIGURE 13. The GRU for classification.

forward network whereas decoder has one more layer of
encoder-decoder attention due to which relevant information
generated at encoding is used in decoder. Transformer uses a
similarity function of scaled dot product that learns from three
weight matrices of query(Q), key(K), and value(V) whose
dimensions are dy, d, d,. One set of attention (wy, wi, wy) is
called head and the layer with all the sets of attention is called
multi head attention layer. The fast processing of transformer
is due to parallel computation of each attention head. All
heads are concatenated and transformed using square weight
matrix. Attention weights are calculated using query and key.
These weights are divided by square root of dimension of
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FIGURE 14. Architecture of a block of Bi-LSTM for classification.

key vector for stabilizing gradient. Finally, this is passed to
a SoftMax function for normalization.

2) UNSUPERVISED APPROACH

Unsupervised algorithms are used for bio-medical signal
denoising and dimensionality reduction [66]. There are fol-
lowing deep learning based unsupervised algorithms which
are commonly used for MI-EEG data.

RBM: The Boltzmann distribution is the basic phe-
nomenon behind this denoising algorithm. It is also
named Gibbs distribution. Boltzmann machines are gener-
ative deep-learning models which are non-deterministic (or
stochastic) [68]. RBMs are two-layered neural networks that
belong to a class of energy-based models that can detect
inherent patterns in data automatically by reconstructing
clean signal from noisy input. These functioning blocks are
the hidden layer and the visible layer, as shown in Fig. 16.
It does not have any output layer. When the input is fed, they
encapsulate every feature and compute correlation among the
data. The presence of only two layers makes it different from
autoencoders. A hidden layer activation function is active
and passed to the visible layer for the reconstruction of the
signal. They cannot transfer information among themselves
as generated signal differs from the input signal. RBM is a
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FIGURE 15. Architecture of transformer for classification.

Hidden layer

Visible layer

FIGURE 16. Architecture of RBM for denoising.

non-deterministic network where each neuron behaves ran-
domly at activation.

Autoencoder is a representative artificial neural network
(ANN) technique that learns to compress and encode data
efficiently [69]. Later, it perceives how to regenerate data
back from the reduced encoded representation. This newly
generated data should be very much like the original input.
It is an incredibly good denoising technique. Its functioning
blocks are encoder, latent space, and decoder. An encoder
is used to reduce the dimensionality of noisy MI-EEG data
(data with noise) whereas a decoder regenerates the input
data as output of the decoder. Code is a dense precise input
which is called latent space representation. It is a flatten
layer of any dimensionality whose nodes in the layer (code
size) act as a hyperparameter that we set before training
the autoencoder. Input is fed to the encoder which helps
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in generating code. Here decoder is a mirror image of the
encoder. The aim is to get the denoised output from the noisy
input. Fig. 17 shows the basic architecture of autoencoder
for denoising. These hyperparameters should be set before
training an autoencoder:

o Code size: For reduced dimensionality, smaller size of
code is needed. It is the number of nodes in the middle
layer.

o Number of layers: like any other ANN there could be
any number of layers for the encoder and decoder

o Number of nodes per layer: There can be any number of

nodes for each layer. As the decoder is a mirror image

of the encoder so it should keep the same layer structure
as the autoencoder.

Optimization function: Mean squared error (MSE) and

cross-entropy are the most common parameters used

for the calculation of optimization function. If the input
values are binary then we use cross-entropy, otherwise,
we use the mean squared error. The loss is computed
between reconstructed output and clean MI-EEG input.

Backpropagation algorithm is used to update the weights

of encoder and decoder by optimizing the loss function.

3) GENERATIVE APPROACH

VAE is an autoencoder whose training is normalized for
avoiding overfitting and setting up the latent space for an
efficient encoding process [70]. It consists of an encoder and
decoder just like other autoencoders as shown in Fig. 18.
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FIGURE 17. Architecture of autoencoders for denoising.
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FIGURE 18. Architecture of variational autoencoders for denoising.

Moreover, we can say that it is regularised version of autoen-
coders. Along with this, it also considers loss function which
makes this different from autoencoders. VAE solves the con-
cern of the indiscretion in latent space by doing distribution
all over the latent space despite a single point, and then
for better orderliness of the latent space, the loss function
is added for regularization. Regularisation is made of two
properties; one is continuity, and the other is completeness.
The encoder has input distributed over the latent space. Later,
points from that latent space will be sampled and fed to the
decoder. From the output of the decoder, reconstruction loss
is computed and back-propagated. But there is a trade-off
between reconstruction error and regularization [70].

GAN consists of two major parts named as generator and
discriminator [71]. In the generator, any random data from
known distribution is provided as input to generate real data
synthetically. Then, the discriminator tells whether the gen-
erated sample is real or fake. The output of the discriminator
remains binary where 1 refers to real data and O refers to the
fake data. Discriminator knows that how real data looks like.
This network has generator loss (mean square error, VGG loss
etc.) as well as discriminator loss (cross-entropy). The weight
of generator is updated by optimizing generator as well as
discriminator loss. The optimization function is formulated
as a min-max problem where the generator tries to maximize
the total loss and the discriminator tries to minimize the
discriminator error. We optimize the loss until an equilibrium
stage is reached, where the discriminator becomes confused
in classifying the generated output as real or fake. Equation
(23) shows min-max loss equation where the probability that
the generator correctly classifies the actual data is log(D(x))
and increasing log(1 — D(G(z))) would make it easier for the
discriminator to identify the false picture produced by the
generator. D(x) is real data probability estimation of discrim-
inator, G(z) is generator output, D(G(z)) is fake probability
estimation of discriminator, E is expected value of real data,
and E; is expected value of all data given to generator. Fig. 19
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FIGURE 19. Architecture of Generative adversarial network (GAN) for
data augmentation.

shows the basic architecture of GAN. It is used by [72] to
generate bio-medical signals to boost classification accuracy.

E.[log(D(x)]+E:[log(1-D(G ()] (22

4) HYBRID APPROACH

Hybrid algorithm is a combination of different types of
supervised and unsupervised approaches, supervised and
generative approaches, and unsupervised and generative
approaches [73]. Recently, researchers have combined CNN
with LSTM [74], autoencoders with LSTM [75], and CNN
with GAN [76] to extract more efficient features. These
hybrid algorithms are providing good performance. Table 5
provides us the comparison of deep learning based techniques
used in literature.

Ill. DATASETS

Many datasets have been in use for the study of various tech-
niques and analysis of Motor imagery signals. The number of
individuals, number of electrodes, trial length, total number
of trials, sampling frequency, and the number and types of
MI tasks vary from dataset to dataset. The largest collection
of data is available at:

« Physionet dataset is collected from 109 subjects with
64 electrodes. There is only 1 session with 270 trials of
10 seconds. The sampling frequency is 160Hz [77].

« High Gamma dataset is collected from 14 subjects with
128 electrodes. There is a total of 13 sessions with
1000 trails of 4 seconds [78].

o BCI competition dataset is popular among researchers.
BCI-C IV 2a and 2b datasets are benchmark for EEG
based motor imagery signal classification. Its various
sub-parts include a diverse number of subjects, trials,
and electrodes for a description of the MI task [79], [80].

The description of all the BCI datasets is provided in Table 6.

IV. PERFORMANCE MEASURES

Various performance measures help us in evaluating the
system performance. True Positive (TP) refers to accurate
identification of a condition or trait while False Positive
(FP) refers to incorrect identification of a condition or trait.
True Negative (TN) refers to accurate identification of the
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absence of a condition or trait whereas False Negative (FN)
denotes incorrect identification of the absence of a condition
or trait [81], [82], [83], Various performance measure can be
defined Using TP, TN, FP and FN. Few of them are defined
as:

Accuracy is the ratio of sum of TP and TN with the total
number of samples in dataset i.e.,

TP + TN
TP+ TN +FP+FN ’

Accuracy = (23)
Specificity is the ratio of actual negative samples to the
number of total negative predicted samples. It is computed as

TN

—_— (24)
TN + FP

Specificity =
Sensitivity is determined by the proportion of expected
positive samples to actual positive samples, i.e.,

TP

Sensitivity = TP—|——F']V .

(25)
Precision is the ratio of actual positive samples to the
number of total positive predicted samples. It is obtained as
. P
Precision = —— . (26)
TP + FP
F-measure is the harmonic mean between precision and
sensitivity.
2TP
F — measure = — . 27
FN + FP + 2TP
Mathew’s correlation coefficient (MCC) measures the
correlation between actual and predicted class where +1
shows perfect prediction, 0 shows arbitrary prediction and -1
shows perfect conflict.

TP — FP

~ J(TPf FP) (TP + EN) (IN + FP) (IN + FN)
(28)

MccC

Receiver operating characteristics (ROC) is a curve
plotted between true positive rate and false-positive rate.
AUC is the area under this curve [84].

Confusion Matrix is an P matrix for evaluating the per-
formance of a model where P defines several target classes
associated with the model. Here, actual values are compared
with predicted values. High TP and TN rates and low FP and
FN rates are indicators of a good model [85]. Fig. 20 shows
the arrangement of confusion matrix.

V. COMPARISON OF MI SIGNAL CLASSIFICATION
TECHNIQUES

This section provides a comparison of conventional and deep
learning techniques based on their input formulation, classi-
fier, and performance measure. In section V-A, conventional
methods are explained, and in section V-B, deep learning
methods are discussed.
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FIGURE 20. Confusion matrix.

A. CONVENTIONAL SIGNAL PROCESSING TECHNIQUES
Kevric and Subasi [86] employed three well-known signal
decomposition methods, including wavelet packet decompo-
sition (WPD), DWT, and EMD. The multiscale PCA is used
as a denoising approach and higher-order statistical features
collectively perform extraction from WPD sub-bands result-
ing in the highest average classification accuracy of 92.8%
amongst these three techniques. However, by using feature
selection algorithms, optimal features could have attained
with less computation time. Gupta et al. [87] suggested the
flexible analytic wavelet transform (FAWT) method for cat-
egorizing various MI activities using EEG signals. They
achieved an accuracy of 99.33%, sensitivity of 99%, speci-
ficity of 99.6%, F1-Score of 0.9925, and kappa value of
0.9865, using time domain-based features and kNN classifier.
In [88], slow cortical potentials (SCPs) were analyzed using
the wavelet packet analysis (WPA). Using log energy entropy,
the output of WPA is further examined, and the resulting
feature vectors are passed to MLP for classification. On the
datasets Ia and Ib, they reported classification accuracy values
of 92.8% and 63.3%, respectively. Taran et al. [8§9] proposed
the analytic intrinsic mode functions (IMF) based features
for classification. EMD and Hilbert transform collectively
provide IMFs and passed to a least squares SVM (LS-SVM)
classifier. The performance parameters included classifica-
tion accuracy of 97.56%, sensitivity of 96.45%, specificity
of 98.96%, a positive predicted value of 99.2%, a negative
predictive value of 95.2%, and minimum error rate detection
of 4.28%.

Bhattacharyya et al. [90] suggested the use of Fourier-
Bessel series expansion (FBSE) to improve empirical wavelet
transform (EWT). Signals were segregated into narrow-band
components using wavelet-based filter banks, and then the
normalized Hilbert transform was employed to evaluate the
amplitude envelope and instantaneous frequency functions.
The MSE value of multicomponent FM signal for different
cases for FBSE-EWT was obtained as 0.0015. Zhou et al. [91]
offered an innovative technique based on wavelet envelope
analysis and LSTM classifier. HT and DWT were used collec-
tively to extract information on both amplitude and frequency
characteristics. Then, the wavelet envelope features were fed
to LSTM to achieve a classification accuracy of 91.43%.
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TABLE 5. Comparison of deep learning approaches.

Supervised Learning

Unsupervised Learning

Generative Learning

Hybrid Learning

Requires labeled data

Learns to map the input to the out-
put

Minimizes a loss function based on
labels

Suitable for prediction or inference
tasks

Requires unlabeled data

Learns to discover patterns in the
input

Minimizes a loss function based on
data structure

Suitable for exploration or analysis
tasks

Requires unlabeled data

Learns to generate new data similar
to the input

Minimizes a loss function based on
data distribution

Suitable for synthesis or creation
tasks

Requires labeled and/or unlabeled
data

Learns to combine different objec-
tives or paradigms

Minimizes a loss function based on
multiple criteria

Suitable for complex or challenging
tasks

TABLE 6. BCl competition datasets, where the Ml tasks include left
hand(LH), right hand (RH), foot/feet (FT), tongue (T), left fist (LF), right fist
(RF), both fists (BF), left leg (LL), right leg (RL), both foot (BFT).

Dataset Channels No. of class Sampling
subjects Rate (Hz)
Datasets 1 64 7 2(LH+RH) 1000
Datasets 2a 22 9 4(LH+RH 250
+T+FT)
Datasets 2b 3 9 2(LH+RH) 250
Datasets 3 10 2 4(Wrist 400
movement in all
four directions)
Datasets 4 48-64 3 5(movement 1000
of all fingers
thumb)
Datasets I 64 1 2(left pinky+T) 1000
Datasets II 64 2 Spell word 240
Datasets 60 4 4(LH+RH 250
IIa +T+FT)
Datasets 2 3 2(LH+RH) 125
IIb
Datasets 118 5 2(Foot+RH) 1000
IVa
Datasets 118 2 2(LH+FT) 1000
IVb
Datasets 118 1 3(LH+FT+relax) 1000
IVc
Datasets V 32 3 3(LH+RH+Word 512

Association)

Khalaf et al. [92] employed a common spatial pattern (CSP)
algorithms and multi-scale analysis to extract features from
fTCD and EEG. Moreover, the Bayesian approach was pro-
posed for the probabilistic fusion of EEG and fTCD despite
concatenation. The suggested technique produced results
with average accuracy of 93.85%, and average information
transfer rate of 19.89 bits/min. In [93], DWT was used to
decompose the signal into narrow-band signals which are
further decomposed using EMD. From the signal components
thus obtained, approximative entropy was computed for clas-
sification using the SVM technique. Ganorkar and Raut [94]
used wavelet decomposition along with SVM classifier. They
used different wavelets and kernels to attain an accuracy of
82.1%. An innovative approach with phase space representa-
tion (PSR) and EMD was introduced by Bagh et al. [95]. PSR
was applied to the chosen IMFs, obtained using EMD. One-
way analysis of variance (ANOVA) test was used to select
significant features that were input into several classifiers
such as SVM, logistic regression (LR), and Naive Bayes
(NB). The SVM classifier reported accuracy of 96.67%,
Kappa value of 0.93, and AUC as 0.96.
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The characteristics of functional brain networks were com-
bined with CSP and local characteristic-scale decomposition
(LCD) features to create a unique approach for retrieving
discriminative features in [96]. Extracted features were fused
with frequency and spatial domain features which attained
average classification accuracy of 79.7%. PCA and FLD
(Fisher’s linear discriminant)-based Hybrid-KELM (kernel
extreme learning machine) methodology were presented
in [97]. This method achieved a classification accuracy of
96.54%. For dimensionality reduction, PCA was employed.
The FLD presented for an attribute that is far afield of
the distinct modules. Wang et al. [98] investigated a hybrid
BCI based on motor imagery and speech imagery. All the
extracted eigenvalues of CSP, phase-locking value (PLV), and
cross-correlation function were combined in synchronization.
The three mental tasks with the highest average categoriza-
tion accuracy were speech imagery (74.3%), left hand motor
imagery (71.4%), and right-hand motor imagery (69.8%).
Decomposition of signals using the EWT was used by Sadiq
et al. [99] to improve MI-based EEG signals classification
accuracy. For each channel, a single mode was chosen using
the Welch PSD analysis approach, and Hilbert transform
method was utilized to extract the instantaneous amplitude
(IA) and instantaneous frequency (IF) signal components for
each chosen mode. For IA and IF component characteristics,
the LS-SVM classifier achieved an average classification
accuracy of 95.2% and 94.6%, respectively. In [100], LSTM
model with CNN was proposed along with CSP for extracting
spatial and temporal features. The kappa value of 0.80 and the
classification accuracy of 83% was attained by this method.
Chaudhary et al. [101] considered the FAWT decomposition
technique to extract time domain-based features from the
sub-bands. Using the ensemble learning approach, the sub-
space kNN classifier provided accuracy, sensitivity, speci-
ficity, F1-Score, and kappa values of 99.33%, 99%, 99.6%,
0.9925, and 0.9865, respectively. In [102], the concept of
spectro-temporal filtering during pre-processing was pro-
posed where Ml-elicited neural patterns are obtained with
varying amplitude modulation variations according to arti-
facts. A two-step classification method was used where
firstly, LDA discriminates between different pair-wise MI
tasks, and secondly, a naive Bayes classifier foresees the final
task to achieve the desired classification.

Kumal et al. [103] proposed hybridization of the oscil-
latory modes decomposition features mining based on the
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second order difference plots (SODPs) of oscillatory modes
using EMD and VMD. In this work, Wilcoxon statistical test
was used for dimensionality reduction, and machine-learning
algorithms were devised to effectively identify alcoholism.
For classification, kNN, random forest (RF), LS-SVM, and
MLPNN classifiers were employed. The results were note-
worthy for MLPNN with 99.89%. CWT and a simplified
CNN (SCNN) was proposed in [104] for improving the recog-
nition rate of MI-EEG signals. An image was produced as
a time-frequency representation obtained using CWT. These
signals were then supplied to SCNN for feature extraction
and classification. The mean kappa value was 0.651, and the
average classification accuracy among the nine patients was
83.2%. In [105], an ensemble SVM-based voting system was
proposed. FT, EMD, discrete cosine transforms (DCT), and
CSP based representation of EEG signal was used for each
line of this system, which was combined in a triple frame
matrix. Then, features were extracted using a pre-trained deep
CNN. SVM achieved an average classification accuracy of
96.34%.

Echtioui et al. [106] proposed an architecture with ANN,
CNNI1, CNN2, CNN1 with CNN2 merged, and the modified
CNNI1 with CNN2 merged. These methods used different
temporal and spatial characteristics of the signal as features.
Here, the CNN1-based method achieved a classification accu-
racy of 68.77%. Authors in [107] used cross-correlation, band
power, and Haar wavelet energy (HWE) feature extraction
techniques for getting the feature set from the EEG signals.
The features were classified using NB, DT, LDA, and QDA.
With various classifiers, the achieved accuracy were 92.50%,
93.1%, 72.26%, and 98.71%, respectively. Features were
extracted using Lp norms by the FDM method in [108]. The
signal was decomposed into a finite number of FIBFs and
then relevant features were selected using the Kruskal-Wallis
test. Thereafter, SVM was employed to classify the signal.
Average classification accuracy of 99.99%, sensitivity of
100%, and specificity of 99.99% were obtained for the binary
classification of EEG signals. Authors in [109] proposed the
XGBO method to decrease the dimensionality of features
while improving accuracy. The MI-based BCI systems’ accu-
racy was increased by this approach by choosing the fewest
possible features. This method produced classification errors
of 5.56% and 11.28% and mean accuracies of 94.44% and
88.72%. A fusion network was proposed in [110] by combin-
ing the features calculated by EMD and ICA. Thereafter, the
features were merged in the fully connected layer of CNN,
providing an average accuracy of 83.97%.

The comparison of different conventional signal process-
ing techniques based on their techniques used, classifiers
used, and performance measures, is provided in Table 7. The
accuracy values reported here are taken directly from the
published works of the respective authors. Fig. 21 shows the
input formulation considered by researchers for analysis of
MI EEG data. To the best of our knowledge, we can conclude
that about one-third researchers use raw EEG signal whereas
rest use spatial domain features and time-frequency domain
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FIGURE 21. Pie chart highlighting the proportions of different input
formulations used in the literature.

features. Some of them have transformed signal data into
images.

B. DEEP LEARNING TECHNIQUES
Tabar and Halici [111] proposed a method combining input of
frequency, time, and location information from EEG signal in
1D CNN and max-pooling layer with SAE as a classifier. The
kappa value achieved by the suggested technique was 0.547.
Deep ConvNet decoding performance could be enhanced
in [112] by developing batch normalization and exponen-
tial linear units together with a trimmed training technique
and the FBCSP algorithm. Spectral power modulations in
the EEG increased awareness of ConvNets. The proposed
algorithm attained satisfactory results with mean decoding
accuracy of 82.1% for FBCSP and 84% in deep ConvNets.
Sakhavi et al. [113] provided a representation of upgrading
the FBCSP approach through the design and optimization
of CNN in accordance with the representation. The effective
signal representations for LSTM networks with the CSP was
derived in [114] using the one dimension-aggregate approxi-
mation (1d-AX). This framework’s efficacy was increased by
the channel weighting approach, which yielded an accuracy
of 71%. Authors in [115] outlined a method in which FBCSP
algorithm produced spatial features, which were then input
into an RNN for classification using cropped time slices of
the signals. To combat memory distractions, the RNN design
was modified to incorporate the widely used GRU and LSTM
unit. The suggested approach offered a fresh approach to
build a model robustness and high accuracy. Lawhern et al.
[116] introduced a CNN for EEG-based intra-subject and
inter-subject classification using BCI paradigms: sensory-
motor rhythms (SMR), error-related negativity responses
(ERN), P300 visual evoked potentials, and movement-related
cortical potentials (MRCP), which achieved comparably
higher performance. Two different GDL models were used
in [117] to generate an efficient model for the recognition of
MI signals, and achieved a classification accuracy of 71%.
Ortiz-Echeverri et al. [118] proposed the combination of a
blind source separation (BSS) to obtain estimated indepen-
dent components, where these components were represented
in 2D and classified using CNN. The estimated sources were
sorted by BSS using a criteria based on the spectral cor-
relation with a movement related independent component
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TABLE 7. Performance comparison of signal processing techniques.

Sr.no.  Author (Year) Technique Classifier Dataset Accuracy (%)
Kevric, J. et al. MSPCA+DWT
1 (2017)’ MSPCA+WPD SVM BCIIII IVa 92.8
MSPCA+EMD

2 Gupta et al. (2017) FAWT kNN Bern Barcelona database 99.3

3 Goksu et al. (2018) WPA MLP Private 92.8

4 Taran et al. (2018) EMD LS- BCIIII IVa 97.56
SVM

5 Bhattacharyya et al. (2018) EWT+HT - Private -

6 Zhou et al. (2018) DWT LSTM BCIIII 91.43

7 Khalaf et al. (2019) Bayesian+CSP 93.85

8 Jietal. (2019) DWT+EMD SVM BCI2b 95.1

9 Ganorkar et al. (2019) WT SVM Intelligent Data  Analysis 82.1

Group, Berlin

10 Bagh et al. (2019) PSR+EMD SVM - 96.67

11 Ai et al. (2019) CSP+LCD _ Private 79.7

12 Venkatachalam et al. (2019) H_KELM+PCA _ BCI I 96.54

13 Wang et al. (2019) CSP+PLV SVM Private 74,3

14 Lietal. (2019) EWT+WPD LS- 95.2
SVM

15 Zhang et al. (2019) CNN LSTM BCIIV 2a 83

16 Chaudhary et al. (2020) FAWT KNN BCI1V 2a 99, 33

17 Eliana et al. (2020) LDA Naive BCIIV 2a 77,16
Bayes

18 Li et al. (2020) CWT+SCNN SVM BCIIV 2b 83.2

19 Taheri et al. (2020) DCT+CSP SVM BCIIII Iva 96.34

20 Echtioui et al. (2021) WPD LSTM BCI2a 68.77

21 Roy et al. (2021) HWE, Band power DT BCIIII Iva 98.71

22 Thenmozhi et al. (2022) XGBO _ BCI IV 2a 88.7

BCIIII a 94.4
23 Geng et al. (2022) EMD CNN BCI1V 2a

(MRIC) in order to minimize the spatial variation. By uti-
lizing k-fold cross-validation, the suggested approach was
able to attain a classification accuracy of 94.66%. In [119],
CSP and the Riemannian geometry feature extraction meth-
ods were proposed. The authors have also discussed wrap-
per feature-selection algorithms, particle swarm optimization
(PSO) techniques, and DT classifier was used. Features of the
power spectrum density with covariance matrices were pro-
jected onto the tangent space. Chaudhary et al. [120] changed
EEG signals into images using STFT and CWT, and fed them
to the DCNN. AlexNet was employed for classification to
obtain a 99.35% accuracy. Using amplitude-perturbation data
augmentation and the channel-projection mixed-scale CNN
(CP-Mixed Net), an end-to-end EEG decoding framework
was suggested in [121]. Primary spatial and temporal rep-
resentations from EEG data were specifically intended to
be learned by the first block in CP-Mixed Net. The clas-
sification block was constructed to classify EEG tasks that
depend upon the features extracted from CNN. The competi-
tive results demonstrated that the proposed method provided
a classification accuracy of 74.6% and 93.75% for BCI
and HGD datasets, respectively. Tayeb et al. [122] built three
deep learning models using a RCNN, a spectrogram-based
CNN, and LSTM. In all the three models, CNN achieved
maximum accuracy of 92.28%.

In [123], EEG waves were transformed into a series of
a 2D array, preserving the spatial distribution of sampling
electrodes, to create the 3D representation. The multi-branch
structure demonstrated potent capacity to mitigate overfit-
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ting problems with its low latency. The proposed frame-
work’s kappa coefficient was 0.64. Xu et al. [124] suggested
a framework that consists of a target CNN model that has the
same structure as VGG-16 with the exception of the SoftMax
output layer, and a VGG-16 CNN model that has already
been trained on ImageNet. The target CNN model received
the pre-trained VGG-16 CNN model parameters directly. Fol-
lowing that, the target model’s front-layer parameters were
fixed while later-layer parameters were fine-tuned. The target
dataset was composed of time-frequency spectrum images of
EEG signals. The experimental results showed a classifica-
tion accuracy of 74.2%. A parallel multiscale filter bank CNN
was proposed in [125]. This network achieved a classification
accuracy of 75.8%, 84.3%, and 94.4% for three different
public datasets. An alternative to discriminative FBCSP was
proposed in [126] for a multiclass motor imagery signal.
A frequency band was chosen for each binary combination
of classes, and it was then entered into a matrix that feeds
one or more CNNs that have already undergone Bayesian
optimization. The proposed technique successfully achieved
81.6% classification accuracy.

Authors in [127] demonstrated novel MCNN and CCNN
fusion methods. On public datasets, several experiments
were conducted to evaluate the performance of CNN fusion
approaches. Classification accuracy of 75.7% and 95.4%
were attained using the suggested strategy. Li et al. [128]
presented a densely feature fusion CNN (DFFN) that takes
into account the correlation between neighboring layers and
cross-layer features. It considered the network’s local and
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global properties and minimized information loss during con-
volutional operation. The proposed methodology achieved
a classification accuracy of 79.7%. In [129], for learning
subject-specific features, ConvNets used a combined space-
time-frequency feature extraction method. When compared
to traditional convolutional kernels, the Morlet wavelet used
less parameters and gave the features learnt at the correspond-
ing layer spectral amplitude. To establish the network for a
new subject, subject-to-subject weight transfer was employed
as parameters for the current subjects. They attained a clas-
sification accuracy of 74%. A data augmentation method
and a hybrid-scale CNN architecture was proposed in [130].
On two widely used datasets, the suggested technique
obtained average classification accuracy of 91.57% and
87.6%. In [131], an algorithm with a combination of transfer
learning and CWT was proposed. On the binary class BCI
dataset, the suggested approach had a 95.71% accuracy rate.
One-dimensional multi-scale CNN (1DMSCNN) and con-
ditional EMD (CEMD) were presented in [132] to identify
MI EEG data. The correlation coefficient between the initial
EEG signal and each IMF was utilized as the first criterion
in the CEMD algorithm to choose IMFs, and the second
requirement was the relative energy occupancy rates between
the IMFs. The CEMD algorithm acted as a denoising tech-
nique for EEG signals. Authors in [133] proposed a CNN
using transfer learning and an end-to-end serial-parallel (SP)
structure. The parallel domain was utilized for learning fine
characteristics on various scales, whereas the serial domain
was used to extract rough features from the time-frequency-
space domain. Improved cross-subject entropy was achieved
with the use of a freeze-and-retrain fine-tuning transfer learn-
ing technique. The suggested model reported an average
testing accuracy of 72.13% and an average loss of 0.47. A pre-
trained CNN with different optimizers, activation functions,
and learning rates to process the MI dataset was considered
in [134]. They achieved an accuracy of 99.52% on a binary
class dataset with a pre-trained model of Shuffle-net with a
learning rate of 0.0001. Authors in [135] used the algorithm
of dimensionality reduction using perceptual loss. They pro-
posed a subject transfer neural network (STNN), where a
generator was used to generate useful attributes, then CNN
based classifier provides an accuracy of 88.2% was achieved.
PSO optimizer along with a light GBM classifier was studied
in [136] to achieve a classification accuracy of 85.5% for
the multiclass dataset. A parallel CNN architecture was pro-
posed in [137] by creating a new image using spatial features
and frequency bands of the MI signal simultaneously. The
proposed strategy produced a kappa value of 0.65 and a clas-
sification accuracy of 83%. Khademi et al. [138] analyzed a
CNN along with an LSTM classifier. They converted 1-D data
into images and achieved a classification accuracy of 86%.
Table 8 provides a performance comparison of various
deep-learning schemes, where the accuracy values are taken
directly from the published works of the respective authors.
Fig. 22 shows the different deep learning-based architec-
tures employed by researchers for analysis of MI signals. it
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FIGURE 22. Deep learning-based architectures used for Ml EEG data in
literature.

conclude that about two-thirds of the research works use
CNNs whereas the rest use RNN, GAN, and some other
hybrid architectures. Table 9 provides us the comparison of
deep learning based techniques used in literature.

VI. RESEARCH GAPS AND RECENT TRENDS

There has been an extensive research in the domain of BCL.
However, there exist some active challenges which are due to
the system-level limitations, such as the accuracy, reliability,
and safety of the BCI devices and algorithms. Other chal-
lenges are related to the human-level limitations, such as the
variability, adaptability, and ethics of the BCI users and their
interactions with the technology. Data set is a challenging
issue while dealing with the BCI system. Training the subject
is one of the tedious task either in directing the subject or
during the recording session. The mood of the same subject
may differ at times which may lead to a change in signal.
Different subjects act differently in several situations which
may affect data. The subject must control his brain feedback
signals during the recording of the session. Therefore, prepar-
ing a dataset remains a key challenge, and a time-consuming
task. Further, it is exceedingly difficult to deal with data
since it is nonlinear, non-stationary, and noisy at the same
time. The brain being a complex nonlinear system, the brain
waves/signals are also quite complex. Mental state, emotional
state, fatigue level, and concentration level make the signal
non-stationary, since they keep on changing at different time
instants. The noise also becomes a significant challenge to
deal with. It can occur due to the movement of electrodes, eye
blinking, and some environmental disturbances. The small
training set is a deterrent to attaining superior results. Deep
learning techniques are data-hungry, so they require ade-
quate training data to properly train the model. There occurs
a trade-off between the technological complexity and the
amount of training data.

Artifacts are also associated with EEG signals which need
to be removed. As Section II explains, there are several
kinds of artifacts. Since the causes of the various artifacts are
different, the artifact-removal methods also need to be
devised individually. As a result, there is a requirement for a
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TABLE 8. Comparison of deep learning techniques.

Sr. Author [Year] Arch./Act. fun. Input formulation Dataset Accuracy (%)

No.

1 Tabar et al.[2016] CNN/ReLU STFT BCIII3 74.8

Schrimeister et al. . . BCI IV 2a 82.1

2 [2017] CNN/ELU Time Series BCIIV 2b ]4

3 Sakhvi et al. [2018] CNN/ReLU FBCSP BCI TV 2a 74.46

4 Han et al [2022] CNN STFT BCI IV 2b 83

5 Hassanpour et al. [2019] SAE Time Series BCI 1V 2a 71

6 Wang et al. [2018] LSTM/ Sigmoid 1-d BCIIV 2a 71
BCITV 2a 78.24

7 Luo et al. [2018] RNN/LSTM FBCSP BCIIV 2b 82.39

8 Lawhern et al. [2018] CNN/ELU Time Series BCI 1V 2a 67

Majidov et al. BCI 1V 2a

9 [2019] CNN/ReL.U FBCSP BCIIV 2b 80.44 82.39

10 Chaudhary et al. [2019] CNN/ReLU CWT BCIC III 4a 99.35

11 Lietal. [2019] CNN/ELU Time Series BCI IV 2a 74.6

12 Tayeb et al. [2019] CNN/ReLU Time Series BCIIV 2b 84.24

13 Zhao et al. [2019] CNN/ELU 3-D image BCI IV 2a 52.17

14 Xu et al. [2019] CNN/ReLU STFT BCIIV 2b 74.2

15 Wu et al. [2019] CNN/Linear Time Series BCIIV 2b 84.3

16 Khedemi et al. [2022] CNN/LSTM CWT BCIIV 2a 86

17 Amin et al. [2019] CNN/ELU Time Series BCI IV 2a 75.7

18 Liet al. [2019] CNN/ReLU CSP 79.7

19 Zhao et al. [2019] CNN/Linear Time Series BCI 1V 2a 83

. . . BCI TV 2a 91.5

20 Dai et al. [2020] CNN/ELU Time Series BCIIV 2b 87.6

21 Sadiq et al. [2022] CNN 99.52

22 Echeverri et al. [2019] CNN/ReLU BSS CWT BCIIII 4a 94.66

23 Tang et al. [2020] CNN/ReLU EMD BCIIV 2b 82.61

24 Padila et al. [2019] CNN/ReLU FBCSP BCI IV 2a 80.03

25 Kant et al. [2020] CNN/ReLU CWT BCIII 3 95.71

26 Sun et al. [2022] CNN Time Series BCIIV 2b 88.2

27 Abenna et al. [2022] GBM Time Series BCI 1V 2b 85.5

28 AK et al. [2021] CNN Time Series Private Dataset 90

29 Zhao et al. [2021] SPCNN Time Series BCIIV 2b 72.13

TABLE 9. Comparison of conventional and deep learning based

approaches.

Conventional Signal Processing
Techniques

Deep Learning Techniques

Based on mathematical transfor-
mations or decompositions

Large amount of data increases the
complexity

Require prior knowledge or as-
sumptions about the signal
Parameters like decomposition
level, sampling frequency need to
be set

Provide interpretable or explain-
able results

Well suited for linear or stationary
signals

Perform low-level or mid-level
tasks

Based on artificial neural net-

works

Require large amounts of data

Does not require prior knowledge
or assumptions about the signal

Few parameters like batch size,
epochs, learn rate, optimizer need

to be set

Provide black-box or opaque re-

sults

Suitable for nonlinear or non-

stationary signals

Perform high-level or end-to-end

tasks

technique that can appropriately denoise a signal. Due to the
presence of artifacts, feature extraction and selection become
a challenging task while considering BCI systems. Feature
extraction is performed in various domains as discussed in
Section II-A3. These features perform well for binary class
datasets but the performance drops for multiclass datasets.
Therefore, an optimal technique is required for multiclass
datasets as well. After feature extraction, the selection of
suitable features is a big challenge. A specific set of fea-
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tures’ performance varies for different subjects in the same
dataset. Hence, a robust technique is required that works well
across the entire dataset. After solving these problems, low
information transfer rate (ITR), low signal-to-noise (SNR)
ratio and robust algorithm also need to be resolved. Opti-
mal evaluation metrics can be categorized into two parts
information-based and classification-based. Information-
based measures depend upon the probabilistic dependency
and inter-class distance. Though the information-based met-
rics use one-time calculations, they do not promise the best
results. Classification-based metrics depend on the error
rate of the classifier. Classification performance results may
be quite different as we change the classifier. Therefore,
an appropriate classifier model needs to be developed for the
said purpose. The impact of non-task-related activities is also
a major concern for the performance of BCI systems [139].
Non task related brain activity is the brain activity that occurs
when a person is not engaged in a specific cognitive or
behavioral task, such as resting state activity or spontaneous
fluctuations. Non task related brain activity may reveal the
intrinsic functional architecture of the brain, as well as the
variability in behavior and the physiological correlates of
neurological and psychiatric disorders [14]. As alpha rhythm
is more related to the motor-related cortex, a significant
reduction in the amplitude of this wave is seen in the idle
state [140]. Moreover, the response of different subjects for
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the same MI task is different. As a specified set of sub-
jects cannot be used every time for a successful experiment,
it is referred to as “BCI inefficiency” [141]. In this, pre-
diction of the user is also a pivotal point. Researchers have
also performed experimentation on various physiological and
neuro-physiological factors. Physiological factors such as
being comfortable [142], attention span [143], fatigue [144],
and neuro-physiological factors such as power of theta and
alpha band [145], power of gamma oscillations [146], effect
of resting state [147], shows their dependency on BCI perfor-
mance.

Real-time performance is also a challenge for BCI systems.
As the models are usually trained on data sets that are pre-
pared in a controlled lab environment, they do not represent
the intricacies of real-world scenarios, where every subject
behaves differently with different environment. Therefore,
a multi-task hybrid archetypal is needed that should be able to
handle two tasks at the same time, one of which is individual
identification and the other is class recognition. Availability
of standard hardware is also a concern while recording data
sets. As the head circumference for all the people cannot
be the same for recording signals through all the channels,
therefore, different numbers of head caps are needed. It is
costly to arrange such a variety of head caps. Therefore,
a robust and efficient system is required with stable per-
formance that can be used by different users in different
environments having different mental states. Currently BCI
is widely used only in medical field, but it needs to be
explored in other areas as well, for example, it can have
more applications in home automation and entertainment.
Various application fields can be seen as disease detection,
refunctioning of central nervous system, neuroergonomics,
games, and entertainment, for smart homes. BCI for smart
homes is an intriguing area of study that can let the user
control electrical devices, lights, and provide workable home
automation [148]. Authors in [149] developed a software
application named back home which provides an ultimate
standard of living with its overwhelming features.

Disease detection and diagnosis at an early stage can
help a patient avoid any damage to the organ. Abnormal
brain structure (brain tumor), epilepsy, sleep apnea, and brain
swelling (such as encephalitis) are different abnormalities
associated with the brain that are currently diagnosed with
the help of MRI and CT-scan. The sleep apnea disease is
narcolepsy that can be detected with the help of EEG record-
ing [150]. Sleep apnea has three main categories: central sleep
apnea (CSA), obstructive sleep apnea (OSA), and mixed
sleep apnea (MSA). OSA is a quite ordinary sleep disorder
characterized by morning headaches and loud snoring. Due to
this, upper airway is completely blocked and throat muscles
are relaxed to block airways. CSA is a harmful disorder in
which signals that are controlling breadth are stopped by
the brain. It may cause heart failure and stroke. MSA is
a combination of the above-explained disorders. It is also
the main diagnostic for epilepsy. We can detect a seizure
and a non-seizure signal for confirmation of epilepsy. Brain

VOLUME 11, 2023

tumors, brain damage due to any head injury, encephali-
tis, encephalopathy (brain dysfunction), and brain dead are
detected with the help of EEG signals.

Responsiveness is a pivotal factor while discussing about
the real-time performance of the BCI system. Responsive-
ness is the response time against a decision factor i.e.
the time from the moment of stimulus to the decision
made(correct/incorrect) [151]. This is a vital component in
the effective implementation of BClIs for various applications
such as communication, control, and rehabilitation. the type
of brain signal, quality of the signal, and complexity of
the task are considerable factors for evaluating the perfor-
mance of BCI systems. Signal detection, signal translation,
and fatigue are a few common challenges for enhancing the
responsiveness of the BCI system [152]. Though there are
some tools for evaluating BCI response such as the evaluation
interface, PROEZA SG with BCI that includes the param-
eter of response time, type of decision, and decision hold-
ing time. Researchers used deep learning-based techniques
and used multiple EEG channels to get a better electrical
signal of the brain and improve the responsiveness of the
system [153], [154].

BCI devices for communication are a new communication
and control channel that helps us to restore the function of
motor nerves in the external world [155]. The brain can be
monitored by EEG, functional magnetic resonance imaging
(fMRI), positron emission tomography (PET), magnetoen-
cephalography (MEG), and optical imaging. However, the
time constant for each of these methods is rather large as they
depend upon blood flow. Therefore, they cannot communi-
cate fast. However, EEG has a fleeting time constant and can
be used for faster communication. Biometric identification
for security and validation can also be an application under
BCI [156]. It is related to individual identification like fin-
gerprint, retinal data, face recognition, and voice. EEG-based
biometry has some issues regarding robustness, security, pri-
vacy, and ergonomics, and research is needed for efficient
simulation which can be adapted for subject identification in
BCI systems and applications.

Therapy and assessment give us a quick, cheap, portable,
and user-friendly way to recognize emotions [157]. Emo-
tional states are controlled by the frontal and parietal lobes
of the brain, while a few brain-like beta waves appear to be
the most discriminative. The common belief that women are
more emotional than men is found consistent with EEG as
well. EEGs do multichannel recordings from both the central
and the autonomous nervous systems. In affective neuro-
science, feelings can be viewed as a subjective illustration
of emotions. Moods are affected by emotions which have
an impact for an exceedingly long duration than emotions
and are also commonly less affected than emotions. Neuroer-
gonomics is a study that deals with support enhancement in
the workplace [158]. With this, we can understand the fatigue
level of a worker, and his interests at the time of work. We can
convert our place into a smart workplace where different
activities could be done in an efficient manner.
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FIGURE 23. Various applications of Ml EEG.

BCI for entertainment has emerged as a noteworthy dis-
covery for gamers. Mind control game is a forthcoming
facility that will be provided to the entertainment field [55].
BCI-based games recognize the interest of the gamer, extent
of involvement in the game, and the level of stress during
the game. It also controls the difficulty level in multiplayer
games. EEG data is used to monitor the excitement of the
player and dynamic difficulty adjustment can be performed
according to the interest of the player. Fig. 23 shows var-
ious applications fields associated with MI EEG datasets.
these can be divided in two categorizations as medical and
non-medical. Medical applications include restoring, replac-
ing, and regenerating human abilities and functions whereas
non-medical applications relate to home automation, enter-
tainment, and security.

In future, researchers may convert EEG data into 2-D
data. It is quite easy and approachable to use images as
compared to 1-D data, especially for deep-learning schemes.
Different pre-trained networks are available to train on
these image datasets. Since they have already learnt some
weights, it becomes convenient to use these networks.
These pre-trained networks converge on small datasets as
well. Some well-known pre-trained networks are Google-
net, AlexNet, VGG-19, inception, etc. Attention mechanism
and reinforcement learning are also in trend which may
be a solution for robust and general framework. Attention
approach focuses on the most dominant features of the signal
which result in better performance whereas reinforcement
learning has the ability to identify important components
of signals [159]. A zero calibration BCI system is needed
for subject independent classification which can be solved
by customizing a model using transfer learning approach.
Further, Deep learning algorithms used for decision-making
can perform better with additional data augmentation tech-
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niques. Fusion techniques may also be used for improving the
results, where both the conventional and deep learning-based
techniques are combined to obtain the results. In fusion tech-
niques, we can use the advantages of both methods. Fusion is
possible at three different levels: input, feature, and decision.

VII. CONCLUSION

There are several challenges in analyzing BCI EEG sig-
nals, therefore, we require a systematic and robust approach
to deal with these challenges. The performance of signal
processing-based techniques for BCI MI analysis depends
on signal processing steps, denoising, and efficient fea-
ture extraction and selection. various pre-processing steps,
followed by sampling and filtering. Various time-domain,
frequency-domain, time-frequency domain, and nonlinear
signal processing techniques have been discussed in this
article. In addition to this, feature selection and transfor-
mation methods are also included under signal processing
techniques. The performance of deep-learning approaches
majorly rely on the size of dataset, depth of architecture and
transfer learning approach. Various deep-learning approaches
for analyzing EEG data have been discussed in detail.
Widely-used classifiers have also been reviewed. Further,
publicly available BCI MI-EEG datasets are presented, which
may be used for future research activities in this domain. Con-
ventional signal processing techniques provide mathematical
formulations which give good accuracy on smaller datasets,
however, they their performance drops as the dataset gets
larger. But with larger datasets, deep learning algorithms per-
forms better as these are data-hungry algorithms. Future work
related to BCI MI should investigate techniques which are
less computationally complex, yield superior performance
measures, and can generalize on a smaller dataset. The tech-
nique should be robust enough to handle high-dimensionality
data with noisy signals.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
from Intelligent Prognostic Private Limited Delhi, India
researcher’s supporting Project for funding this research
work. The authors would like to acknowledge the support
from Universiti Sultan Zainal Abidin - UniSZA (UniSZA)
Malaysia.

REFERENCES

[1]1 A.Kawala-Sterniuk, M. Pelc, R. Martinek, and G. M. W¢jcik, “Editorial:
Currents in biomedical signals processing—Methods and applications,”
Frontiers Neurosci., vol. 16, Jul. 2022, Art. no. 989400.

[2] H. M. Rai and K. Chatterjee, “Hybrid CNN-LSTM deep learning model
and ensemble technique for automatic detection of myocardial infarc-
tion using big ECG data,” Int. J. Speech Technol., vol. 52, no. 5,
pp. 5366-5384, Mar. 2022.

[3] M. R. Kose, M. K. Ahirwal, and A. Kumar, “A new approach for emo-
tions recognition through EOG and EMG signals,” Signal, Image Video
Process., vol. 15, no. 8, pp. 1863-1871, May 2021.

[4] E. B. N. Friedel, L. Tebartz van Elst, C. Schmelz, D. Ebert, S. Maier,
D. Endres, K. Runge, K. Domschke, E. Bubl, J. Kornmeier, M. Bach,
S. P. Heinrich, and K. Nickel, “Replication of reduced pattern elec-
troretinogram amplitudes in depression with improved recording param-
eters,” Frontiers Med., vol. 8, pp. 1-10, Oct. 2021.

VOLUME 11, 2023



N. Sharma et al.: Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition

IEEE Access

[5]

[6

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. D. Yigit, M. O. Sevik, and O. Sahin, “Transcorneal electrical stimula-
tion therapy may have a stabilization effect on multifocal electroretinog-
raphy for patients with retinitis pigmentosa,” Retina, vol. 42, no. 5,
pp- 923-933, May 2022.

S. S. Poorna, R. Raghav, A. Nandan, and G. J. Nair, “EEG based
control—A study using wavelet features,” in Proc. Int. Conf. Adv. Com-
put., Commun. Informat. (ICACCI), Sep. 2018, pp. 550-553.

A. Soler, L. A. Moctezuma, E. Giraldo, and M. Molinas, “Automated
methodology for optimal selection of minimum electrode subsets for
accurate EEG source estimation based on genetic algorithm optimiza-
tion,” Sci. Rep., vol. 12, no. 1, pp. 1-18, Jul. 2022.

I. A. Kershner, M. V. Sinkin, and Y. V. Obukhov, “‘Detection of epileptic
seizures in EEG signals during long-term monitoring of patients after
traumatic brain injury,” J. Phys., Conf. Ser., vol. 1368, no. 5, Nov. 2019,
Art. no. 052007.

J. N. Acharya, A. Hani, J. Cheek, P. Thirumala, and T. N. Tsuchida,
“American clinical neurophysiology society guideline 2: Guidelines
for standard electrode position nomenclature,” J. Clin. Neurophysiol.,
Off. Publication Amer. Electroencephalographic Soc., vol. 33, no. 4,
pp. 308-311, 2016.

K. B. E. Bocker, J. A. G. van Avermaete, and
M. M. C. van den Berg-Lenssen, “The international 10-20 system
revisited: Cartesian and spherical co-ordinates,” Brain Topography,
vol. 6, no. 3, pp. 231-235, Mar. 1994.

M. K. Delimayanti, B. Purnama, N. G. Nguyen, M. R. Faisal,
K. R. Mahmudah, F. Indriani, M. Kubo, and K. Satou, ‘“Classification of
brainwaves for sleep stages by high-dimensional FFT features from EEG
signals,” Appl. Sci., vol. 10, no. 5, p. 1797, Mar. 2020.

J. S. Kumar and P. Bhuvaneswari, “Analysis of electroencephalography
(EEG) signals and its categorization—A study,” Proc. Eng., vol. 38,
pp. 2525-2536, Jan. 2012.

Y. S. Singh, “A review paper on brain-computer interface,” Int. J.
Eng. Res. Technol., vol. 3, no. 10, pp. 1-6, doi: 10.17577/IJERT-
CONV3IS10102.

M. FE. Mridha, S. C. Das, M. M. Kabir, A. A. Lima, M. R. Islam, and
Y. Watanobe, “Brain-computer interface: Advancement and challenges,”
Sensors, vol. 21, no. 17, p. 5746, Aug. 2021.

A. Miladinovi¢, A. Barbaro, E. Valvason, M. Ajcevié, A. Accardo,
P. P. Battaglini, and J. Jarmolowska, “Combined and singular effects of
action observation and motor imagery paradigms on resting-state sensori-
motor thythms,” in Proc. Mediterranean Conf. Med. Biol. Eng. Comput.
Coimbra, Portugal: Springer, 2020, pp. 1129-1137.

N. Kosmyna and A. Lécuyer, “A conceptual space for EEG-based
brain-computer interfaces,” PLoS ONE, vol. 14, no. 1, Jan. 2019,
Art. no. e0210145.

S. N. Abdulkader, A. Atia, and M.-S.-M. Mostafa, “Brain computer
interfacing: Applications and challenges,” Egyptian Informat. J., vol. 16,
no. 2, pp. 213-230, Jul. 2015.

D. Gorjan, K. Gramann, K. De Pauw, and U. Marusic, ‘“Removal of
movement-induced EEG artifacts: Current state of the art and guidelines,”
J. Neural Eng.,2022.

G. Madhale Jadav, J. Lerga, and L. Stajduhar, “Adaptive filtering and
analysis of EEG signals in the time-frequency domain based on the local
entropy,” EURASIP J. Adv. Signal Process., vol. 2020, no. 1, pp. 1-18,
Dec. 2020.

X. Jiang, G. B. Bian, and Z. Tian, “Removal of artifacts from
EEG signals: A review,” Sensors, vol. 19, no. 5, p. 987, 2019, doi:
10.3390/s19050987.

O. Aydemir, S. Pourzare, and T. Kayikcioglu, *“Classifying various EMG
and EOG artifacts in EEG signals,” Przeglad Elektrotechniczny, vol. 88,
no. 11A, pp. 218-222, 2012.

M. K. Islam, P. Ghorbanzadeh, and A. Rastegarnia, ‘‘Probability mapping
based artifact detection and removal from single-channel EEG signals for
brain—computer interface applications,” J. Neurosci. Methods, vol. 360,
Aug. 2021, Art. no. 109249.

A. S. Al-Fahoum and A. A. Al-Fraihat, “Methods of EEG signal fea-
tures extraction using linear analysis in frequency and time-frequency
domains,” ISRN Neurosci., vol. 2014, pp. 1-7, Feb. 2014.

P. Singh, S. D. Joshi, R. Kumar, and K. Saha, “The Fourier decomposition
method for nonlinear and non-stationary time series analysis Subject
Areas,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 473, no. 2199,
2017.

A. Prakash, “Wavelet and its applications,” Int. J. Sci. Res. Comput. Sci.,
Eng. Inf. Technol., vol. 3, pp. 95-104, Nov. 2018.

VOLUME 11, 2023

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Katharotiya, S. Patel, and M. Goyani, ‘““Comparative analysis between
DCT & DWT techniques of image compression,” J. Inf. Eng. Appl., vol. 1,
no. 2, pp. 9-17, 2011.

B. Fatimah, P. Singh, A. Singhal, and R. B. Pachori, “Detection of
apnea events from ECG segments using Fourier decomposition method,”
Biomed. Signal Process. Control, vol. 61, Aug. 2020, Art. no. 102005.
P. M. Tripathi, A. Kumar, R. Komaragiri, and M. Kumar, “Watermark-
ing of ECG signals compressed using Fourier decomposition method,”
Multimedia Tools Appl., vol. 81, no. 14, pp. 19543-19557, Jan. 2022.

S. Mamli and H. Kalbkhani, “Gray-level co-occurrence matrix of Fourier
synchro-squeezed transform for epileptic seizure detection,” Biocybern.
Biomed. Eng., vol. 39, no. 1, pp. 87-99, Jan. 2019.

M. K. I. Molla, S. Das, M. E. Hamid, and K. Hirose, ‘“Empirical mode
decomposition for advanced speech signal processing,” J. Signal Pro-
cess., vol. 17, no. 6, pp. 215-229, 2013.

U. Maji and S. Pal, “Empirical mode decomposition vs. Variational
mode decomposition on ECG signal processing: A comparative study,” in
Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2016,
pp. 1129-1134.

M. E. Abdulmunem and A. A. Badr, “Hilbert transform and its applica-
tions: A survey,” Int. J. Sci. Eng. Res., vol. 8, pp. 699-704, Feb. 2017.
N. Bajaj, J. R. Carrion, F. Bellotti, R. Berta, and A. D. Gloria, ‘‘Automatic
and tunable algorithm for EEG artifact removal using wavelet decompo-
sition with applications in predictive modeling during auditory tasks,”
Biomed. Signal Process. Control, vol. 55, Jan. 2020, Art. no. 101624.

P. M. Tripathi, A. Kumar, R. Komaragiri, and M. Kumar, “A novel
approach for real-time ECG signal denoising using Fourier decomposi-
tion method,” Res. Biomed. Eng., vol. 38, pp. 1037-1049, Sep. 2022.

Q. Cheng, W. Yang, K. Liu, W. Zhao, L. Wu, L. Lei, T. Dong, N. Hou,
F. Yang, Y. Qu, and Y. Yang, “Increased sample entropy in EEGs during
the functional rehabilitation of an injured brain,” Entropy, vol. 21, no. 7,
p. 698, Jul. 2019.

P. Memar and F. Faradji, ““A novel multi-class EEG-based sleep stage
classification system,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26,
no. 1, pp. 84-95, Jan. 2018.

M. Saini, U. Satija, and M. D. Upadhayay, ‘“One-dimensional convo-
lutional neural network architecture for classification of mental tasks
from electroencephalogram,” Biomed. Signal Process. Control, vol. 74,
Apr. 2022, Art. no. 103494.

R. Ul Alam, H. Zhao, A. Goodwin, O. Kavehei, and A. McEwan,
“Differences in power spectral densities and phase quantities due
to processing of EEG signals,” Sensors, vol. 20, no. 21, pp. 1-20,
2020.

P. Jain and R. B. Pachori, “An iterative approach for decomposition
of multi-component non-stationary signals based on eigenvalue decom-
position of the Hankel matrix,” J. Franklin Inst., vol. 352, no. 10,
pp. 4017-4044, Oct. 2015.

F. Anowar, S. Sadaoui, and B. Selim, *“Conceptual and empirical compar-
ison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS,
SVD, LLE, ISOMAP, LE, ICA, t-SNE),” Comput. Sci. Rev., vol. 40,
May 2021, Art. no. 100378.

J. V. Stone, “Independent component analysis,” in Neural Informa-
tion Theory, P. E. Latham and A. Pouget, Eds. MIT Press, Feb. 2005,
pp. 155-178.

A. Miladinovié, M. Ajcevi¢, and A. Accardo, ‘Performance
of dual-augmented Lagrangian method and common spatial
patterns applied in classification of motor-imagery BCL” 2020,
arXiv:2010.10359.

A. Miladinovié, M. Ajcevic, J. Jarmolowska, U. Marusic, M. Colussi,
G. Silveri, P. P. Battaglini, and A. Accardo, “Effect of power fea-
ture covariance shift on BCI spatial-filtering techniques: A compara-
tive study,” Comput. Methods Programs Biomed., vol. 198, Jan. 2021,
Art. no. 105808.

H. He and D. Wu, “Spatial filtering for brain computer interfaces: A
comparison between the common spatial pattern and its variant,” in
Proc. IEEE Int. Conf. Signal Process., Commun. Comput. (ICSPCC),
Sep. 2018, pp. 1-6.

A. S. Aghaei, M. S. Mahanta, and K. N. Plataniotis, ““Separable common
spatio-spectral patterns for motor imagery BCI systems,” IEEE Trans.
Biomed. Eng., vol. 63, no. 1, pp. 15-29, Jan. 2016.

Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki,
“Temporally constrained sparse group spatial patterns for motor
imagery BCL,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3322-3332,
Sep. 2019.

80539


http://dx.doi.org/10.17577/IJERTCONV3IS10102
http://dx.doi.org/10.17577/IJERTCONV3IS10102
http://dx.doi.org/10.3390/s19050987

IEEE Access

N. Sharma et al.: Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

80540

T. Long, M. Wan, W. Jian, H. Dai, W. Nie, and J. Xu, “Application
of multi-task transfer learning: The combination of EA and optimized
subband regularized CSP to classification of 8-channel EEG signals
with small dataset,” Frontiers Hum. Neurosci., vol. 17, Mar. 2023,
Art. no. 1143027.

D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut, “Compar-
ison of linear, nonlinear, and feature selection methods for EEG signal
classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 2,
pp. 141-144, Jun. 2003.

M. R. N. Kousarrizi, A. A. Ghanbari, M. Teshnehlab, M. A. Shorehdeli,
and A. Gharaviri, “Feature extraction and classification of EEG signals
using wavelet transform, SVM and artificial neural networks for brain
computer interfaces,” in Proc. Int. Joint Conf. Bioinf., Syst. Biol. Intell.
Comput., Aug. 2009, pp. 352-355.

A. Bablani, D. R. Edla, and S. Dodia, ‘“Classification of EEG data
using k-nearest neighbor approach for concealed information test,” Proc.
Comput. Sci., vol. 143, pp. 242-249, Jan. 2018.

Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and
J. Faubert, “Deep learning-based electroencephalography analysis: A
systematic review,” J. Neural Eng., vol. 16, no. 5, Aug. 2019,
Art. no. 051001.

A. Afthanorhan, A. Mahmud, A. Sapri, N. Aimran, A. Aireen, and
A.Rambli, “Prediction of Malaysian women divorce using machine
learning techniques,” MALAYSIAN J. OF Comput., vol. 7, no. 2,
pp. 1149-1161, 2022.

N. S. Bastos, B. P. Marques, D. F. Adamatti, and Cleo Z. Billa,
“Analyzing EEG signals using decision trees: A study of modulation
of amplitude,” Comput. Intell. and Neurosci., vol. 2020, Jul. 2020,
Art. no. 32695151.

R. Sharma, M. Kim, and A. Gupta, “Motor imagery classification in
brain-machine interface with machine learning algorithms: Classical
approach to multi-layer perceptron model,” Biomed. Signal Process.
Control, vol. 71, Jan. 2022, Art. no. 103101.

A. Al-Saegh, S. A. Dawwd, and J. M. Abdul-Jabbar, “Deep learning
for motor imagery EEG-based classification: A review,” Biomed. Signal
Process. Control, vol. 63, Jan. 2021, Art. no. 102172.

A. M. Roy, “An efficient multi-scale CNN model with intrinsic fea-
ture integration for motor imagery EEG subject classification in brain-
machine interfaces,” Biomed. Signal Process. Control, vol. 74, Apr. 2022,
Art. no. 103496.

W. Ma, H. Xue, X. Sun, S. Mao, L. Wang, Y. Liu, Y. Wang, and X. Lin,
‘A novel multi-branch hybrid neural network for motor imagery EEG sig-
nal classification,” Biomed. Signal Process. Control, vol. 77, Aug. 2022,
Art. no. 103718.

S. Kwon, “A CNN-assisted enhanced audio signal processing for speech
emotion recognition,” Sensors, vol. 20, no. 1, p. 183, Dec. 2019.

W. Wei, W. Yang, E. Zuo, Y. Qian, and L. Wang, “‘Person re-identification
based on deep learning—An overview,” J. Vis. Commun. Image Repre-
sent., vol. 82, Jan. 2022, Art. no. 103418.

M. Riyad, M. Khalil, and A. Adib, “MI-EEGNET: A novel convolutional
neural network for motor imagery classification,” J. Neurosci. Methods,
vol. 353, Apr. 2021, Art. no. 109037.

B. Xu, L. Zhang, A. Song, C. Wu, W. Li, D. Zhang, G. Xu, H. Li, and
H. Zeng, “Wavelet transform time-frequency image and convolutional
network-based motor imagery EEG classification,” IEEE Access, vol. 7,
pp. 6084-6093, 2019.

Y. Khalifa, D. Mandic, and E. Sejdi¢, “A review of hidden Markov models
and recurrent neural networks for event detection and localization in
biomedical signals,” Inf. Fusion, vol. 69, pp. 52-72, May 2021.

A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for elec-
troencephalogram (EEG) classification tasks: A review,” J. Neural Eng.,
vol. 16, no. 3, Apr. 2019, Art. no. 031001.

S. Kumar, A. Sharma, and T. Tsunoda, “Brain wave classification using
long short-term memory network based OPTICAL predictor,” Sci. Rep.,
vol. 9, no. 1, p. 9153, Jun. 2019.

S. Gao, Y. Huang, S. Zhang, J. Han, G. Wang, M. Zhang, and Q. Lin,
“Short-term runoff prediction with GRU and LSTM networks without
requiring time step optimization during sample generation,” J. Hydrol.,
vol. 589, Oct. 2020, Art. no. 125188.

Y. Wang, M. Zhang, R. Wu, H. Wang, Z. Luo, and G. Li, “Speech
neuromuscular decoding based on spectrogram images using confor-
mal predictors with bi-LSTM,” Neurocomputing, vol. 451, pp. 25-34,
Sep. 2021.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

J. Liu, L. Zhang, H. Wu, and H. Zhao, “Transformers for EEG emotion
recognition,” 2021, arXiv:2110.06553.

N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for
motor imagery classification based on restricted Boltzmann machines,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 566-576,
Jun. 2017.

M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. Awwal, and V. K. Asari, “A state-of-
the-art survey on deep learning theory and architectures,” Electronics,
vol. 8, no. 3, pp. 1-67, 2019.

E. Hernandez-Gonzalez, P. Go6mez-Gil, E. Bojorges-Valdez, and
M. Ramirez-Cortés, “Bi-dimensional representation of EEGs for BCI
classification using CNN architectures,” in Proc. 43rd Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Nov. 2021, pp. 767-770.

K. Zhang, G. Xu, Z. Han, K. Ma, X. Zheng, L. Chen, N. Duan, and
S. Zhang, “‘Data augmentation for motor imagery signal classification
based on a hybrid neural network,” Sensors, vol. 20, no. 16, pp. 1-20,
2020.

J. Yang, H. Yu, T. Shen, Y. Song, and Z. Chen, ‘“‘4-class MI-EEG signal
generation and recognition with CVAE-GAN,” Appl. Sci., vol. 11, no. 4,
p- 1798, Feb. 2021.

C. Li, H. Yang, X. Wu, and Y. Zhang, “Improving EEG-based motor
imagery classification using hybrid neural network,” in Proc. IEEE 9th
Int. Conf. Inf., Commun. Netw. (ICICN), Nov. 2021, pp. 486-489.

H.Li, M. Ding, R. Zhang, and C. Xiu, ‘““Motor imagery EEG classification
algorithm based on CNN-LSTM feature fusion network,” Biomed. Signal
Process. Control, vol. 72, Feb. 2022, Art. no. 103342.

R. H. Elessawy, S. Eldawlatly, and H. M. Abbas, “A long short-term
memory autoencoder approach for EEG motor imagery classification,” in
Proc. Int. Conf. Comput., Autom. Knowl. Manage. (ICCAKM), Jan. 2020,
pp. 79-84.

J. Xie, C. Siyu, Y. Zhang, D. Gao, and T. Liu, “Combining generative
adversarial network and multi-output CNN for motor imagery classifica-
tion,” J. Neural Eng., vol. 18, no. 4, Mar. 2021, Art. no. 046026.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. E215-E220, Jun. 2000.

F. Darvas, R. Scherer, J. G. Ojemann, R. P. Rao, K. J. Miller, and
L. B. Sorensen, “High gamma mapping using EEG,” Neurolmage,
vol. 49, no. 1, pp. 930-938, Jan. 2010.

M. Tangermann, K.-R. Miiller, A. Aertsen, N. Birbaumer, C. Braun,
C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G.R. Miiller-Putz,
G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlogl, C. Vidaurre,
S. Waldert, and B. Blankertz, “Review of the BCI competition IV,”
Frontiers Neurosci., vol. 6, pp. 6-55, Jul. 2012.

B. Blankertz, K.-R. Miiller, D. J. Krusienski, G. Schalk, J. R. Wolpaw,
A. Schlogl, G. Pfurtscheller, J. R. Millan, M. Schroder, and N. Birbaumer,
“The BCI competition III: Validating alternative approaches to actual
BCI problems,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2,
pp. 153-159, Jun. 2006.

P. Tripathi, A. Kumar, R. Komaragiri, and M. Kumar, “A review on
computational methods for denoising and detecting ECG signals to detect
cardiovascular diseases,” Arch. Comput. Methods Eng., vol. 29, no. 1,
pp. 1-40, Oct. 2021.

T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and
F.E. A. El-Samie, “EEG seizure detection and prediction algorithms:
A survey,” EURASIP J. Adv. Signal Process., vol. 2014, no. 1, p. 183,
Dec. 2014.

C. Arora, P. Khetarpal, S. Gupta, N. Fatema, H. Malik, and
A. Afthanorhan, ‘“Mathematical modelling to predict the effect of vacci-
nation on delay and rise of COVID-19 cases management,” Mathematics,
vol. 11, no. 4, p. 821, Feb. 2023.

T. Kuremoto, Y. Baba, M. Obayashi, S. Mabu, and K. Kobayashi,
“Enhancing EEG signals recognition using ROC curve,” J. Robot., Netw.
Artif. Life, vol. 4, no. 4, p. 283, 2018.

H. Malik, A. Afthanorhan, N. A. Amirah, and N. Fatema, ‘“Machine
learning approach for targeting and recommending a product for project
management,” Mathematics, vol. 9, no. 16, p. 1958, Aug. 2021.

J. Kevric and A. Subasi, “Comparison of signal decomposition methods
in classification of EEG signals for motor-imagery BCI system,” Biomed.
Signal Process. Control, vol. 31, pp. 398-406, Jan. 2017.

VOLUME 11, 2023



N. Sharma et al.: Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition

IEEE Access

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100

[101]

[102]

[103]

[104]

[105]

[106]

[107]

V. Gupta, T. Priya, A. K. Yadav, R. B. Pachori, and U. Rajendra Acharya,
“Automated detection of focal EEG signals using features extracted from
flexible analytic wavelet transform,” Pattern Recognit. Lett., vol. 94,
pp. 180-188, Jul. 2017.

H. Goksu, “BCI oriented EEG analysis using log energy entropy of
wavelet packets,” Biomed. Signal Process. Control, vol. 44, pp. 101-109,
Jul. 2018.

S. Taran, V. Bajaj, D. Sharma, S. Siuly, and A. Sengur, ‘“‘Features based
on analytic IMF for classifying motor imagery EEG signals in BCI
applications,” Measurement, vol. 116, pp. 68-76, Feb. 2018.

A. Bhattacharyya, L. Singh, and R. B. Pachori, “Fourier—Bessel
series expansion based empirical wavelet transform for analysis of
non-stationary signals,” Digit. Signal Process., vol. 78, pp. 185-196,
Jul. 2018.

J.Zhou, M. Meng, Y. Gao, Y. Ma, and Q. Zhang, ““Classification of motor
imagery EEG using wavelet envelope analysis and LSTM networks,” in
Proc. Chin. Control Decis. Conf. (CCDC), Jun. 2018, pp. 5600-5605.
A. Khalaf, E. Sejdic, and M. Akcakaya, “Common spatial pattern and
wavelet decomposition for motor imagery EEG-fTCD brain-computer
interface,” J. Neurosci. Methods, vol. 320, pp. 98-106, May 2019.

Ji, Ma, Dong, and Zhang, “‘EEG signals feature extraction based on DWT
and EMD combined with approximate entropy,” Brain Sci., vol. 9, no. 8,
p. 201, Aug. 2019.

S. Ganorkar and V. Raut, “‘Comparative analysis of mother wavelet selec-
tion for EEG signal application to motor imagery based brain-computer
interface,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 1001-1007, 2019.
N. Bagh, R. Machireddy, and F. Shahlaei, “Classification of motor
imagery tasks using phase space reconstruction and empirical mode
decomposition,” in Proc. IEEE Can. Conf. Electr. Comput. Eng.
(CCECE), May 2019, pp. 1-4.

Q. Ai, A. Chen, K. Chen, Q. Liu, T. Zhou, S. Xin, and Z. Ji, “‘Feature
extraction of four-class motor imagery EEG signals based on functional
brain network,” J. Neural Eng., vol. 16, no. 2, Feb. 2019, Art. no. 026032.
K. Venkatachalam, A. Devipriya, J. Maniraj, M. Sivaram,
A. Ambikapathy, and I. S. Amiri, “A novel method of motor imagery
classification using EEG signal,” Artif. Intell. Med., vol. 103, Mar. 2019,
Art. no. 101787.

L. Wang, X. Liu, Z. Liang, Z. Yang, and X. Hu, “Analysis and classi-
fication of hybrid BCI based on motor imagery and speech imagery,”
Measurement, vol. 147, Dec. 2019, Art. no. 106842.

M. T. Sadiq, X. Yu, Z. Yuan, Z. Fan, A. U. Rehman, G. Li, and G. Xiao,
“Motor imagery EEG signals classification based on mode amplitude and
frequency components using empirical wavelet transform,” IEEE Access,
vol. 7, pp. 127678-127692, 2019.

R. Zhang, Q. Zong, L. Dou, and X. Zhao, “A novel hybrid deep learning
scheme for four-class motor imagery classification,” J. Neural Eng.,
vol. 16, no. 6, Oct. 2019, Art. no. 066004.

S. Chaudhary, S. Taran, V. Bajaj, and S. Siuly, “A flexible analytic wavelet
transform based approach for motor-imagery tasks classification in BCI
applications,” Comput. Methods Programs Biomed., vol. 187, Apr. 2020,
Art. no. 105325.

E. M. dos Santos, R. Cassani, T. H. Falk, and F. J. Fraga, “Improved motor
imagery brain-computer interface performance via adaptive modulation
filtering and two-stage classification,” Biomed. Signal Process. Control,
vol. 57, Mar. 2020, Art. no. 101812.

V. K. Mehla, A. Singhal, and P. Singh, “A novel approach for automated
alcoholism detection using Fourier decomposition method,” J. Neurosci.
Methods, vol. 346, Dec. 2020, Art. no. 108945.

F. Li, F. He, F. Wang, D. Zhang, Y. Xia, and X. Li, “A novel simplified
convolutional neural network classification algorithm of motor imagery
EEG signals based on deep learning,” Appl. Sci., vol. 10, no. 5, p. 1605,
2020.

S. Taheri, M. Ezoji, and S. M. Sakhaei, “Convolutional neural network
based features for motor imagery EEG signals classification in brain—
computer interface system,” Social Netw. Appl. Sci., vol. 2, no. 4, p. 555,
Apr. 2020.

A. Echtioui, A. Mlaouah, W. Zouch, M. Ghorbel, C. Mhiri, and
H. Hamam, “A novel convolutional neural network classification
approach of motor-imagery EEG recording based on deep learning,”
Appl. Sci., vol. 11, no. 21, p. 9948, Oct. 2021.

G. Roy, A. K. Bhoi, and S. Bhaumik, “A comparative approach for
MI-based EEG signals classification using energy, power and entropy,”
IRBM, vol. 43, no. 5, pp. 434-446, 2021.

VOLUME 11, 2023

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

V. K. Mehla, A. Singhal, P. Singh, and R. B. Pachori, “An efficient method
for identification of epileptic seizures from EEG signals using Fourier
analysis,” Phys. Eng. Sci. Med., vol. 44, no. 2, pp. 443-456, Jun. 2021.
T. Thenmozhi and R. Helen, “Feature selection using extreme gradient
boosting Bayesian optimization to upgrade the classification performance
of motor imagery signals for BCL” J. Neurosci. Methods, vol. 366,
Jan. 2022, Art. no. 109425.

X. Geng, S. Xue, P. Yu, D. Li, M. Yue, X. Zhang, and L. Wang, ““A fusion
algorithm for EEG signal processing based on motor imagery brain-
computer interface,” Wireless Commun. Mobile Comput., vol. 2022,
pp. 1-14, Mar. 2022.

Y. R. Tabar and U. Halici, ““A novel deep learning approach for classi-
fication of EEG motor imagery signals,” J. Neural Eng., vol. 14, no. 1,
Feb. 2017, Art. no. 016003.

R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for EEG decoding
and visualization,” Hum. Brain Mapping, vol. 38, no. 11, pp. 5391-5420,
Nov. 2017.

S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” [EEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp.5619-5629,
Mar. 2018.

P. Wang, A. Jiang, X. Liu, J. Shang, and L. Zhang, “LSTM-based EEG
classification in motor imagery tasks,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 26, no. 11, pp. 2086-2095, Nov. 2018.

T.-J. Luo, C.-L. Zhou, and F. Chao, “Exploring spatial-frequency-
sequential relationships for motor imagery classification with recurrent
neural network,” BMC Bioinf., vol. 19, no. 1, p. 344, Sep. 2018.

V.J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain—computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

A. Hassanpour, M. Moradikia, H. Adeli, S. R. Khayami, and
P. Shamsinejadbabaki, “A novel end-to-end deep learning scheme for
classifying multi-class motor imagery electroencephalography signals,”
Expert Syst., vol. 36, no. 6, Dec. 2019, Art. no. e12494.

C. J. Ortiz-Echeverri, S. Salazar-Colores, J. Rodriguez-Reséndiz, and
R. A. Gémez-Loenzo, “A new approach for motor imagery classification
based on sorted blind source separation, continuous wavelet transform,
and convolutional neural network,” Sensors, vol. 19, no. 20, p. 4541,
Oct. 2019.

I. Majidov and T. Whangbo, “Efficient classification of motor imagery
electroencephalography signals using deep learning methods,” Sensors,
vol. 19, no. 7, p. 1736, Apr. 2019.

S. Chaudhary, S. Taran, V. Bajaj, and A. Sengur, “Convolutional neu-
ral network based approach towards motor imagery,” IEEE Sensors J.,
vol. 19, no. 12, pp. 4494-4500, Feb. 2019.

Y. Li, X.-R. Zhang, B. Zhang, M.-Y. Lei, W.-G. Cui, and Y.-Z. Guo,
“A channel-projection mixed-scale convolutional neural network for
motor imagery EEG decoding,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 6, pp. 1170-1180, Jun. 2019.

Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu,
G. Cheng, and J. Conradt, ““Validating deep neural networks for online
decoding of motor imagery movements from EEG signals,” Sensors,
vol. 19, no. 1, p. 210, Jan. 2019.

X. Zhao, H. Zhang, G. Zhu, F. You, S. Kuang, and L. Sun, “A multi-
branch 3D convolutional neural network for EEG-based motor imagery
classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 10,
pp. 2164-2177, Oct. 2019.

G. Xu, X. Shen, S. Chen, Y. Zong, C. Zhang, H. Yue, M. Liu, F. Chen,
and W. Che, “A deep transfer convolutional neural network framework
for EEG signal classification,” IEEE Access, vol. 7, pp. 112767-112776,
2019.

H. Wu, Y. Niu, F. Li, Y. Li, B. Fu, G. Shi, and M. Dong, “A parallel
multiscale filter bank convolutional neural networks for motor imagery
EEQG classification,” Frontiers Neurosci., vol. 13, p. 1275, Nov. 2019.

B. E. Olivas-Padilla and M. I. Chacon-Murguia, ““Classification of multi-
ple motor imagery using deep convolutional neural networks and spatial
filters,” Appl. Soft Comput., vol. 75, pp. 461-472, Feb. 2019.

S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, and
M. S. Hossain, “Deep learning for EEG motor imagery classification
based on multi-layer CNNs feature fusion,” Future Gener. Comput. Syst.,
vol. 101, pp. 542-554, Dec. 2019.

80541



IEEE Access

N. Sharma et al.: Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

80542

D. Li, J. Wang, J. Xu, and X. Fang, “Densely feature fusion based on
convolutional neural networks for motor imagery EEG classification,”
IEEE Access, vol. 7, pp. 132720-132730, 2019.

D. Zhao, F. Tang, B. Si, and X. Feng, “Learning joint space—time—
frequency features for EEG decoding on small labeled data,” Neural
Netw., vol. 114, pp. 67-77, Jun. 2019.

G. Dai, J. Zhou, J. Huang, and N. Wang, “HS-CNN: A CNN with hybrid
convolution scale for EEG motor imagery classification,” J. Neural Eng.,
vol. 17, no. 1, Jan. 2020, Art. no. 016025.

P. Kant, S. H. Laskar, J. Hazarika, and R. Mahamune, “CWT based
transfer learning for motor imagery classification for brain computer
interfaces,” J. Neurosci. Methods, vol. 345, Nov. 2020, Art. no. 108886.
X. Tang, W. Li, X. Li, W. Ma, and X. Dang, “Motor imagery EEG
recognition based on conditional optimization empirical mode decompo-
sition and multi-scale convolutional neural network,” Expert Syst. Appl.,
vol. 149, Jul. 2020, Art. no. 113285.

X. Zhao, D. Liu, L. Ma, Q. Liu, K. Chen, S. Xie, and Q. Ai, “Deep CNN
model based on serial—parallel structure optimization for four-class motor
imagery EEG classification,” Biomed. Signal Process. Control, vol. 72,
Feb. 2022, Art. no. 103338.

M. T. Sadiq, M. Z. Aziz, A. Almogren, A. Yousaf, S. Siuly, and
A. U. Rehman, “Exploiting pretrained CNN models for the development
of an EEG-based robust BCI framework,” Comput. Biol. Med., vol. 143,
Apr. 2022, Art. no. 105242.

B. Sun, Z. Wu, Y. Hu, and T. Li, ““Golden subject is everyone: A subject
transfer neural network for motor imagery-based brain computer inter-
faces,” Neural Netw., vol. 151, pp. 111-120, Jul. 2022.

S. Abenna, M. Nahid, and A. Bajit, “Motor imagery based brain-
computer interface: Improving the EEG classification using delta rhythm
and LightGBM algorithm,” Biomed. Signal Process. Control, vol. 71,
Jan. 2022, Art. no. 103102.

Y. Han, B. Wang, J. Luo, L. Li, and X. Li, “A classification method
for EEG motor imagery signals based on parallel convolutional neu-
ral network,” Biomed. Signal Process. Control, vol. 71, Jan. 2022,
Art. no. 103190.

Z. Khademi, F. Ebrahimi, and H. M. Kordy, ““A transfer learning-based
CNN and LSTM hybrid deep learning model to classify motor imagery
EEG signals,” Comput. Biol. Med., vol. 143, Apr. 2022, Art. no. 105288.
K. Wang, F. Tian, M. Xu, S. Zhang, L. Xu, and D. Ming, “Resting-
state EEG in alpha rhythm may be indicative of the performance of
motor imagery-based brain—computer interface,” Entropy, vol. 24, no. 11,
p. 1556, Oct. 2022.

X. Li, J. Chen, N. Shi, C. Yang, P. Gao, X. Chen, Y. Wang, S. Gao,
and X. Gao, “A hybrid steady-state visual evoked response-based brain-
computer interface with MEG and EEG,” Expert Syst. Appl., vol. 223,
Aug. 2023, Art. no. 119736.

D. Wen, X. Lang, H. Zhang, Q. Li, Q. Yin, Y. Chen, and Y. Xu,
“Task and non-task brain activation differences for assessment of depres-
sion and anxiety by fNIRS,” Frontiers Psychiatry, vol. 12, Nov. 2021,
Art. no. 758092.

W. Burde and B. Blankertz, “Is locus control reinforcement a predictor
brain-computer interface performance?” in 3rd Int. Brain-Comput. Inter-
face Workshop Training Course. Graz, Austria: Verlag der Technischen
Universitit Graz, 2006, pp. 76-77.

E. M. Hammer, S. Halder, B. Blankertz, C. Sannelli, T. Dickhaus,
S. Kleih, K.-R. Miiller, and A. Kiibler, “Psychological predictors of
SMR-BCI performance,” Biol. Psychol., vol. 89, no. 1, pp.80-86,
Jan. 2012.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

T. F. D. Kanthack, A. Guillot, M. Clémengon, U. Debarnot, and
F. D. Rienzo, “Effect of physical fatigue elicited by continuous and inter-
mittent exercise on motor imagery ability,” Res. Quart. Exercise Sport,
vol. 91, no. 3, pp. 525-538, Jul. 2020.

F. Lotte and C. Jeunet, “Defining and quantifying users’ mental imagery-
based BCI skills: A first step,” J. Neural Eng., vol. 15, no. 4, Aug. 2018,
Art. no. 046030.

M. Ahn, H. Cho, S. Ahn, and S. C. Jun, “High theta and low alpha powers
may be indicative of BClI-illiteracy in motor imagery,” PLoS ONE, vol. 8,
no. 11, Nov. 2013, Art. no. e80886.

M. Lee, J.-G. Yoon, and S.-W. Lee, “Predicting motor imagery perfor-
mance from resting-state EEG using dynamic causal modeling,” Fron-
tiers Hum. Neurosci., vol. 14, p. 321, Aug. 2020.

N. Padfield, J. Zabalza, H. Zhao, V. Masero, and J. Ren,
“EEG-based  brain-computer interfaces using motor-imagery:
Techniques and challenges,” Sensors, vol. 19, no. 1423, pp. 1-34,
2019.

F. Miralles, E. Vargiu, S. Dauwalder, M. Sola, G. Miiller-Putz,
S. C. Wriessnegger, A. Pinegger, A. Kiibler, S.Halder, I. Kithner,
S. Martin, J. Daly, E. Armstrong, C. Guger, C. Hintermiiller, and H.
Lowish, “Brain computer interface on track to home,” Sci. World J.,
vol. 2015, Oct. 2015, Art. no. 623896.

V. Vimala, K. Ramar, and M. Ettappan, “An intelligent sleep apnea
classification system based on EEG signals,” J. Med. Syst., vol. 43, no. 2,
pp. 1-9, Feb. 2019.

F. M. Garcia-Moreno, M. Bermudez-Edo, J. L. Garrido, and
M. J. Rodriguez-Fértiz, “Reducing response time in motor imagery
using a headband and deep learning,” Sensors, vol. 20, no. 23, p. 6730,
Nov. 2020.

W. Xiong and Q. Wei, “Reducing calibration time in motor imagery-
based BClIs by data alignment and empirical mode decomposition,” PLoS
ONE, vol. 17, no. 2, Feb. 2022, Art. no. €0263641.

S. Selim, M. Tantawi, H. Shedeed, and A. Badr, “Reducing execu-
tion time for real-time motor imagery based BCI systems,” in Proc.
Int. Conf. Adv. Intell. Syst. Inform. Cham, Switzerland: Springer, 2017,
pp. 555-565.

M. Rashid, B. S. Bari, M. J. Hasan, M. A. M. Razman, R. M.
Musa, A. F. Ab Nasir, and A. P. P. A. Majeed, “The classification of
motor imagery response: An accuracy enhancement through the ensem-
ble of random subspace k-NN,” PeerJ Comput. Sci., vol. 7, p. e374,
Mar. 2021.

D. J. McFarland and J. R. Wolpaw, “Brain-computer interfaces for
communication and control,” Commun. ACM, vol. 54, no. 5, pp. 60—66,
2011.

M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, ‘“State-of-the-art
methods and future perspectives for personal recognition based on elec-
troencephalogram signals,” IET Biometrics, vol. 4, no. 3, pp. 179-190,
Sep. 2015.

S. M. Alarcdo and M. J. Fonseca, “Emotions recognition using EEG sig-
nals: A survey,” IEEE Trans. Affect. Comput., vol. 10, no. 3, pp. 374-393,
Jul. 2019.

R. K. Mehta and R. Parasuraman, ‘“Neuroergonomics: A review of appli-
cations to physical and cognitive work,” Frontiers Hum. Neurosci., vol. 7,
p. 889, Dec. 2013.

A. Vaswani, “Attention is all you need,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 30, 2017, pp. 1-15.

VOLUME 11, 2023



