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ABSTRACT Software Defined Network (SDN) is one of the modern networking technologies that provide
network flexibility and simplifies network management. Virtual SDN (vSDN) enhances the flexibility of
sharing physical networking resources bymultiple slices representingmultiple tenants or services where each
tenant has control over their services or applications over the Virtual Network (VN). Network virtualization
gives service providers more flexibility to offer new and innovative services with extra efficiency and
reliability. Running multiple virtual networks over a given infrastructure creates challenges for efficient
resource allocation mechanisms to avoid congestion and resource starvation and to maintain Service Level
Agreement (SLA), where resource management in vSDN is carried out by hypervisors. Few studies have
addressed dynamic resource allocation in the vSDN domain. Therefore, to efficiently utilize the resources of
the virtualized networking infrastructure, network hypervisors must be proactive with self-reconfiguration
capabilities to assign the physical resources and be highly adaptable and react to changing vSDN future
demands. Thus, dynamic learning-based hypervisors are to improve hypervisor operations. Based on that,
this study aims to enhance the vSDN technology to provide an enhanced proactive dynamic slice resource
allocation mechanism, to improve traffic delivery and resource utilization. This can be fulfilled by proposing
an enhanced intelligent forecasting model for vSDN slice resource utilization based on improved statistical
and Machine Learning (ML) techniques. The proposed model will react dynamically to the concept drifts
and then be utilized to develop a resource allocation mechanism for vSDN slice resource allocation. The
improved dynamic forecasting resource allocation mechanism is verified through available real network
traces datasets from various sources. The DLVisor with its Dynamic Learning Framework (DLF) can reduce
overutilization and, consequently, resource starvation by 100% compared to the related benchmark.

INDEX TERMS Machine learning, resource allocation, resource forecast, software defined network,
virtualization.

I. INTRODUCTION
Software-defined networking (SDN) has emerged as a
promising networking technology that enables flexible data
management in computer and communication networks
whereby it separates the data forwarding plane and the control
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plane. On the other hand, network virtualization enables shar-
ing of physical networking resources where tenants or slice
owners have authority over their virtual network resources.
Networks can exploit the benefits of SDN and Network
Function Virtualization (NFV) through the virtualization of
SDN networks. The SDN hypervisor separates the underlying
physical SDN network into numerous logically separated
vSDNs, each with its controller. For instance, each Virtual
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TABLE 1. List of abbreviations.

Machine (VM) and its guest operating system runs on a
specific physical computing platform [1], [2], [3]. In addition
to monitoring the virtual machines, the hypervisor assigns
actual computing platform resources to each virtual machine.
The hypervisor creates several vSDNs using the Open Flow
(OF) protocol based on a particular physical network. Each
vSDN corresponds to a slice of the entire network. Future
networking technologies in FifthGeneration (5G) and beyond
are to be enabled by vSDNs [4], [5], [6]. Running vSDN
over a given infrastructure with efficient resource allocation
mechanisms may improve the utilization of the networking
hardware that meets tenant and service specifications and
Service Level Agreement (SLA). Table 3 shows the list of
symbols which will be used in the following section

In addition, vSDN enables network service providers to
deliver new and innovative services with greater flexibil-
ity, efficiency, and dependability. Operating multiple virtual
networks requires a significant amount of physical network-
ing resources. Therefore, intelligent, and efficient resource
allocation methods are essential. To persistently achieve and
sustain the best performance, SDN network hypervisors must

be designed to be adaptable, where it should adopt and
enforce approaches for self-reconfiguration. To ensure better
resource allocation and optimization, vSDN requires current
and future network states to be forecasted and continuously
run in online or semi-onlinemode to adapt to network demand
variations. Such mechanisms and approaches must work in
variable time scales to achieve high resource efficiency for
the virtualized resources. Therefore, dynamic learning-based
hypervisors are needed to improve the hypervisor operations.
The design of hypervisor resource management algorithms in
solving these challenges is an open research field and needs
detailed investigation [1], [4].

To efficiently utilize the resources of the virtualized
networking infrastructure, sophisticated forecasting-based
resource allocation frameworks are needed for the physical
resources. These frameworks must have some intelligence to
cope with the dynamic Quality of Service (QoS) demand and
be able to react autonomously to dynamic and self-organizing
situations without affecting the SLA. Therefore, proactive
approaches for managing bandwidth and network resources
are highly needed [7], [8]. The proactive dynamic net-
work resource allocation relies on the forecasting network
demands and acts accordingly to enable a timely and dynamic
response. Thus, the accuracy of predictive approaches was
regarded as a vital factor in various applications of the pre-
dictive frameworks.

Accurate ML techniques are crucial and widely used
in different applications, such as network traffic fore-
casts [9], [10], [11], [12], [13], [14], the Internet of Things
(IoT) [15], and wireless communications [16]. The resource
management in vSDN is performed by the SDN hypervisor.
No proactive dynamic resource allocation mechanisms were
provided in all related literature, the provided methodolo-
gies and frameworks were either static (they cannot adapt
to traffic/network changes) or reactive due to working in
current states with no resource forecasting which may lead
to resource starvation. Therefore, it is essential to develop a
dynamic learning framework to allocate and modify band-
width slices for better resource utilization and to avoid
resource starvation and SLA violations due to congestion and
QoS degradation.

This study aims to enhance the vSDN technology to pro-
vide an improved dynamic slice resource allocation mecha-
nism to improve resource utilization and minimize resource
starvation. The specific objective of this work is to enhance
the slice allocation mechanism in vSDN based on the proac-
tive slice management based on resource (bandwidth fore-
cast) in which will be reflected as a result in eliminating
the count of overutilization and minimize congestion and
resource starvation. This research contributes to vSDN tech-
nology by providing the hypervisors with the capabilities to
manage and improve their performance autonomously since
bandwidth slice management is one of the critical resources
that need to work on short time scales to achieve high
resource efficiency for the virtualized resources. Therefore,
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this research will proactively provide ML learning-based
hypervisors to avoid slice resource starvation and SLA viola-
tion in vSDN. This includes:

1) integrating an enhanced static forecasting model into
vSDN slice management to improve vSDN slice uti-
lization based on ML techniques.

2) adopting the static forecasting model using a dynamic
learning framework (DLF) to reduce the static model
forecasting error due to concept changes to update and
improve model validity.

3) proposing proactive enhanced resource (bandwidth)
slice allocation and supply and demand management in
vSDN using the dynamic learning framework to mini-
mize congestion and resource starvation. The proposed
vSDN slice management framework will be named
DLVisor.

The organization of the paper is as follows, section II pro-
vides a brief introduction of virtual network and virtualiza-
tion, SDN and vSDN, section III discuss the state-of-the-art
resource management in vSDN technology, section IV pro-
vides the overall methodology, algorithms, architecture and
implementation of the dynamic bandwidth slice allocation,
section VI discusses the results and findings while section
VII provides the conclusion

II. BACKGROUND
Network Virtualization (NV) has been derived from the suc-
cess of virtualization in the computing domain [1], [17].
It creates separate virtual networks (slices) through spe-
cific abstraction and isolation functional blocks [1]. In the
networking domain, slicing concepts are already there. For
example, optical fiber-based networking, Wavelength Divi-
sion Multiplexing (WDM) [18] can create slices at the
physical layer, while at the link layer, Virtual Local Area
Network (VLAN) and Multiple Protocol Label Switching
(MPLS) [7], [19] can be created.
On the contrary, network virtualization tends to establish

slices of the entire network, i.e., to form virtual networks
(slices) across all network protocol layers. At any moment,
a given slice should have its resources (specific abstraction of
the network topology, link bandwidths, switch computational
resources and switch forwarding tables). Virtual network
(slice) enables testing of new networking paradigms, regard-
less of the propriety and restrictions imposed by current
internet structures and protocols [1]. Runningmultiple virtual
networks involves consuming specific amounts of physical
networking resources. Therefore, efficient, and sophisticated
resource allocation mechanisms are highly needed [8], [20].
For instance, the interconnection between the virtual nodes,
the virtual paths and VM Placement on the physical infras-
tructure, this is also known as Virtual Network Embedding
(VNE) problem [1].
The VNE problem is Non-deterministic Polynomial-time

hardness (NP-hard) and is still being extensively investigated.
Generally, accepting and rejecting virtual network resource

FIGURE 1. vSDN architecture.

allocation requests can be performed by admission control
mechanisms. The current VNE optimization algorithms range
from exact formulations, such as mixed-integer linear pro-
grams, to heuristic approaches based, it is possible to relate
the resource assignment of vSDNs to the generic VNE prob-
lem and outline the use of the general VNE performance met-
rics in the SDN context. Several published overview surveys
are already discussing network virtualization’s principles,
benefits, and approaches. For example, a detailed survey of
network virtualized hypervisors for SDN can be found in [1].

The capability to program virtual networks using SDN
is another important key aspect of total network virtualiza-
tion [21]. Looking at legacy network virtualization, such as
VLAN-based virtualization with no programming features,
tenants will not be able to instruct switches to take actions
such as traffic management, i.e., traffic steering. Neverthe-
less, to fully realize NFV, tenants must obtain virtual network
resources, such as total views of network topologies and
allocated networking resources, involving link data rates and
network node resources. Moreover, providing isolated and
programmable virtual networks has a significant advantage.
In such a case, network operators can develop and test novel
networking technologies with less imposed constraints [22].
In addition, NV is considered a key player in providing
predictable (guaranteed) network performance [23]. Con-
sequently, Service Providers (SPs) will be able to provide
or provision new services over existing infrastructures in a
much faster and more reliable way furthermore, SPs will
allow their networks to dynamically alter and modify their
virtual network according to the changing user and service
demands [24], [25], [26]. The network virtualization layer
allows hosting multiple controllers [26], [27]. The network
hypervisor communicates with the underlying network hard-
ware through the southbound interface via an SDN protocol,
OF as an example. In the case of NV, the hypervisor operates
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on top of the same southbound interface for virtual network
operators and towards SDN network tenants. The hypervisor
is interfaced with multiple southbound with several SDN
controllers [27]. The SDN hypervisor operates as a proxy.
It intercepts and translates the control messages between
tenants and the physical SDN network. Fig 1 shows the vSDN
architecture.

By combining SDN and NFV, tenants will have the advan-
tage of flexibility in resource sharing through virtual network
sharing in addition to having the programmability feature
of SDN, while NFV provides the ability to program the
virtual resources [25] whereby the combination is called
vSDN [24], [26]. This can be seen in Fig 1 which shows the
vSDN architecture.

III. RELATED WORK
This section discusses the related work in the context of the
dynamic bandwidth (slice) management in vSDN. As dis-
cussed in previous sections, the hypervisors perform resource
management tasks, and all vSDN hypervisors are considered
extensions to the FlowVisor hypervisor.

FlowVisor (FV) is the first hypervisor for SDN networks,
providing the feature of sharing SDN networking resources
between multiple controllers. FV can ultimately run as
stand-alone software on commodity hardware (server) [28].
FV is a general-purpose hypervisor and represents the foun-
dations for other vSDN hypervisors. It offers node attributes
isolation such as Central Processing Unit (CPU) and Flow
table in addition to bandwidth as a link attribute isolation.
FV mainly stressed approaches to isolate network traffic in
experimental networks from traffic in production network
whereby it provides flexible definitions of network slices.
However, it added latency in OF messages and exhibits no
admission control and no mechanisms for slice management
and optimization.

MobileVisor in [29], applied the FlowVisor approach in
mobile packet core networks; where FlowVisor functional-
ity is integrated into the architectural structure of a virtual
mobile packet network that is comprised of several underly-
ing physical mobile networks such as 3G and 4G networks.
It allowed Internet Service Providers (ISPs) to define policy
and QoS-based service in addition to that mobile operator.
Moreover, ISPs will be able to manage their charging poli-
cies more efficiently. No latency calculation is mentioned;
however, since the hypervisor adopts FV, it lacks dynamic
resource management.

In [30] authors introduced compositional hypervisor to
provide a flexible platform that enables SDN network opera-
tors to choose various network applications developed for dif-
ferent SDN controllers. This will allow different applications
written for specific controllers to run on other controllers
written in another language; the compositional hypervisor
establishes a composed policy that represents a prioritized list
of rules per SDN switch provided by the corresponding SDN
controller, and then the composite hypervisor forms a suitable

composition configuration to process SDN rules, the study
stressed on composition policy formation timewhich is added
to the hypervisor OF latency, in addition, the priority list is
static and do not allocate or manage resources dynamically.

Authors [21] proposed the Network Virtualization Plat-
form (NVP), focusing on data center network resource
abstraction managed by the cloud tenants for multi-tenant
environments, which works as a controller to provide SDN
tenants to operate their SDN controllers via Application
Programming Interface (API) and control their slices in the
data center. This is accomplished by forming a distributed
controller cluster to scale tenants’ load as required with vir-
tualized switches to steer tenants’ traffic to the corresponding
virtual machines by focusing on software that resides inside
the virtual switches on the host servers. NVPs generally
establish logical data paths (tunnels) between the destination
and the source Open Virtual Switch (OVS) where the logical
path relates to the corresponding tenant slice using Generic
Routing Encapsulation (GRE) tunnelling techniques.

OpenVirteX hypervisor in [31] was introduced with two
primary contributions: topology and address virtualization.
OpenVirteX extends FV by tackling the flow space problem.
This is achieved by using of headers to distinguish vSDNs
instead of providing the entire of header fields space to the
vSDNs. In OpenVirteX, switches re-write virtually assigned
Internet Protocol (IP) and Media Access Control (MAC)
addresses utilized by the hosts of each vSDN (tenant). Open-
Virtex did not add a valuable contribution to the dynamic
resource management.

In [32], a Datapath centric hypervisor was introduced
to address the redundancy issue in FV (Single point of
failure) and enhance the virtualization layer performance
through the implementation of virtualization function as
switch extensions. It works by implementing Virtualization
Agents (VA) inside switches in addition to the Virtualization
Agent Orchestrator (VAO). The VAO’s ultimate responsibil-
ity is the slice monitoring and configuration, example of this
is adding or removing slices. On the other hand, VA is respon-
sible for communicating with vSDN controllers in addition
to resource abstraction for the VAO. If VAO fails, VA can
continue to operate, avoiding a single point of failure in Flow
visor architecture. Datacentric does not support bandwidth
isolation but still can support QoS based on extensive eval-
uations. The VA case adds an overhead of 18 % compared to
the reference case. Failover overhead latency is about 3ms.
Although it can support QoS, a lack of bandwidth isolation
will not allow dynamic bandwidth slice allocation.

In [33], CoVisor was introduced as an extension to a
compositional hypervisor that facilitates the cooperation of
heterogeneous controllers to work on the same type of traf-
fic with more focus on improving SDN physical network
performance, i.e. flow table space and topology abstraction
in such a way to provide the necessary resources such as
topology information or abstraction when needed, i.e. a load
balancer does not necessarily require a detailed topology view
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to decide to drop or forward a packet. In addition to that,
it provided a form of security against fraud SDN controllers.
CoVisor enhanced Compositional hypervisor latency over-
heads by two to three folds. However, the hypervisor did not
provide dynamic resource allocation.

In [34], DFVisor (Distributed FlowVisor) was introduced
to tackle the scalability issue of FV as a centralized SDN vir-
tualization hypervisor. It addressed the possibility of extend-
ing SDN switches with hypervisor capabilities, producing
enhanced OpenFlow switches which can be accomplished
by extending SDN switches with a local tunnelling module
and vSDN slicer. DFVisor utilizes GRE tunnelling for data
plan slicing and encapsulating data flows which are benefi-
cial in adopting QoS. DFvisor adopts two-level synchronized
distributed databases, the first database (local) resides on
switches, while the global database maintains slices of sta-
tistical information, network operation and scalability are
improved. However, the proposed solution was intended for
a cluster environment.

EnterpriseVisor in [35], is one of the most notable hyper-
visors regarding resource slice allocation. It introduces an
extended software module to monitor and analyze slice uti-
lization. In addition, linear programming was used to adjust
the bandwidth slices dynamically, the proposed engine deter-
mines slice requesters and resource providers to meet ser-
vice requirements. Furthermore, the EnterpriseVisor interacts
with the Flow Visor, applying the slicing policy to configure
the network. Accordingly, slice configuration can be adjusted
to meet service requirements.

In [36], intent-based virtual network management platform
based on SDN is proposed to automate the configuration
and management of VN resources from the tenant side. The
framework was based on OpenVirtex. The proposed frame-
work simplifies resource definitions and management from
the administrative side through high-level business require-
ment representations since VN resource management is a
complicated and time-consuming process in addition to a lack
of an available automated provisioning process. The intent
layer helps the tenants to specify high-level requirements.

In [37] and [38], AutoVFlow was introduced as a dis-
tributed hypervisor to be used in wide-area networks where
the underlying infrastructure span across a non-overlapping
domain. The hypervisor is responsible for each domain and
acts as a proxy that performs slice and abstraction mapping
AutoVflow delegates administration from heavy load con-
trollers to other less loaded controllers. Solid updates policy
was maintained between the centralized and the distributed
controllers since one slice can spanmultiple domains. Several
identities were used, such as virtual MAC addresses, which
can be different from one domain to another was found to be
considerably high (around 5.85 ms). The control process is
manual and does not consider dynamic load distribution.

In [39], ONVisor Hypervisor was presented as an SDN-NV
platform to provide flexibility by adopting distributed hyper-
visor instances that allowed sharing of VN state. Moreover,

it supports different SDN protocols such as Netconf and LISP.
Finally, it was tested and evaluated in minimal scenarios.
No dynamic resource allocation was discussed.

In [40], a management framework was introduced to pro-
vide bandwidth management through the definition of static
thresholds for each slice based on slice prior priority; the
framework was presented as an admission control mecha-
nism. the proposed framework comprises a Decision Making
(DM) Module, which decides how much bandwidth to allo-
cate based on the request handler’s request and the database
module (DB) information. However, no detailed assessment
was provided on latency and overheads. Moreover, the frame-
work was static and was based only on current states.

In [41] DART framework can dynamically distribute the
network bandwidth to different to utilize network resources
efficiently. The framework adopts an admission control
mechanism to distribute network bandwidth on demand. The
scope was limited to the Industrial Internet of Things (IIOT)
and only worked on the current state. In this framework,
two modules were proposed, communication and publishing
modules. The communication module is used to send and
receive information, while the publishing module is used to
coordinate between the controllers. The centralized compo-
nent is responsible for advising the best possible bandwidth
for each SDN controller. The admission control can be trig-
gered by load, priority, and packet loss ratio to redistribute the
network bandwidth. This paper used priorities for the traffic
as a trigger based on the requested QoS level.

In [42], the PrioSDN resource manager (PrioSDN_RM)
was presented as a resource management framework to pro-
vide admission control for virtualized SDN-based networks.
The proposed mechanism applies limits on the resource
utilization for the virtual slices. It adopts an approach to
taking advantage of a bandwidth distribution mechanism to
react dynamically to load changes. It relies on flow prior-
ity, not device priority. Moreover, the bandwidth threshold
moves according to a predefined critical flow. the storage
keeps tracking current bandwidth utilization, and the compute
module computes the available bandwidth resources. Then,
it allocates the necessary amount of bandwidth resources with
the aid of the flow rules manager and threshold manager,
which assigns the amount of bandwidth based on the priority
of the flows, provided that the priority threshold can bemoved
based on flow predefined priority. The proposed method-
ology works are similar to our approach, but it works in
current bandwidth consumption, which could lead to resource
starvation.

In [43], the Libera hypervisor was introduced to address
scalability and ease of tenants’ capability to provide their
services. The scalability issue was mainly solved by sup-
porting VM migrations and architectural modifications in
which Flow rules are reduced; therefore, bandwidth between
controllers and virtual switches will be minimized. Libera is
considered an extension to OpenVirtx. Resource scalability
is carried out at the current time without considering future
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FIGURE 2. Scope of resource management in vSDN.

demands. Moreover, no detailed investigation was performed
on the scalability based on VM migration.

In [44], TeaVisor was presented to guarantee bandwidth
isolation in vSDN. The proposed hypervisor addressed the
issue of overload links by using a greedy heuristic algorithm
to split the traffic of overloaded links to multiple less-loaded
paths. The results were promising and similar to what this
paper is addressing. However, the algorithm is based on
current traffic measurement, which may lead to a resource
(bandwidth starvation).

In [45], the authors proposed a resourcemanagement archi-
tecture for multidomain SDN controller load scalability using
a non-SDN-hypervisor. The framework is based on creating
a new VM for the controller or migrating the SDN con-
troller based on load elevation; Software agents were used in
monitoring the controller loads. However, unlike SDN-based
hypervisors, using a stand-alone hypervisor add issues of lack
of resource isolation for SDN controllers. Moreover, creation
and VM live migrations involve service downtimes. In all
related literature, the provided methodologies and frame-
works were either static (it cannot adapt to traffic/network
changes) or reactive due to working in current states with no
resource forecasting, which can lead to resource starvations.

As depicted in Fig 2, this paper will concentrate on
bandwidth resource management in self-configurable and
optimized vSDN hypervisors where the presented solution
(DLVisor) will be the first to combine learned-based hypervi-
sors through ML and mathematical-based resource manage-
ment in vSDN.

FIGURE 3. vSDN resource management components in DLVisor.

IV. DYNAMIC BANDWIDTH SLICE ALLOCATION FOR
vSDN
This work is based on EnterpriseVisor [35] where it focuses
on enhancing the existing hypervisors that should be able
to perform regardless of the underlying topology and net-
work demands. Therefore, hypervisors should exhibit capa-
bilities to improve their performance autonomously and
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FIGURE 4. Flow chart for the DLVisor.

transparently with minimum overheads. Bandwidth slice
management is one of the critical resources that need to work
in short time scales to achieve high resource efficiency for the
virtualized resources. This can be achieved via cognitive and
learning-based hypervisors and under varying mathematical
modelling objectives and constraints. The proposed improved
hypervisor shown in this work is named DLVisor (Dynamic
learning hypervisor), whereby Fig 3 shows the proposed
vSDN resource management components in DLVisor.

For this purpose and as shown in Fig 3, the Dynamic
Learning Framework (DLF) introduced and discussed in
our previous work [46] will be incorporated and integrated
with the EnterpriseVisor resource management module in the
EnterpriseVisor hypervisor. The DLF will capture the net-
work bandwidth slice from the Cacti server using the Simple
Network Management Protocol (SNMP). The live traces can
be accessed directly from network storage in online, semi-
online, or in batch mode. The dynamic learning approach
will apply various hybrid Long Short-TermMemory (LSTM)
windows-based smoothing algorithms with minimum data
loss introduced earlier in [46]. Then, the best algorithm will
be used to forecast the network traffic for each service slice

FIGURE 5. Testbed components.

TABLE 2. LSTM hyperparameters.

TABLE 3. Dataset description.

or tenant. This work mainly focuses on vSDN virtualization
where RAN end to end slicing is out of this paper ‘s scope
and can be found in other related work such as in [47]. Three
utilization levels will be defined as low utilization in the range
of 0% to β, middle utilization is β to γ , and high utilization
between γ and 100%. Fig 4 shows the overall flow chart for
the DLVisor.

The white part indicates the DLF while the dark blue
part indicates slice allocation and bandwidth management
introduced by the EnterpriseVisor in line with the DLVisor
components shown in Fig 3.

84150 VOLUME 11, 2023



M. K. Hassan et al.: DLVisor: Dynamic Learning Hypervisor for Software Defined Network

FIGURE 6. Sequence diagram for the testbed scenario.

FIGURE 7. ATN-OBY slice creation.

As depicted in Fig 4, the flow starts with building an
improved ML model by incorporating loss-aware window-
based smoothing as a preprocessing technique to eliminate
the unnecessary short/long-term noise components and avoid
the erosion of periodic trends and patterns within the series
noise and rapid traffic fluctuations, the output of this process
is an improved hybrid LSTM-based ML that will be used for
traffic forecasts. Then, to address ML model reliability and
validity due to the rapid data characteristics and distribution
changes resulting from the dynamic nature of the network
properties, the forecasting frameworks must detect and adapt
to all changes in the statistical properties of the network
traffic.

FIGURE 8. Log messages during ATN-OBY slice creation.

FIGURE 9. The script used to modify the slice bandwidth limit by DLVisor.

Changes in traffic profiles, such as the sudden surge in
traffic, occur due to changes or variations in the user’s
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FIGURE 10. Slices utilizations in Wa = 1.

application behavioral demand. Therefore, a change detec-
tor using Anderson Darling (AD) is incorporated due to its
sensitivity to detect changes in data characteristics, which
may negatively affect the ML model accuracy. Then if a
change is detected, a statistical significance test is used to
validate the output of the forecasted data. Accordingly, if the
output of the currently usedML algorithm is insignificant, the
current (old) model is retained, otherwise, a new hybrid ML

model is built provided the results are significant. The details
of the process are already discussed in our previous work
in [46]. Due to its reliability and simplicity, hyperparameter
selection was conducted through grid search, as depicted in
Table 2 [46]. Finally, the forecasted bandwidth is used as
input to the slice allocation to identify the resource providers
and resource requesters using slices classifications into low,
medium, and high utilization slices, and then supply and
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FIGURE 11. Counts of overutilization in Wa = 1.

demand calculations are performed to allocate the vSDN
slices proactively to avoid overutilization to minimize and
eliminate congestion and resource starvation.

A. DATASET
The dataset was collected from a premier Internet Service
Provider (ISP) in which different bandwidth utilization time
series were examined. The collected data represents the
aggregated backbone traffic for Long Term Evolution (LTE),
MPLS and enodeBs. Data was sampled by 50 and 350-time
steps. Each time step represents 28.8 mins, where each 50-
time step represents one day, and 350-time steps represent
one week. This was attributed to the limitations of the data
collection tool, while the values were interpolated and used
for developing a time series model. Table 3 shows the data set
names.

TABLE 4. List of symbols.

B. SLICE MANAGEMENT IN vSDN
Table 4 shows the list of symbols which will be used in the
following section

Algorithm 1 shows the Bandwidth Slice requesters and
providers’ allocation. The Algorithm 1’s complexity is
O(nmh+ m).
The vSDN network is modelled as a set of entities (nodes

and edges) interconnected by a set of links. In this work,
a network is modelled as graph G(νSDN , εSDN ) consisting
of νSDN network nodes (i.e., SDN switches) connected with
εSDN edges. The SDN hypervisors are given by the setHSDN ,
where HSDN is a subset of νSDN . The vSDN request, rSDN ,
where rSDN ∈ RSDN (RSDN is set of total requests), is estab-
lished between the SDN switches in V r (Set of a virtual
node of vSDN request ) and controller cr (Virtual Controller
node of vSDN request r ) at location donated by cr ∈
νSDN . The final objective is to map the controller cr to the
corresponding physical host switch, which is represented by
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FIGURE 12. Slices utilizations in Wa = 2.

∀rSDN ∈ RSDN ,∀νr ∈ V r
∪ cr → νSDN . Provisioning slices

through the virtual and physical network is out of the scope
of this paper. Algorithm 1 shows the resource requesters and
provider classifications. The Algorithm searches in each time
step tj ∈ ŷ in SL i ∈ Wa, where ŷ is the forecasted bandwidth
for the resources providers and resource requesters in slices
SL i running on a set of already provisioned νSDN in
windowWa.

The Algorithm starts with forecasting bandwidth ŷt as a
time series of time steps ti in slice SL i belonging to window
Wa. The slices are then allocated based on their calculated
utilizations in ui (lines 5 to 13 of Algorithm 1) to candidate
requester. If the utilization is higher than the upper bound
γ and to the candidate provider else, if the utilization is
lower than the lower bound β, the list of the candidate
providers and requesters are stored in the slices requesters list
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FIGURE 13. Counts of overutilization in Wa = 2.

R̂ {..}and slices providers list P̂{..}, and both lists R̂{.. and
P̂{..} will be passed to Algorithm 2 to obtain the amount of
resources that will provide p̂m(i) and the amount of requested
resources r̂(i). Then for all providers slices in the window
Wa in the forecasted providers’ list P̂ {..}, overutilization X
is count number of 100% overutilization for the forecasted
bandwidth (̂yt ), if X≥ z, where z is the count number of 100%
overutilization for all slices SL i in window Wa using actual
bandwidth yt , p̂m(i) will be dropped from the providers’ list
P̂ {..} to avoid bandwidth starvation.

Algorithm 2 shows supply and demand calculations where
Algorithm 2’s complexity is O(nmh). In line 4, the demand
r̂(i) is calculated from a set of slice requesters R̂ {..} which
is limited to the values between the lower bound β and the
upper bound γ , and most importantly, bounded by Max(rt ).

Algorithm 1 Bandwidth Slice Requesters and Providers
Allocation
Input: SL i: slice, ŷt : forecasted bandwidth in slice SL i, δ:
statistically significant smoothed LSTM, Network infras-
tructure of G(νSDN , εSDN ), with rSDN where rSDN ∈

RSDN and connected to the controller cr , given ∀rSDN ∈
RSDN ,∀V r

∈ νr ∪ cr → νSDN , i: index,j: index Wtot :
total number of slices,t: time, a: index steps,β :

lower Bound, γ : Higher bound , h: number of resource
provider, g: number of resource requester
i: index, z: Count number of 100% overutilization
for yt in SL iϵWtotϵWa
Output:
R̂ {..} : Candidate Requester list ,̂P {..} :

Candidte provider list , X: Count number of 100%
overutilization for ŷt in SL iϵp̂m(i)ϵWaϵP̂ {..}
01: begin
02:̂R {..} :← ∅;
03:̂P{..} ← ∅;
04: for all time steps in forecasted bandwidth
slices tjϵ̂yt in SL iϵWtotϵWa do // using δ

05: ui← Calculate slice utilization
06 while g =! 0
07 if ui ≥ γ

08 R̂ {..} ←: SL i //candidate of the requester
09 Else
10 while h =! 0
11 If ui ≤ β

12 {̂P} ←: SL i //candidate of provider
13 Else
14 Calculate supply and demand using algorithm 2
15 for SL i in p̂m(i) in WaϵP̂ {..}
16 X← Calculate slice over utilization
17 If X ≥ z
18- Drop SL iϵp̂m(i) in Wa from P̂{..}
19 Loop:

In line 8, the number of supplied resources p̂m(i) from a set of
supply slices P̂..{} is calculated and bounded by constraints in
Equation 2-5. In addition, the slice utilization after resource
donation should be between the lower bound β and the upper
bound γ . The amount of supplied resources requested from
a requester and provided by m slice provider is calculated by
the cost function, C, provided all constraints in Equations 2
to 5 are satisfied.

min(C) =
∑n

m=1
wmxm (1)

Constraints: ∑n

m=1
xm ≤ pt (2)

p̂m(i) ≤ Ai (t)− Si (3)∑n

i=1
min

(
p̂m(i) ≤

)
≤ xm ≤

∑n

i=1
Max

(
p̂m(i)

)
x1, x1, . . . .., xn ≥ 0 (4)
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FIGURE 14. Slices utilizations in Wa = 3.
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FIGURE 15. Counts of overutilization in Wa = 3.

min (rt) ≤
∑n

m=1
xm ≤ Max(rt ) (5)

The cost function and constraints are adopted from the Enter-
priseVisor framework [35]. The output from Algorithm 2 is
the amount of provided resources p̂m(i) and the amount of
requested resources r̂(i) which is used by algorithm 2 for slice
allocation.

This work is based on extending the resource management
module embedded in the EnterpriseVisor framework. Fur-
thermore, this paper adopts the same topology used in [35]
Moreover, a test bed with Libera hypervisor is used emulation
platform. Fig 5 shows the test bed components.
Fig 6 shows the sequence diagram for the testbed scenario,

including the interaction between the DLVisor, vSDN net-
work and Libera.

Algorithm 2 Supply and Demand Resource Calculation

Input: R̂ {..} : Candidate Requesters list, P {..} :
Candidte provider list, SL i: slice , ŷ :

forecasted bandwidth in slice SL i, i: index,
z: Count number of 100% overutilization in
using yt in SL iϵpm(i), β : lower Bound, γ :

Higher bound, Ai : Maximum Bandwidth
allocation for ith slice,r̂t : total requirement, Si :
Minimum Bandwidth Gurantee for ithSlice, p̂t :

Total resources from all resource provider
Output: C: Cost function, p̂m(i) : the amount of Provided
resources, r̂(i) : amount of resources Requested
01: begin
02: for all time steps in forecasted bandwidth

slices tjϵ̂yt in SL iϵWa do
03 for SL i in R̂ {..} do
04: solve r̂(i) in β ≤

ŷt
Ai+r̂(i)

≤ γ , Provided r̂t
=

∑g
i=1 r̂i

05: If R̂ {..} ̸= ∅
06: Loop
07: Else
08: for SL i in P̂{..}do
09: Solve p̂m(i) in (β ≤

ŷt
Ai−p̂m(i)

≤ γ ,

Where p̂m(i) ≤ Ai−Si and provided p̂t =
h∑
i=1

p̂m(i)

10: If p̂ {..} ̸= ∅
11: Loop
12: Else
13: Solve min C //Equation 1
14: Loop

The testbed is comprised of five functional entities rep-
resented by three VMs residing in a single host, the details
of the virtual machines are shown in Table 5. The testbed
platform was a computer with Core i7 2.1 GHZ CPU,32 GB
RAM, 1GB network interface, 64-bit windows 10 operating
system for host machines and with ubuntu Linux for the guest
virtualized VMs. Table 5 shows the testbed VMs IPs

As depicted in Fig 6, the Virtual NetworkManager (VNM)
initially creates the physical network using the MININET-
SDN simulator. Then, the physical network is discovered
and initiated by the Libera hypervisor. The VN controller
which is ONOS in our case is to be activated in ONOS
VM using. As soon as the physical network is activated,
Libera establishes multiple vSDNs networks while maintain-
ing network isolation. It has been selected as an emulation
platform due to its flexibility in creating VN and the ease
of use of its programming features. Each tenant’s VNM acts
as the operator of the VN and submits various requests to
Libera. It is worth to mention that, the proposed framework
interacts horizontally with the traffic therefore it does not
interfere vertically to the traffic flow/traffic path between the
controllers and the vSwitches (Fig 5), accordingly it has the
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FIGURE 16. Slices utilizations in Wa = 4.

same FlowVisor Latency of 17ms when the OpenFlow’s new
flows processed and it increase port status response latency by
roughly 0.71ms when the OpenFlow’s port status is requested
similar to the EnterpriseVisor latency [35].

Requests are classified into two categories: provisioning of
topologies and topology modifications. First, the VNM starts
creating a VN with a specified topology and VN entities. The
term ‘‘virtual entities’’ refers to all entities that comprise the
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FIGURE 17. Counts of overutilization in Wa = 4.

VN, such as vSwitches, ports, and links. For example, the
VNM can specify whether a vSwitch is OpenFlow, white-
box, or P4. Additionally, the VNM can construct several
ports on each virtual switch. Similarly, a virtual link can be
constructed by connecting two virtual ports.

In Fig 6 after the VNM establishes a VN and associated
virtual Network Interfaces (NIs), the tenant operates the VN
via the VN controller (VNC). The VNC can configure the
vSwitch or virtual port by transmitting command messages
to Libera through I2 (control channel). Libera offers a control
channel for every virtual switch. Given that the vSwitch only
belongs to one VN, each VN’s control messages are routed
separately to Libera. For Flow rules (FRs), the VNC can
install desired FRs to any vSwitch at any time, thereby allow-
ing packets to be dynamically forwarded or dropped. Addi-
tionally, the Libera collects statistical data from vSwitches
and virtual ports. Accordingly, DLVisor can reconfigure or

TABLE 5. IP address of testbed.

modify slices as depicted in Fig 6, step 6. Figure 7 shows the
output of slice one creation.

Four VNs were created in Libera. Fig 7 and 8 show the
output of slice one creation. Fig 7 shows the creation of slice
one, representing the ATN-OBY slice referred to as tenant
_id 1; the slice is mapped to physical switches with corre-
sponding switch IDs, ports, and links. In addition, the slice
is also associated with its corresponding ONOS Controller
at 10.0.0.3 through port 1000: TCP. Figure 8 shows more
detailed log messages, including switch and link establish-
ment. Figure 9 shows the script that is used to modify the
slice bandwidth limit in step number 6 in Fig 6 and as a
result of algorithms 1 and 2. Fig 8 shows the detailed log
messages during ATN-OBY slice creation shows the script
used to control the traffic queuing discipline (by default, First
in First Out FIFO). It is based on a traffic control command in
Linux that allows configuring packet schedular in support of
qdisc. On the other hand, the tbf argument indicates that the
token bucket filter mechanism controls the traffic flow. It is
stated here that the rate is limited to 90Mbps. The IPERF tool
was used as a load generator to stress the VN slice bandwidth

V. RESULT AND DISCUSSIONS
In this work, the proposed resource allocation algorithm can
only serve one resource requester at a time max(g) = 1, and
the maximum number of resource providers is four max(h) =
4. Therefore, priorities were assigned to slice requesters.
The priorities were assigned to LTE, ATN-OBY, ATN-PSD
and MPLS respectively. In order to create a resource con-
straint in network bandwidth, the maximum amount of total
requested resources and provided were selected to be equal
to (r t ) = (pt ). The maximum bandwidth limitation for the
slices is 90 Mbps for ATN-OBY and ATN-PSD, 1.43 Gbps
for MPLS slice and 1.5 Gbps for LTE slice. The maximum
network capacityM is 3.2 Gbps and the target utilization rate,
lower utilization bound, and upper utilization bound were
selected to be ideal (ux) = 50%, β = 40% and γ = 60%
respectively.

These values were determined empirically based on col-
lected data set slices to create a situation where resource
providers can experience resource starvation while providing
their excess resources at the current time (t j) and up to (t j+n)
where n is the number of forecasted time steps.

Fig 10 shows the utilization of ATN-OBY,ATN-PSD, LTE,
and MPLS slices respectively, with and without a resource
allocation using the dynamic learning framework (DLF) for
all time steps in window 1 provided tjϵ̂yt in SL iϵWa(a =
1 and j = 1 to 50, i.e., the first 50 time steps); where the blue
line in the graph shows the actual (original) slice utilization
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FIGURE 18. Slices utilizations in Wa = 5.

without using the resource allocation algorithm that was used
as benchmark in this research. In window one and based
on slice utilization, ATN-OBY slice, ATN-PSD slice, and
MPLS slice are considered as resource providers due to its
low utilization ui ≤ β, whereas LTE slice is considered a
resource requester ui ≥ γ .

In time step 1 and According to algorithms 1 and 2, ATN-
OBY, ATN-PSD, and MPLS slices will provide resources to

other requested slices like LTE, since LTE slice utilization is
more than the upper bound ui ≥ γ , where γ = 60% and other
slice utilizations are less than the lower bound ui ≤ β where
β = 40% at target utilization (ux) = 50%; provided that all
bounds and constraints are satisfied in Equations 1 to 5. The
orange line depicts the newly utilization without DLF.

Fig 10a shows that slice utilization without DLF exceeds
the full utilization of 100%, which causes the slice to starve
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FIGURE 19. Counts of overutilization in Wa = 5.

for resources due to the inability to recover the provided
(donated) resources because of other slices utilizations. This
is mainly due to applying the resource allocation algorithm
in the benchmark (EnterpriseVisor) in real-time without con-
sidering the future demands. From the other side, in our
proposed algorithm’s supply and demand resource alloca-
tion, the calculations are based on future forecasted resource
consumption (highlighted in yellow line). Therefore, there is
prior knowledge of whether there will be resource starvation
or not before deciding not to consider (drop) the resource
provider (doner) from being considered as a candidate for a
resource provider P̂{..}. The yellow line shows that the slice
utilization is kept the same as the original slice utilization
since the slice is not considered a slice provider after using

our proposed DLF. The same analysis is applied to the ATN-
PSD slice in Fig 10b. Meanwhile, in the MPLS slice, the
utilization in resource allocation with DLF is increased due
to extra resources provided to the requester to compensate the
lost resources from dropped ATN-OBY and ATN-PSD slices.
Fig 11 shows the count of times that the slice utiliza-
tion exceeds the 100% utilization for ATN-OBY (a) and
ANT-PSD in (b).
In Fig 11a, the ATN-OBY slice is overutilized 27 times

more than when using the original (without resource allo-
cation) and when using our DLF, confirming the proposed
algorithm’s effectiveness. However, in the ATN-PSD slice,
the resource allocation without DLF introduces overutiliza-
tion 30 times more than DLF. Fig 12 shows the slice utiliza-
tion for window 2 for all tjϵ̂yt in SL iϵWa (a = 2 and j =
51 to 100). Likewise, the graph shows the actual (origi-
nal) slice utilization without using the resource allocation
algorithm and without DLF.

In window 2, ATN-OBY at time steps 51 and 53 was a
resource provider when allocation without DLF was used.
This is due to its low utilization, β < 40% (blue box).
Nevertheless, at step 56, the slice requests a resource as
the utilization is higher than the upper bound, γ > 60%.
In addition, the ATN-OBY slice is a resource requester at
time step 66 using resource allocation with DLF. On the
other hand, the ATN-PSD slice at time steps 53 and 56 is
respectively a resource provider and resource requester when
using allocation without DLF (blue box) and with DLF
(orange box) respectively. In both ATN-OBY and ATN-
PD, the orange line shows that slice utilization exceeds the
full utilization of 100%, which causes the slice to starve
for resources due to the inability to recover the provided
(donated) resources that are in use. This is mainly due to
applying the resource allocation algorithm in the benchmark
in real-time without considering the future demands. The
yellow line indicates slice utilization using our proposed
DLF. Unlike the resource allocation without using DLF in
yellow, the resource allocation using DLF does not cause
overutilization (Bandwidth utilization). This is mainly due to
the slices being dropped from resource providers’ candidate
list P̂ {..} since demand and supply calculation for the next
50-time steps reveals resource starvation when using resource
allocation without DLF (the orange graph). On the other
hand, the LTE slice is a resource requester and the requested
resources in allocation without DLF are provided by the
ATN-OBY slice at time step 51 and from all other slices
at time step 53. This is obvious in the sharp drop in the
consumed resources at time step 53. Meanwhile, a higher
amount of resources were provided by theMPLS slice, which
is reflected in a higher rise in consumed resources when
using the allocation with DLF. The sharp increase in result
was to compensate for the number of resources that were
initially provided by the dropped slice (ATN-OBY slice and
ATN-PSD slice). Fig 13a and Fig 13b show the count of
times the slice utilization exceeds the 100% utilization for
the ATN-OBY slice and the ATN-PSD slice respectively.
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FIGURE 20. Slices utilizations in Wa = 6.

No slice overutilization was observed using the pro-
posed DLF compared to the original resource allocation
without DLF, confirming the effectiveness of the proposed

algorithms. Fig 14 shows slice utilization for window 3 for
all tjϵ̂yt in SL iϵWa (a = 3 and j = 101 to 150) with and
without DLF.
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FIGURE 21. Counts of overutilization in Wa = 6.

In this window, ATN-OBY and ATN-PSD slices pro-
vide resources from 100–105-time steps to LTE slice
without using DLF due to their low utilization β <

40%(blue box). Form other side, at time step 120, ATN-
OBY requests a resource in which LTE and MPLS slices
provide since ATN-OBY’s utilization are approaching 100%
utilization (in blue-original) and (in yellow with DLF). Con-
versely, due to its low utilization β< 40%, the MPLS slice
provides resources at time steps 104 and 106 to the LTE
slice. In this window, the ATN-PSD slice does not provide
any resources because the supply and demand allocation
calculations were based on forecasted resource consumption.
Therefore, there will is prior knowledge of whether there
will be resource starvation or not before deciding not to

consider (drop) the resource provider (doner) from being
considered as a candidate for a resource provider P̂{..}. The
yellow line shows that the slice utilization is kept the same as
the original slice utilization since the slice is not considered
a slice provider after using our proposed DLF. The same
analysis is applied to the ATN-OBY slice for time steps 100 to
120. The above resource allocation results show that resource
allocation using DLF (yellow line) reduced overutilization
compared to others. Figs 15a and Figs 15b show the count of
times the slice utilization exceeds the 100% utilization mark
for the ATN-OBY slice and ATN-PSD slice respectively.

From Fig 15a and Fig 15b, resource allocation with DLF
reduced the count of 100% overutilization for the ATN-OBY
slice and maintained the exact count compared to the original
ratio for the ATN-PSD slice. In contrast to the ATN-OBY
slice, the proposed resource allocation with DLF improved
the resource allocation by reducing the number of overuti-
lization counts as depicted in Fig 15b. Fig 16 shows slice
utilization for window 4 for all tjϵ̂yt in SL iϵWa (a = 4 and
j = 151 to 200) with and without DLF.
In Fig 16, the LTE slice is a resource requester since

γ > 60%, whereas the ATN-OBY and ATN-PSD slices
provide resources to the LTE slice at step 151 (due to their
low utilization of β < 40% in the blue box). This eventually
leads to resource starvation for ATN-OBY, and ATN-PSD
slices as depicted in the orange line in Figs 16a and 16b
respectively. In contrast, when using DLF, since the supply
and demand resource allocation were based on forecasted
resource consumption, both slices are exempted from the
resource providers’ list P̂ {..} as illustrated by the yellow line
in Figs 16a and 16b. Accordingly, there is prior knowledge
of whether there will be a resource starvations or not, before
deciding not to consider (drop) the resource provider (doner)
as a candidate for a resource provider. The yellow line shows
that the slice utilization is kept the same as the original
slice utilization since the slice is not considered a slice
provider after using the proposedDLF. Conversely, theMPLS
slice provides resource to the LTE slice at steps 153 and
155 respectively. On the other hand, regarding resource allo-
cation with DLF, ATN-OBY slice receives resources from
LTE slice at step 162. It is evident that the resource allocation
with DLF reduces the overall utilization and the count of
overutilization. Fig 17a and Fig 17b show the number of times
that the slice utilization exceeds the 100% utilizationmark for
ATN-OBY and ATN-PSD slices respectively.

From Fig 17a and Fig 17b, resource allocation using DLF
in ATN-OBY slice reduces the overutilization count com-
pared to the original and allocation without DLF. Likewise,
in the ATN-PSD slice, the allocation using DLF reduces
the overutilization to zero, similar to the actual utiliza-
tion. Fig 18 shows slice utilization for window 5 for all
tjϵ̂yt in SL iϵWa (a = 5 and j = 201 to 250) with and without
DLF.

In Fig 18, the ATN-OBY, ATN-PSD, and MPLS slices
(due to their low utilization β < 40% in the blue box)
provide resources to the LTE slice at time step 201 since
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FIGURE 22. Slices utilizations in Wa = 6.

LTE is a resource requester with γ > 60%. This eventually
leads to resource starvation for ATN-OBY, and ATN-PSD
as depicted in the red line in Figs 18a and 18b. Meanwhile,
for resource allocation using DLF, the MPLS slice only pro-
vides the requested resources and compensates the dropped
resources from ATN-OBY and ATN-PSD since the supply
and demand resource allocation calculations were based on

forecasted resource consumption; both slices are exempted
from the resource providers list P̂ {..}. This explains the low
utilization in ATN-OBY and ATN-PSD (in yellow aligned
with the actual utilization). On the other hand, ATN-OBY
also requested resources at time step 210 provided by LTE
slice. ATN-PSD also requested resources at time step 212,
which LTE also provided. Figs 19a and 19b show the count
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FIGURE 23. Counts of overutilization in Wa = 7.

of times that the slice utilization exceeds the 100% utilization
for ATN-OBY and ATN-PSD, respectively

From Fig 19, the resource management using DLF out-
perform resource allocation without DLF and improves slice
utilization for both resource providers ATN-OBY and ATN-
PSD slices. Fig 20 shows slice utilization for window 6 for all
tjϵ̂yt in SL iϵWa (a = 6 and j = 251 to 300) with and without
DLF.

In Fig 20, in Window 6 at time step 251 and without
DLF, the ATN-PSD and the MPLS slices (due to their low
utilization β < 40% in the blue box) provide resources to
LTE slice since γ > 60%. Meanwhile, using DLF and given
that the supply and demand resource allocation calculations
are based on forecasted resource consumption, ATN-PSD
slice was exempted from the resource providers list P̂ {..}
(Yellow line aligned with the actual) as in Fig 20b. Thus, the
MPLS compensates for the lost amount with extra resources.
This justifies the elevated utilization in MPLS for allocation
using DLF (Yellow line) in Fig 20d. Fig 21a and Fig 21b

show the count of times that the slice utilization exceeds the
100% utilization for the ATN-OBY slice and ATN-PSD slice,
respectively.

In Fig 21, ATN-PSD resource allocation significantly
improved overutilization compared to the allocation without
DLF. Fig 22 shows slice utilization for window 7 for all
tjϵ̂yt in SL iϵWa(a = 7 and j = 300 to 350) with and without
the DLF.

In windows 7, only the MPLS slice with β <40% provides
resources to LTE with γ >60%. Meanwhile the ATN-OBY
and ATN-PSD slices do not provide or receive any resources.
Fig 23a and 23b show the count of times that the slice
utilization exceeds the 100% utilization for the ATN-OBY
and ATN-PSD slices respectively.

In overall, DLVisor can improve resource allocation com-
pared to our benchmark (EnterpriseVisor) by

1- Reducing and eliminating slice overutilization in Enter-
priseVisor

2- Reduce resource starvation resulted from resource
donation performed by the resource management mod-
ule in the EnterpriseVisor

3- Improving the overall vSDN slice utilization

VI. CONCLUSION
In conclusion, the paper shows the development and imple-
mentation of methods for the slice (bandwidth) resource
management in vSDN. It was found that resource man-
agement and bandwidth resource allocation, particularly in
the current actual time, can lead to resource starvation due
to resource overutilization; especially given that the calcu-
lation of the resource supply and demand in the related
resource management solutions did not take future demands
and rapid changes in traffic profiles into account. Therefore,
proactive, intelligent resource management frameworks are
needed. Thus, accurate and robust resource (traffic) fore-
casting algorithms are crucial. Accordingly, DLVisor was
developed with a dynamic learning framework which com-
bines smooth-aided ML algorithms to learn (forecast) future
demands. It reacts and adapts to any significant changes in
traffic profile using concept changes detectors and significant
tests. The window-based methods were employed to reduce
or eliminate the fluctuations in the data traffic, which can
deteriorate the ML performance as per the previous stud-
ies. Finally, the improved dynamic learning framework are
applied to the resource management framework to provide
improved resources utilization and eliminate the overutiliza-
tion resulting from form the supply and demand calculations.
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