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ABSTRACT Plant diseases can significantly impact agricultural productivity if not promptly identified
and treated. Traditional plant disease classification methods are often challenging and time-consuming,
making the identification of diseases a challenging task. This paper aims to bridge research gaps and
address challenges in existing methodologies by proposing an efficient, effective multi-class plant disease
classification approach. The research explores the application of pre-trained deep convolutional neural
networks (CNNs) in this classification task, utilizing an open dataset comprising 52 categories of various
diseases and healthy plant leaves. This study evaluated the performance of pre-trained deep CNN models,
including Xception, InceptionResNetV2, InceptionV3, and ResNet50, paired with EfficientNetB3-adaptive
augmented deep learning (AADL) for precise disease identification. Performance assessment was conducted
using parameters such as batch size, dropout, and epoch counts, determining their accuracy, precision, recall,
and F1 score. The EfficientNetB3-AADL model outperformed the other models and conventional feature-
based methods, achieving a remarkable accuracy of 98.71%. This investigation highlights the potential of
the EfficientNetB3-AADL model in offering accurate, real-time disease diagnostics in agricultural systems.
The findings suggest that transfer learning and augmented deep learning techniques enhance the accuracy
and performance of the model.

INDEX TERMS Adaptive augmented deep learning, convolutional neural network, deep learning, plant
disease classification, transfer learning.

I. INTRODUCTION
Agriculture plays a vital role in global economy and serves
as the backbone of every developed nation. The production
of food, which is essential for human survival, is depen-
dent on agricultural practices [1]. Whether living in urban
or rural areas, everyone relies on agricultural production
for survival [2]. However, like any field, agriculture faces
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challenges, with plant diseases being a significant problem
for crop production [3]. Despite technological advancements
in various domains, farmers often rely on outdated methods
of disease detection, physically inspecting plants visually.
This farmers’ experience-based approach has several limita-
tions [4].

This strategy may help a farmer identify specific plant
diseases with which he is already familiar. However, it is less
effective for identifying novel and unknown plant diseases.
The inability to identify several plant diseases results in a loss
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of food production [5], [6]. Plant disease development may
occur due to climate change or due to some type of infec-
tion. The two primary forces impacting the ecosystem are
biotic and abiotic factors. The abiotic factors [7] encompass
elements such as sunlight, air, moisture, minerals, and soil.
All non-living, chemical, and physical components present
in the atmosphere are referred to as abiotic factors. In con-
trast, biotic factors [8] pertain to all the living organisms
(fungi, viruses, insects, and bacteria) present in an ecosys-
tem [9], [10].

Plant illnesses and diseases can significantly affect the
quality and quantity of different plants. In nations where
agriculture is the primary source of income and employ-
ment, such diseases can have damaging economic effects.
Therefore, it is essential to identify, recognize, and treat
plant diseases in their early stages to protect the plants
from damage and maximize the quality and quantity of the
harvest [11].

In recent years, plant disease classification has become
increasingly important to prevent the significant losses suf-
fered by various plant species due to harmful diseases.
These diseases, which reduce food production and lower
plant productivity, can be caused by factors such as global
climate change and pollution as displayed in Figure 1. Var-
ious technologies, including computer vision [12], machine
learning [13], and deep learning-based technologies [14]
have been used to identify plant diseases. Convolutional
neural networks (CNNs), the most popular deep learning
method, have found success in various Computer Vision
applications, including traffic detection [15], medical image
recognition [16], [17] segmentation images [18], [19], and
others.

However, existing studies leveraging deep learning tech-
niques face limitations. These include the use of large datasets
with redundant data, small datasets representing only one
type of disease, and the utilization of complex models leading
to extended training times and increased computational costs.
To address these issues, the focus should shifts toward the
utilization of compact, efficient datasets and the application
of augmentation techniques for more accurate classification.
Our research aims to address these gaps by proposing a more
efficient and effective approach to plant disease classification,
drawing on deep learning-based methodologies prevalent in
existing studies [20].
The goal of this research is to assess the perfor-

mance of pre-trained deep CNN models (Xception [21],
InceptionV3 [22], InceptionResnetV2 [22], [23], and
Resnet50 [24]) along with the EfficientNetB3-AADL model.
This study incorporates 52 classes of various plant diseases
for classification, which is a larger number of classes than
previous studies have considered. The research aims to
demonstrate the effectiveness of our proposed model, empha-
sizing the potential for improved performance with proper
implementation. Additionally, it highlights the advantage of
using deep learning algorithms for feature extraction, thus
reducing the human effort and time required to establish auto-

mated and efficient systems for classifying plant diseases.
The contributions to this paper are described below:

• Evaluating the performance of pre-trained deep CNN
models (Xception, InceptionResNetV2, InceptionV3,
and ResNet50) in conjunction with EfficientNetB3-
adaptive augmented deep learning (AADL) for
multi-class plant disease classification.

• Investigating the influence of transfer learning [25], [26]
on the performance of pre-trained CNN models.

• Implementation of EfficientNetB3-AADL to enhance
the robustness of the proposed model, thereby enabling
a more comprehensive and reliable classification of var-
ious plant diseases.

• Conducting a thorough analysis of existing studies on
plant disease classification and highlighting the novelty
of the current study using AADL.

The remainder of the paper is structured as follows: Section II
reviews relatedwork of existing studies. Section III details the
dataset and the proposed approach used and implemented in
our research. Section IV presents the results of the experimen-
tal evaluation. Section V discusses the results achieved by
our model and compares them with existing studies. Finally,
Section VI concludes the paper, suggesting potential avenues
for further research.

II. RELATED WORK
Plant disease classification presents a significant challenge
to farmers worldwide. Traditional methods for identifying
plant diseases are often labor-intensive and time-consuming,
potentially impacting overall crop productivity. Therefore,
early-stage detection of diseases is paramount to prevent
widespread contamination. Numerous approaches have been
proposed to identify and analyze plant diseases. This section
reviews existing researcher on plant disease classification.

Agarwal et al. [27] proposed CNN based architecture for
tomato plant disease identification. The accuracy of their
model varied from 76% to 100% due to differences in tomato
image classes, with an average accuracy rate of 91.2%. How-
ever, the study could benefit from extending its research scope
to include other diseases and not restrict itself to a single plant
species [28].

Srinivas et al. [29] proposed a neural network architecture
named AlexNet [30] for disease classification. Their research
employed AlexNet with rectified linear units (ReLU) in place
of the tanh function. The use of ReLU confers the advantage
of six times faster execution than a CNNusing the tanh activa-
tion function, and the model achieved an overall accuracy of
94%. Alguliyev et al. [31] presented a deep learning model
based on a combination of CNN and gated recurrent units
(GRU) for the identification of plant leaf diseases across
14 different species, representing 38 different classes. Both
the CNN and GRU models were trained together to enhance
classification accuracy, which culminated in a 91.19% accu-
racy rate for the CNN + GRU model.
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FIGURE 1. Class-wise sample images of the dataset.

Chen et al. [25] proposed an enhanced VGG model (INC-
VGGN) built upon the VGG framework. It incorporated two
inception modules, a pooling layer, and replaced the acti-
vation function, which led to an average accuracy of 92%
for corn plant leaf disease. Xu et al. [32] utilized the VGG16
pre-trained CNN model [33] with a transfer learning strategy
proposed to detect maize leaf disease (healthy, leaf blight, and
rust) in complex field backgrounds with small dataset sizes.
The weight parameters from the VGG16 model, pre-trained
on ImageNet, were fed into the model, achieving an average
accuracy rate of 95.33%.

In study [34], a deep learning model, specifically a CNN,
was trained on the Plant Village dataset, comprising over
55,000 images with 38 classes across 14 different plant
species, to classify various plant diseases. The CNN model
was compared to pre-trained models such as VGG, ResNet,
and DenseNet, achieving an overall accuracy of 94.58%. The
deep learning model outperformed manual plant leaf disease
detection in both speed and accuracy.

CNN was used by Kim et al. [35] to construct an apple
leaf classification algorithm that achieved a 92.43% accuracy
rate on the Plant Village dataset. A model for categoriz-
ing diseases in grape and mango leaves using a pre-trained
AlexNet model was proposed by [36]. The authors of [37]
proposed a hybridmodel that combines a deep learningmodel
with principal component analysis (PCA) and the whale
optimization algorithm for diagnosing tomato diseases. Their
dataset, derived from Plant Village, contained 18,160 images
of tomato leaves divided into 10 different classifications. The
hybrid model achieved a testing accuracy of 86% with the
Adam optimizer and 94% with the RMSprop optimizer.

Arsenovic et al. [38] presented a CNN architecture for
classification of plant diseases using photographs taken in
actual environments with varying angles, weather conditions,
and backgrounds. The proposed model achieved an accuracy

of 93.67%. In [39], the authors used an online dataset of
3,248 images of 14 plant diseases and employed image data
augmentation techniques to increase the dataset’s size to over
30,000 images. With minor changes in model parameters,
their CNN model achieved a 94% accuracy rate.

In [40], using 2,816 images, researchers evaluated the
performance of various deep learning models, including Effi-
cientNet, VGG, ResNet, AlexNet, Inception v4, SqueezeNet,
and DenseNet, for classifying cucumber diseases using 2,816
images. They also used image augmentation to increase the
dataset size to 20,256 images. The EfficientNet-B4 model
achieved a testing accuracy of 90.45% with the Adam opti-
mizer, 85.37% with the SGD optimizer, and 94.81% with the
RMSprop optimizer.

In study [41], the authors used a CNN based architec-
ture for classifying cucumber disease. The dataset contained
14,208 leaf images of cucumbers. The model achieved an
overall accuracy of 93.4%. Harte et al. [42] demonstrated
how CNN models can assist small-scale farmers in detecting
and diagnosing plant leaf diseases by analyzing healthy and
diseased leaf tissue. Conversely, Reddy et al. [43] proposed a
framework for distinguishing between healthy and diseased
leaves, using image processing techniques in the preprocess-
ing stage.

In conclusion, the significant challenge for researchers
is to develop a robust deep learning-based framework for
plant disease classification that addresses common issues
with minimal limitations and produces accurate results. The
literature review indicates that existing studies in this field
have limitations, such as using various datasets of different
sizes and sources, which often contain redundant data, and
employing complex models, which lead to extended training
times and higher computational costs. These issues manifest
in problems such as overfitting, high computational costs, and
a need for improvements in accuracy and computation time.
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The objective is to develop an efficient deep learning-based
CNN framework that yields reliable results with the fewest
limitations.

III. MATERIALS AND METHODS
The following section presents the architecture of the deep
learning model and the materials used for the experiment
in this study. The description will cover every technology
used and all the necessary background knowledge needed to
understand the proposed approach.

A. DATASET
The dataset used in this research comes from Kaggle and
contains 58 classes of healthy and unhealthy plants, with a
total of 59,809 images. The dataset was filtered to include
only classes with a significant sample size, implying that only
classes with at least 36 images were included in the dataset,
and any classes with fewer than 36 images were excluded.
The dataset was then divided into training, validation, and
test sets using the train test split function from the sci-kit-
learn library. Here, 90% of the data was used for training, and
the remaining 10% was evenly split between validation and
test sets. All images in the dataset have dimensions of 256 ×

256 × 3, indicating that each image has a width and height of
256, with three channels representing the RGB format. These
images were then resized according to network requirements.
Some of the sample images available for each class of plant
diseases have been shown in Figure 1.

B. DATA PREPROCESSING
The data preprocessing in this research included the following
steps:

1) Importing the dataset from Kaggle to Google Colab.
2) A trim function was defined in the experiment to limit

the size of the dataset and balance the number of images
per class. This function adjusted the number of samples
to be between amaximum of 200 and aminimum of 36.

3) The AADL technique [44], [45] was used to further
balance the dataset. This function applied visual trans-
formations such as horizontal flipping, rotation, and
zooming to generate augmented and balanced images.
The goal of AADL was to achieve the desired number
of samples per class.

4) After data preprocessing, the resulting dataset included
10,400 images of 52 classes in the training set, 3,323
images in the validation set, and 3,323 images in the
test set.

The dataset used in this research includes a wide range
of images, creating a large dataset. Training on such a large
dataset demands considerable resources and can be time-
consuming. To overcome this challenge, we employed the
proposed AADL method to reduce the dataset size and bal-
ance it for our model. Table 1 illustrates some images in
our dataset before and after applying the data augmentation
method. These techniques aim to decrease computational

FIGURE 2. Representation of convolutional neural network architecture.

cost and prevent overfitting. The term ‘‘adaptive’’ in AADL
suggests that when there is a large dataset, our framework
automatically balances it by reducing its size, making model
training more manageable. Thus, our approach sets itself
apart from traditional models by incorporating AADL and
using a data trimming method. Table 2 lists the methods set
for data augmentation.

C. METHODOLOGY
1) CONVOLUTIONAL NEURAL NETWORKS
CNN is among the most recognized and extensively used
algorithms in the field of deep learning (DL). The primary
advantage of CNN over its predecessors is its ability to
autonomously recognize unique features, without the need
for human intervention. CNNs have been massively utilized
across various domains, including computer vision [46],
speech processing [47], face recognition [48], [49], image
segmentation [50], image classification [51], and video anal-
ysis [52], among others. The architecture of CNNs is inspired
by neurons in the human and animal brain, similar to a
standard neural network.

A CNN architecture consists of several convolution layers
that precede subsampling (pooling) and fully connected (FC)
layers at the end. CNNs are feed-forward neural networks,
meaning data flows from the input layer to the output layer
without looping back. As depicted in Figure 2, the CNN
framework is comprised of input, hidden, and FC (output)
layers. The hidden layers include convolutional, ReLU, and
pooling layers, which are combined to form a single net-
work [53].

Let us examine the CNN architecture by considering an
input, x, divided into three dimensions: height (m), width
(m), and depth (r), where the height is equal to the width.
The depth is also referred to as the number of channels. For
example, the depth (r) of an RGB image is three. Similar to
the input image, each convolutional layer’s kernels (or filters)
denoted by k, have three dimensions (n × n × q), where n
is smaller than m, and q is equal to or smaller than r. The
convolutional layer performs a dot product between its input
and weights, as depicted in (2), although the inputs are half
the size of the original image.

ReLU is the most commonly used activation function in
the CNN environment. It transforms all negative inputs to
zero. ReLU is advantageous over other functions because it
requires less computational resources. By setting all negative
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TABLE 1. Data preprocessing of 52 classes of plant diseases.

pixels to zero, ReLU introduces nonlinearity into the network.
The output is then fed into the subsequent layer [53].

f (x)ReLU = max (0, x) (1)

Next, upon applying an activation function to the output of
the convolution layer, we obtain the following results:

hk = f (W k
∗ x + bk ) (2)

Then, in the pooling layers, each feature map is down-
scaled, thereby reducing the network parameters, amplifying
the training process, and mitigating the overfitting problem.
A pooling function (such as max or average) is applied to a
local region of size p × p (where p is the kernel size) for
each feature map. For classification, the network ‘‘flattens’’
the 2D visual data into a 1D vector that represents image-level
features via FC layers. The final layer uses the softmax acti-
vation function to produce classification scores. Each score
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TABLE 2. Settings used for data augmentation.

corresponds to the probability of a specific class. The softmax
activation function is described by (3).

σ
−→
(z)i =

ezi∑K
j=1 e

zj
(3)

The input vector of the softmax function is represented as
−→
(z),

where zi refers to the input vector’s ith element, which can be
any real number. The normalization factor at the bottom of
the equation ensures that all the output values of the function
sum to 1, creating a proper probability distribution. K refers
to the number of possible classes in the dataset.

2) TRANSFER LEARNING APPROACH
In the field of DL, the practice of using a network that has
already been trained on a particular task is known as transfer
learning [25]. Transfer learning is especially popular in DL
due to its capability to train the network with less input and
with higher accuracy. It allows a machine to use information
gained from one task to perform better on a different, yet
related task. In transfer learning, the last few layers of the
trained network are replaced with new ones. These can be FC
and a softmax classification layers with the number of classes
utilized in this study [26].

There are several advantages to transfer learning. Firstly,
the network can be trained with less data. It enhances learning
by transferring knowledge from a previously learned task
to the new task at hand. Many studies have used transfer
learning in their disease detection strategies. Another benefit
is the reduction in training time, generalization error, and the
computational cost associated with building a DLmodel [25].
In this study, we adopted the concept of a transfer learning
strategy by using pre-trained CNN models for the classifica-
tion task.

D. PROPOSED FRAMEWORK
The primary contribution of this research lies in the evaluation
of the performance of pre-trained DL models [54], partic-
ularly contrasting them with our proposed EfficientNetB3-
AADL model that utilized AADL. The AADL method
applies transfer learning, fine-tuning, and data augmentation
techniques [44], [45] to balance the large dataset size. The
model can classify 52 classes of plant diseases, though the

input size of the images may vary based on the architecture.
To prevent overfitting, fine-tuning parameters such as batch
normalization, dropout, L1 and L2 regularization [55], and
adjustments to the learning rate are used.

Data augmentation and trimming techniques increase the
diversity of the training data. The last three layers of each
pre-trained model are replaced, ensuring that the final output
layer aligns with the number of classes in the dataset. The
EfficientNetB3-AADL model is customized by adding extra
layers such as convolutional and max pooling layers, to make
it more robust and reliable for multi-class plant disease classi-
fication. The proposed framework of our research is depicted
in Figure 3.

1) EFFICIENTNETB3-AADL
EfficientNet [56] is a CNN architecture that comes in various
versions, ranging from EfficientNetB0 to EfficientNetB7.
To achieve maximum model accuracy, EfficientNet models
are built on the principle of compound scaling, which scales
up the convolution network model size in a balanced way to
the desired size. Compound scaling is a technique that uses a
compound coefficient to uniformly scale all dimensions. This
method allows for balanced scaling across the width, depth,
and resolution of the network.

The EfficientNet model comprises mobile inverted bottle-
neck convolution blocks MBConv, with varying kernel sizes
of 3 × 3 and 5 × 5. This architecture significantly reduces
computation by a factor of f 2 where f is the filter size,
compared to traditional convolution [57]. With the applica-
tion of a compound scaling coefficient, the network’s depth,
width, and resolution are uniformly extended. We utilized
EfficientNetB3 for our classification task since larger net-
works with increased width, depth, or resolution generally
result in higher accuracy. The EfficientNetB3 model has a
depth of 210 layers, consists of 11.1M parameters, and has an
input shape of 300 × 300 × 3. Due to its deeper network, the
EfficientNetB3 model better understands complex features
and generalizes to new tasks [56], [58].

The proposed EfficientNetB3 model was customized by
adding a convolutional layer with 32 filters defined with a
kernel size of 2 × 2, and a max pooling layer of 2 × 2 kernel
size with stride 2 to make the model more robust than the
standard EfficientNetB3 model. We also fine-tuned param-
eters such as replacing the final three layers of this model,
with the requirement that the final output layer matches the
number of classes in the dataset. A batch normalization layer,
and L1 and L2 regularization techniques were employed to
prevent overfitting.

A dropout layer was added to enhance the reliability of
the model for classification. Furthermore, a dense layer with
256 neurons was added to our model. Given the large size of
the dataset used in this study, training the model on the entire
dataset was challenging due to the computational resources
and time required. To address this, we proposed a method
called AADL to reduce the dataset size and balance it for the
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FIGURE 3. Representation of proposed framework.

model. The aim of using this method is to decrease computa-
tional time and avoid overfitting. This method includes data
trimming to make our model more robust in achieving high
accuracy. The method also aims to increase the diversity of
the training data through augmentation.

The term ‘‘adaptive’’ in augmented DL method signifies
the automatic adjustment capability of the framework to bal-
ance a large dataset by reducing its size, facilitating more
efficient model training. The AADL methodology in this
paper showcases the efficacy of transfer learning and data
augmentation techniques in enhancing the accuracy of plant
disease classification. The architectures utilized were chosen
due to their recent designs, specifically developed to improve
performance on image classification tasks.

These architectures have proven to be more efficient and
outperform their predecessors. The distinctive characteris-
tic of EfficientNetB3-AADL is its application of the com-
pound scaling method, which concurrently scales network
depth, width, and resolution. Compared to traditional scaling
techniques that primarily focus on a single network dimen-
sion, this leads to a noticeable enhancement in performance.
EfficientNetB3-AADL integrates a lightweight convolutional
layer along with an efficient architecture, reducing com-
putational requirements while maintaining good accuracy.
Figure 4 shows our proposed model architecture. The novelty
of this research lies in the application of our customized
model and AADL methodology to bolster the efficiency,
effectiveness, and robustness of the EfficientNetB3-AADL
model. This enhances its accuracy in classifying 52 classes
of plant diseases. Furthermore, it is clear that this model

has fewer parameters than other architectures utilized for
experimental comparisons.

E. IMPLEMENTATION
The study primarily focused on performance evaluation of
pre-trained CNN models and the EfficientNetB3-AADL in
the classification of plant diseases. The input images were
resized to meet the network’s requirements, and the number
of classes was set to match the output classification layers.
Training images were passed through multiple filters at vary-
ing resolutions, with the output of each convolution serving
as the input for the succeeding layer.

The layer progression in the model led to increasingly
complex features that differentiate leaf objects from others.
The model was trained to classify diverse plant diseases into
distinct categories. Each image output yields a probability
score for each disease, with the model selecting the disease
having the highest probability as its classification result.
Listed below are the primary features and algorithmic steps
of the proposed approach:

1) Load the image dataset comprising 52 classes of varied
plant diseases. Filter the list to only include classes
having a minimum number of images. Classes with a
smaller number of images are omitted from the dataset.

2) Utilize the train_test_split function to divide the dataset
into training, validation, and testing datasets, such
that 90% of the data is allocated for training and the
remaining 10% for testing and validation. The AADL
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FIGURE 4. Proposed EfficientNetB3-AADL architecture.

methodology is applied to balance and reduce the size
of the dataset.

3) Use EfficientNetB3-AADL as the base model.
4) Customize the EfficientNetB3-AADLmodel by adding

a convolutional layer with 32 defined filters, each of
kernel size 2 × 2, and a max pooling layer of 2 ×

2 kernel size with stride 2, enhancing the model’s
robustness.

5) Add a batch normalization layer to the output of the
base model. Flatten the output of this layer and add
a dense layer with 256 neurons employing L2 and L1
regularization, and a ReLU activation function.

6) Integrate a dropout layer with a rate of 0.4 and a final
dense layer with the number of neurons equivalent to
the number of classes. Use a softmax activation func-
tion.
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7) Define a model that accepts the base model’s inputs
and gives the final dense layer’s outputs. Compile the
model using the Adamax optimizer and categorical
cross-entropy loss function.

8) Train the EfficientNetB3-AADL model with an initial
learning rate of 0.001. Utilize the LR_ASK callback
function and Adamax optimizer for enhanced training
performance and control.

9) Train the model for 10 epochs and evaluate its perfor-
mance using the testing dataset.

10) Compare the performance of the EfficientNetB3-
AADL model with pre-trained models and make pre-
dictions on new data.

It is important to note that in our experiment, our model
did not require more than 10 epochs of training. We achieved
our threshold accuracy within 10 epochs. The visualization
of results from our proposed model is presented in the results
section, further demonstrating the potential effectiveness of
our approach.

IV. EXPERIMENTAL RESULTS
This section discusses the experimental setup, model perfor-
mances, and results. It also elucidates the performance of our
DL models on the dataset in terms of accuracy, precision,
recall, and F1 score. We will compare our pre-trained mod-
els with the EfficientNetB3-AADL model and visualize the
results achieved in this research.

A. EXPERIMENTAL SETUP
The study juxtaposed the performance of pre-trained CNN
models with the EfficientNetB3-AADL model using the
adaptive augmented deep learning technique for plant disease
classification. The models were trained and evaluated on
the Google Colab platform, leveraging a GPU, Python 3.7,
Tensorflow, Scikit learns, and Keras library on an Intel Core
i3 CPU. The plant disease dataset was split into training, val-
idation, and testing datasets, and augmented DL was utilized
to mitigate the risk of overfitting.

The data augmentation technique was applied to the train-
ing set, whereas the testing and validation sets comprised
3,323 images spanning 52 classes. The training set contained
10,400 images across 52 classes. All images were resized to
meet themodel’s requirements. Table 1 delineates the original
dataset size before applying the AADL methodology and
the augmented dataset size post-AADL methodology. This
approach comprises data trimming to bolster the model’s
robustness in achieving high accuracy, as well as enhancing
the diversity of the training data via augmentation.

Following the application of the AADL methodology to
the dataset, the model architecture was constructed by adding
various convolutional and max pooling layers, leveraging
CNN ImageNet weights [59]. Various hyperparameters were
established for training and evaluation as displayed in Table 3.
The Adamax optimizer [60], [61] was used for data training
and the ReLU activation function was employed to avoid

TABLE 3. Hyperparameters and other characteristics of proposed model.

the vanishing gradient problem. Regularization techniques,
including batch normalization, L1 and L2 regularization, and
dropout [55] were utilized to prevent overfitting. The model
was trained for 10 epochs with a learning rate of 0.001, and
a batch size of 20. Another novelty of our research is the
introduction of an LR_ASK callback class that allows users
to continue training, halt training, or adjust the learning rate
value.

The categorical cross-entropy loss function was employed
to assess the model’s performance. Typically, this function
was used to evaluate our model’s performance. The categori-
cal cross-entropy loss function was applied when altering the
model’s weights during training, with the goal of minimizing
the loss; lower loss means higher model accuracy. This loss
function calculates the difference between output probabili-
ties and true values. It is defined in (4):

Categorical Crossentropy Loss = −

∑n

i−1
ti log (pi) (4)

where n denotes the number of classes in the dataset, ti
represents the actual label, and pi is the softmax probability
for ith class.
The Adamax optimizer, another variation of the Adam

optimizer [61], was chosen due to its proficiency in handling
sparse updates and achieving superior accuracy compared to
other optimizers. The choice of optimizer can significantly
impact the model’s accuracy, and the Adamax optimizer has
proven to deliver the highest accuracy in such cases. The
equation for Adamax can be seen in (5):

mt = β1mt−1 + (1 − β1) gt
vt = β2vt−1 + (1 − β2) g2t (5)

where g represents the gradient on the current mini-batch,
m and v denotes moving averages, and the β represents the
recently introduced hyperparameters of the method. Each of
them has excellent default values of 0.9 and 0.999, which are
seldom altered in practice. At the beginning of the iteration,
the moving average vectors were initialized with zeros.

Having set up the training environment required for our
experiment; we trained our EfficientNetB3-AADL model on
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the dataset. However, our model did not need to be trained
for more than 10 epochs in any of our experiments. We were
able to achieve our desired accuracy at 10 epochs, further
demonstrating the potential of our suggested approach. After
training the model, we evaluated our model’s performance
against four other pre-trained models and concluded that
our proposed model outperformed the pre-trained models.
We selected the EfficientNetB3-AADL as the optimal model
for classification due to its outstanding performance. A visual
representation of our best model during the training phase is
provided in Figure 5.

Figure 5 clearly demonstrates that the EfficientNetB3-
AADL model achieved the highest accuracy during the train-
ing phase. This model reached a training accuracy of 0.9914,
which is notably higher than the other pre-trained models
used in this study. These results establish that the performance
of this model surpasses that of the other pre-trained models
during the training phase.

B. EVALUATION METRICS
Evaluation metrics are crucial in DL endeavors to identify the
most effective classifier [62]. We assessed our models using
the accuracy, precision, recall, and F1-measure metrics.

1) ACCURACY
The accuracymetric quantifies the ratio of correctly predicted
classes to all samples analyzed.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

2) PRECISION
Precision identifies how accurately the predicted patterns in
a positive class represent positive patterns.

Precision =
TP

TP+ FP
(7)

3) RECALL (SENSITIVITY)
Sensitivity, or recall, calculates the percentage of correctly
identified positive patterns.

Recall =
TP

TP+ FN
(8)

4) F1 SCORE
The F1-score measures the harmonic average of recall and
precision rates.

F1score = 2 ×
Precision× Recall
Precision+ Recall

(9)

5) CONFUSION MATRIX
Confusion matrices provide counts of predicted and actual
values. They present four primary categories: true positive
(TP), false positive (FP), true negative (TN), and false neg-
ative (FN). A confusion matrix, also referred to as an error
matrix, is a table showing various combinations of predicted

TABLE 4. Performance Comparison of efficientnetb3-aadl model with
other pre-trained models.

and actual values, which demonstrates how a classification
model is performed on a test dataset.

Upon evaluating each pre-trained CNN model and the
EfficientNetB3-AADLmodel using the test dataset, we found
that the EfficientNetB3-AADL model achieved the highest
accuracy compared to the other models in our research. The
performance evaluation of the utilized pre-trained models
and the EfficientNetB3-AADL model, using the test dataset,
in terms of accuracy, precision, recall, and F1 score is
described in Table 4.

The performances of all models were observed to
be comparable and statistically significant. However, the
EfficientNetB3-AADL model outperformed the others in
terms of accuracy, precision, recall, and F1 score. After
generating a classification report for the proposed models,
a confusion matrix was created to evaluate their performance
on the test dataset. Figure 6 presents the confusion matrix
of the EfficientNetB3-AADL model, which according to the
performance metrics, delivered the best results. Based on
these outcomes, visual assessment of the proposed model’s
performance can help identify the classes that are prioritized
by our proposed model’s neurons. The columns of the matrix
correspond to the actual class while the rows represent the
predicted class. The diagonal cells are associated with correct
classification, whereas the off-diagonal cells denote misclas-
sifications.

The aim of this research was to compare the performance
of state-of-the-art pre-trained models (Xception, Inception-
ResNetV2, InceptionV3, and ResNet50) with the customized
EfficientNetB3-AADL model for classifying plant disease
images. The study featured the use of transfer learning and
data augmentation techniques, model customization through
addition of convolutional and max pooling layers, training
with the Adamax optimizer, performance evaluation via the
categorical cross-entropy loss function and accuracy metric,
and comparison to determine the best-performing model. The
EfficientNetB3-AADL architecture was found to achieve the
highest accuracy of 98.71%.

Furthermore, the study aimed to emphasize the impor-
tance of using balanced datasets coupled with augmenta-
tion techniques for classification tasks. It suggested that
future research could benefit from testing these models on
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FIGURE 5. Performance of proposed EfficientNetB3-AADL.

TABLE 5. Comparison of different state-of-the-art-work with our proposed model.

real-time environmental images. Overall, this study con-
tributes significantly to the field of image classification,
highlighting the importance of suitable techniques for achiev-
ing high accuracy in classification tasks and suggesting
potential avenues for future research to further advance
the field.

V. DISCUSSION
This research utilized transfer learning and deep learn-
ing (DL) techniques [63] for plant disease classification.
The proposed EfficientNetB3-AADL model was com-
pared to pre-trained models (Xception, InceptionResNetV2,
InceptionV3, and ResNet50). Through hyperparameter
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FIGURE 6. Confusion matrix for EfficientNetB3-AADL model.

optimization and augmented DL, EfficientNetB3-AADL
achieved the highest accuracy of 98.71%, outperforming
other methods.

The uniqueness of this research lies in a dataset consisting
of 52 different plant disease classes, the implementation of
transfer learning for leveraging the feature extraction capabil-
ities of pre-trained models, and the application of augmented
DL techniques with Adamax optimization to enrich the diver-
sity of the training data. Our model was also customized
with additional convolutional and max pooling layers, which
contributed to the achieved high accuracy in disease clas-
sification. The superior accuracy of the EfficientNetB3-

AADL model can be attributed to its optimized structure,
which strikes an excellent balance between accuracy and
efficiency. With fewer parameters compared to other mod-
els and a unique architecture optimized for scale, including
efficient building blocks and a compound scaling method,
EfficientNetB3-AADL is an optimal choice for large-scale
image classification tasks. Consequently, it achieved an accu-
racy of 98.71%, outperforming the other pre-trained models.

However, the study has certain limitations. For instance,
the misclassification of some sample images occurred due to
minor noise. The test images were captured in a laboratory
setting rather than real-time field conditions, which could
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FIGURE 7. Prediction results of proposed EfficientNetB3-AADL.

potentially affect the model’s generalizability. Moreover, the
use of pre-trained models significantly slows down the train-
ing process, particularly on machines without a powerful
GPU.

Future work could concentrate on integrating recent
advancements in DL to enhance the model’s accuracy and
efficiency further. The study underscored the importance of
employing balanced datasets with augmentation and data
trimming techniques for classification tasks and proposed
that subsequent research could mitigate some of the limita-
tions of this study by testing the models on real-time envi-
ronmental images. The study makes valuable contributions to
the field of image classification, emphasizing the significance
of employing suitable techniques for high accuracy in such
tasks. It also suggests directions for future research that could
further advance the field. A comparison of our findings with
those of previous studies is presented in Table 5.

A. PREDICTION PERFORMANCE OF OUR PROPOSED
APPROACH
To evaluate the performance of our model, we made pre-
dictions on the test dataset to assess how well our proposed
model performs on unseen data. Figure 7 showcases the pre-
dictions and results made by our proposed model. The actual
label of each class is also provided along with the predicted
result, making it easier to understand the actual label of
a particular class and what our proposed model predicted
for each unseen data point. Our proposed model correctly
predicted almost every image. Therefore, we can assert that
our proposed model, trained using augmentation techniques,
Adamax optimizer, a learning rate function, and the cus-
tomization of our model with additional layers, achieved
superior accuracy compared to other pre-trained models.

VI. CONCLUSION
This research aimed to develop a DL-based transfer learn-
ing strategy for multi-class plant disease classification. The
study evaluated the performance of pre-trained deep CNN
models (Xception, InceptionResNetV2, InceptionV3, and
ResNet50) and compared themwith the customized Efficient-

NetB3 AADL model for accurate disease classification. The
results demonstrated that the EfficientNetB3-AADL archi-
tecture achieved the highest accuracy of 98.71% among the
pre-trained models. The precision, recall, and F1 score of
the proposed model were 98.85%, 98.71%, and 98.72%,
respectively. The study highlighted the effectiveness of trans-
fer learning, AADL techniques, and model customization in
improving accuracy and performance. However, the model
has certain limitations, including slow training time without
a strong GPU, potential misclassification due to noise, and
the need for real-time field testing. Future research can focus
on testing the models on real-time environmental images to
address these limitations and incorporate the latest advance-
ments in DL to further enhance the model’s accuracy and
effectiveness.
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