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ABSTRACT Camera localization involves the estimation of the camera pose of an image from a random
scene. We used a single image or sequence of images or videos as the input. The output depends on
the representation of the scene and method used. Several computer vision applications, such as robot
navigation and safety inspection, can benefit from camera localization. Camera localization is used to
determine the position of an object on the camera in an image containing multiple images in a sequence.
Structure-based localization techniques have achieved considerable success owing to a combination of image
matching and coordinate regression. Absolute and relative pose regression techniques can provide end-to-end
learning; however, they exhibit poor accuracies. Despite the rapid growth in computer vision, there has
been no thorough review of the categorization, evaluation, and synthesis of structures and regression-based
techniques. Input format and loss strategies for recurrent neural networks (RNN) have not been adequately
described in the literature. The main topic is indoor camera pose regression, which is a part of the camera
localization techniques. First, we discuss certain application areas for camera localization. We then discuss
different camera localization techniques, such as feature and structure-based, absolute and relative pose
regression techniques, and simultaneous localization and mapping (SLAM). We evaluated the frequently
used datasets and qualitatively compared the absolute and relative camera pose estimation approaches.
Finally, we discuss potential directions for future research, such as optimizing the computational cost of
the features and evaluating the end-to-end characteristics of multiple cameras.

INDEX TERMS Camera pose regression, absolute pose regression, indoor positioning, camera localization,
robot navigation, SLAM.

I. INTRODUCTION
Camera localization is a critical problem in robotics and
computer vision. Camera localization is necessary for many
applications such as mobile robot navigation and safety
inspection. Various localization procedures have been devel-
oped, owing to the significance of these issues. By applying
image descriptors to 3D scene point clouds using structure-
from-motion (SfM), point-based localization techniques can
identify correlations between the local features retrieved from
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an image and image descriptors, as shown in Figure 1.
This collection of 2D-3D matches allows the camera pose
to be determined. However, this low-level matching proce-
dure does not provide reliable and accurate results in cer-
tain situations such as motion blur, fewer textured surfaces,
considerable changes in lighting, occlusions, and repeated
structures. Various machine-learning algorithms have been
successfully applied to camera localization problems, includ-
ing scene coordinate regression forests (SCoRF). SCoRF
generates an initial set of camera pose hypotheses based on
the projected 3D location of four pixels in an input image, and
is then refined using a random sample consensus (RANSAC)
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loop. Although these algorithms are helpful, researchers must
match the input images with depth maps during time-limited
training.

The development of large-scale indoor localization [1],
[2] systems has become critical in computer vision research
over several years. Accurate pose data are crucial for various
applications including indoor robot navigation [3]. Although
the sensors used for localization vary depending on the
requirements and equipment, cameras are the most pop-
ular because of their low cost, ease of integration, and
high output quality. Cameras are useful in various applica-
tions including large-scale smartphone-based localization in
indoor environments. Several schemes have been proposed
for localizing cameras. However, its performance is poor
when it is used for large-scale indoor pose estimation. This
characteristic is an uneven motion blur, which is common
in indoor environments [4]. Applications, such as localiz-
ing historical scenes and estimating the starting position of
robots, require single-image localization methods. In many
applications such as indoor mobile robot, cameras capture
image sequences rather than recording individual images.
Substantial research has been conducted on image sequences
for visual localization [5].

FIGURE 1. Large scale indoor camera localization from [6].

Mobile robot navigation [7], [8], and image-based indoor
positioning are essential aspects that have recently attracted
significant interest from academia and industry. A compre-
hensive overview of indoor camera localization is necessary.
Determining camera localization is required to enhance aug-
mented reality. Therefore, camera localization has a wide
range of applications. Image-based camera localization is
the most commonly used feature. Camera localization using

images is a broad research field. We strive to include rel-
evant studies and comprehensively categorize image-based
camera-localization methods. The indoor camera localiza-
tion system inputs can come from stationary or moving
cameras and can be a single image, sequence of images,
or videos. Finally, the system performs camera localization.
However, structure-based localization techniques can yield
earlier results. Structure-based and regression-based localiza-
tions are the two main types of camera localizations. This
essay analyzes the quantitative and qualitative findings and
suggests directions for further investigation.

A. APPLICATION AREAS
To the best of our knowledge, there has been no comprehen-
sive analysis of camera localization applications. Augmented
reality (AR) [9] is widely used for image generation. Using
three-dimensional (3D) virtual objects outside the physical
world can enhance real-time images and create a perfect
connection between virtual and real images. Potential appli-
cations include education, gaming, and medical and military
trainings. It is essential to obtain six degrees-of-freedom for
the camera, which requires accurate positioning. Typically,
a mobile camera is used for AR-related technologies that are
used indoors because it prevents human micro-movements
and limb movements when compared with a person-moving
mounted camera. Human activities and indoor camera local-
ization may improve the augmented reality game experience
and have several uses, such as three-dimensional reconstruc-
tion. A location module commonly obtains information from
light detection and ranging (LiDAR) [10], and video sensors
are required to locate self-driving cars. Robots and vehicles
require in-depth and accurate positional knowledge for sens-
ing, mapping, scheduling, and managing. Robotic or automo-
tive devices measure the present pose regarding the starting
pose using sensor data, and then employ amatching algorithm
and navigation to position themselves and navigate. Because
outdoor items may be larger than those found indoors, the
localization accuracy for navigation may be worse. Real-
time localization may be crucial for autonomous driving.
Robotic applications that require visual input from cam-
eras include object localization and help with conventional
routine assessments for performance assurance and security
inspections. Robot walking involves adaptively controlled
trajectory. Visual information can follow pathways, identify
barriers, and recognize signs in the surrounding area in order
to find a robot and avoid obstacles.

B. RESEARCH GAP
Reviews of camera localization techniques that have already
been published do not specifically compare their approaches
to deep neural networks and recurrent neural networks
in terms of performance and input types, such as sin-
gle images, image sequences, and video streams. In addi-
tion, some pose estimation techniques are based on image
matching or retrieval. In this study, we extracted the image
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closest to the reference image or obtained the matching cor-
respondences from a sequence of images. We also included
regression- based localization, which uses an image regres-
sion technique to regress the camera pose. This study catego-
rized image-matching methods for estimating camera poses
as structure-based pose estimation. Regression-based and
structure-based approaches to recurrent deep neural network
analysis, including performance analysis, are also included in
our study.

C. PAPER ORGANIZATION
In Section I, we describe the most common camera
localization applications. In Section II, we introduce the
camera localization. Related studies on indoor camera local-
ization are presented in Section III. The recurrent neural net-
work (RNN) architecture is discussed in Section IV. Indoor
camera localization techniques are examined in detail in Sec-
tion V. Several techniques for camera localization include
point, depth, synthetic image, feature, regression-based, and
SLAM methods. We explain the subtopics in Section V
based on a single image, an image sequence, and a video
stream. It includes a qualitative comparison of the absolute
and relative pose regression in Section V, and summarizes
the performance of the camera localization technique.We dis-
cuss the previously used benchmark and popular datasets in
Section VI. In Section VII, we discuss the constraints on the
indoor camera localization. In Section VIII, we discuss future
research directions, and conclude the paper.

II. PROBLEM IDENTIFICATION
We plan to understand the concept of camera localization.
We subjected an image to a depth camera to obtain the coor-
dinates in 3D space and determine camera localization. The
camera localization problem determines the pose in a known
environment that matches a query image that fits the model
with dataset images. Monocular cameras [11] and depth cam-
eras that combine RGB and RGB-D images are used for the
camera pose estimation problem. Each pose p includes the
camera location and rotation. We can represent the changes
in the position and orientation. A 3 × 3 rotation matrix,
four-digit quaternion, and Euler angles can be translated into
each other to express the rotation. We independently selected
the position and orientation representations using three-digit
3D coordinates x and a three-digit normalized quaternion q.
Thus, translation and processing could be used to define the
ground truth p and estimate the pose vectors p.

p = (x, q) and p̂ = (x̂, q̂) (1)

The evaluation procedures for the localization tasks also
varied according to the localization process. To obtain a
more accurate estimation result that matches the ground-truth
result, when assessing the efficiency of camera pose estima-
tion, we must contrast the pose determined by the estimating
technique with the actual pose. The standard method for cal-
culating the pose is structure-from-motion (SfM), because the
camera position is associated with the coordinates of the 3D

model. Figure 2 shows a schematic of an indoor positioning
[12], [13], [14], [15] application.

FIGURE 2. Sketch map of indoor positioning application [12].

Absolute and relative pose errors are two standard mea-
surement measures for camera-localization techniques. For
datasets that directly offer ground-truth poses, the difference
between the estimated and ground-truth poses is used to
evaluate the pose accuracy of the method. Absolute pose error
is a useful tool for assessing the performance of simultaneous
localization and mapping (SLAM) [16] systems. The relative
pose error helps to determine the extent to which the optical
odometry system deviates. When a single image was used as
the algorithm input, the absolute pose error was calculated
by adding the ultimate inaccuracies of the position and ori-
entation. The Euclidean distance between the calculated and
real-world positions was used to calculate the position error.
The absolute orientation error, an angle in degrees, represents
the minimum rotational angle required for the estimated and
actual orientation. The traces of the existing and estimated
rotation matrices, which can be alternatively described using
the real and estimated quaternions, can be used to compute the
backward rotation error. A sequence of time-stamped images
was inputted into the algorithm. The relative pose error was
calculated by combining the relative position and orientation
errors with the absolute pose error. We calculated the position
error using the Euclidean distance between the calculated
close location and the position relative to the ground truth.
The lowest angle deviation rate in degrees between the esti-
mated relative quaternion and the actual relative orientation
is the computation of the orientation inaccuracy when using
a quaternion representation. Statistical data metrics are fre-
quently used to report position and rotation errors.

III. RELATED WORKS
Indoor Camera localization has achieved tremendous success
over the last decade and several studies have been published
on this topic. There are several subcategories of cameras
localization. In this paper, we discuss several studies in the
following subcategories. Figure 3 shows a picture of the
most influential published papers in the past five years that
we have included in our study. The highest number of pub-
lished papers on point-based and image-based localization
in 2020 was ten, while the lowest number was seven in
2018. In feature-based localization, ten published articles
were from 2019, and seven were from 2021. For regression-
based, there were 18 published papers from 2022 and thirteen
from 2020. In the SLAM, the highest number of articles were
thirteen from 2022, and the lowest was nine from 2020 As
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FIGURE 3. Last five years research contribution of indoor camera localization.

shown in Figure 3, regression-based research has recently
become comparatively more popular than structure-based
methods, which inspired us to study RNN-based camera-pose
regression.

Based on simultaneous localization and mapping (SLAM)
[17], the authors reviewed indoor camera localization tech-
niques based on simultaneous localization and mapping.
Based on the SLAM model [18], the localization process
is classified into known and unknown environments, and
real-time or offline mapping procedures. Structure-based and
retrieval-based pipelines were empirically contrasted by [19],
who mathematically modelled an entire pose regression sys-
tem. This review concludes that, despite the performance gap
between them, it might improve the absolute pose regres-
sion approaches to compete with relative pose regression.
In [20], the authors described research on SLAM focus-
ing on fundamental localization techniques based on deep
learning. Researchers have described camera-pose estima-
tion techniques that require an image input, an algorithm
pipeline, and broad ideas to increase the efficiency of such
processes. In [21], different observed data were used in
direct and indirect image-positioning systems, particularly
the influence of features on location under changes in the
illumination. This is achieved by classifying diverse and
extensive input data into dimensional, contextual, andmerged
types. Reviews that have already been written frequently
concentrate on excellent SLAM systems or specific indoor
camera-localization methods. Current camera pose estima-
tion methods do not compare their approaches with deep
neural networks in terms of datasets, loss functions, and input
formats. Some pose-estimation techniques focus on image
matching and retrieval. Researchers have assessed and cat-
egorized image-matching methods for camera-pose estima-
tion to address the lack of a description of such matching.

TABLE 1. Summary of most related reviews of indoor camera localization.

This study examines regression and structure-based strate-
gies for recurrent neural network research, including loss
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function analysis. This study also demonstrates the effec-
tiveness of localization-emphasis formulations for various
models. Table 1 summarizes the significant reviews on indoor
camera localization.

The ability to simultaneously generate a map and estimate
an indoor camera’s pose in an unknown environment, simul-
taneous localization and mapping (SLAM) algorithms are
the subjects of extensive research. At first monocular SLAM
(MonoSLAM) [29] system proposed in 2007, and visual
SLAM (V-SLAM) quickly became famous as a research area.
The Semi-direct Visual Odometry (SVO) [30] technique is
quick and doesn’t require calculating several descriptors, uses
semi-direct visual odometry. Because this method does not
require feature extraction for every frame [31], it may operate
with high frame rate. It can therefore used in low-cost embed-
ded systems, such as the embedded platform under consider-
ation [30]. Because of the correlation of short-term data, the
SVO’s accuracy is limited [32]. SVO does not use loop clo-
sure or global optimization strategies. A direct approach that
provides a semi-dense reconstruction is the large-scale direct
monocular SLAM (LSD-SLAM) [33]. The LSD-SLAMmap
estimate algorithm, which has a lesser accuracy than others
like PTAM and ORB-SLAM [31], is primarily based on
pose-graph optimization [32].

Themain component of the V-SLAM is the Oriented FAST
and Rotated BRIEF (ORB-SLAM) introduced by Mur-Artal
[31]. It is a well-known system that employs the feature point
technique. Scale drift was an issuewith themonocular camera
used as the visual sensor in ORB-SLAM [31]. The first
SLAM system with monocular, stereo, and RGB-D cameras,
ORB-SLAM2 [34], was developed in 2016 in response to
ORB drawbacks. The most advanced feature-based method
is the ORB-SLAM2 [34] method, built on the ORB-SLAM
algorithm [31]. Tracking, local mapping, and loop closing
are three concurrent threads it uses to function. Yu et al. [35]
and Abouzahir et al. [36] deployed the ORB-SLAM method
on several CPU and GPU-based systems. The direct sparse
odometry (DSO) technique [37] combines a straightforward
strategy with a sparse reconstruction. The DSO algorithm
takes into account a recent frame window. It carried continu-
ous optimization by using a local bundle adjustment to opti-
mize both the inverse depth map and the keyframes window.

IV. RNN TECHNIQUES OVERVIEW
A recurrent neural network (RNN) is a network-based mem-
ory space and loop that deals with sequential data. The
RNN architecture is at the heart of long short-term mem-
ory (LSTM). Figure 4 shows the simple RNN architecture.
At each time iteration t the hidden state ht is:

ht = σh(Wxhht +Whhht−1 + bh) (2)

where σh is the activation function, Wxh is the weight matrix
between the input and hidden layers,Whh is the weight matrix
between the two hidden layers, and bh is the bias vector of the

hidden layer. The network output yt is

yt = σy(Whyht + by) (3)

where σy is the output layer activation function, Why is the
weight matrix between the hidden layer and the output, by is
the bias vector of the output layer.

FIGURE 4. The architecture of simple RNN [38].

A. LONG-SHORT TERM MEMORY (LSTM)
The LSTM is an RNN that prevents gradients from dis-
appearing. The LSTM uses a technique known as a gate.
Can learn long-term dependencies gates indicate whether
data in a sequence should be retained or discarded. The
three gates of LSTM are the input, forget, and output. Sev-
eral advanced recurrent architectures, including LSTM [39]
and gated recurrent units (GRU), have addressed the afore-
mentioned RNN. LSTMs effectively solve sequence-based
problems with long-term constraints, whereas GRU, a much
simpler LSTM architecture, was recently developed and
implemented in machine learning. The control flow of an
LSTM is similar to that of a recurrent neural network. As it
travels, it receives input and relay information. The mecha-
nisms that occur within the LSTM cells differ. The first gate
of LSTM was forgotten. This procedure determines whether
data are retained or discarded. The sigmoid function trans-
ports the data from the previous hidden layer and the current
input data. Next, we examine the output gates. The output gate
determines the hidden gate’s concealed state. It is important
to remember that the hidden state includes information from
previous inputs. The hidden state was also used to make the
predictions. Figure 5 shows the LSTM architecture.

FIGURE 5. The architecture of the LSTM [38].

B. BI-DIRECTIONAL LSTM (BI-LSTM)
Bidirectional LSTMs are LSTM models that use existing
data and the future of a single time step as inputs. At each
moment, we can preserve knowledge from both the past
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and future in Bi-LSTM. A bidirectional RNN [40] is a
bi-LSTM concept that analyzes sequence inputs in the front
and rear directions by using two hidden layers. Bi-LSTMs
connect the two hidden layers to a virtually identical out-
put layer. Bidirectional long-term memory (Bi-LSTM) is
an approach for storing sequence information from forward
and backward directions in a neural network. Bi-LSTM is
a sequential processing system for two LSTMs process-
ing the input ahead and the other processing it backwards.
Bidirectional LSTMs (Bi-LSTMs) are LSTM systems that
incorporate input data from a single time step in the past
and future. In Bi-LSTMs, information can be stored both in
the past and in the end. Bi-LSTM [41] is commonly used
for activities requiring sequencing. Subsequently, we built
a bidirectional long short-term memory (LSTM) network.
The conventional LSTM update equations simultaneously
compute the forward- and backward-level outputs. Figure 6
shows the Bi-LSTM architecture.

FIGURE 6. The architecture of the Bi-LSTM [42].

C. GATED RECURRENT UNIT (GRU)
The GRU is a relatively new recurrent neural network that
follows LSTM. GRUs [39], [43] reject cell states in favor of
data transfer via hidden states. There are two gates: one for
resetting, and the other for updating. The update gate operated
as an LSTM network gate. Consequently, input gates operate
accordingly. It determines which data should be deleted and
which should be re-entered. The reset gate is another gate
that is used to determine the amount of past information that
should be lost. GRUs are faster than LSTMs, because they
contain fewer tensor operations. Figure 7 shows the GRU
architecture.

V. OVERVIEW OF INDOOR CAMERA LOCALIZATION
A. POINT-BASED
The point-based indoor camera localizationmethod estimates
the camera pose directly using traditional photogrammetry
strategies, such as Perspective-n-Point (PnP) [45]. The PnP
problem is the camera pose of the domains comprising 3D
space points n. When n is 3 ≤ n < 6, it is nonlinear PnP.
When n ≥ 6, the linear PnP [46] estimates the camera pose
of an unknown environment by using real-time video and
online data. This is known as simultaneous localization and

FIGURE 7. The architecture of the GRU [44].

mapping (SLAM) [47]. PnP problem recovers each feature
of the 3D information through point clouds. The limitation
of these methods is their dependence on point clouds through
SfM, a three-dimensional (3D) reconstruction of the indoor
environment. Camera localization depends on known and
unknown territories. A particular case of PnP for n=3 is
called Perspective-Three-Point (P3P). P3P refers to the mini-
mum number of control points that produce a finite number of
solutions [46]. In [48], the authors investigated a PnP problem
with an uncertain focal length by using points and lines. They
explored the PnP problem with an indefinite focus length by
using radially distorted images [49]. In [50], a generalized
pose-and-scale approach was proposed as the minimum solu-
tion. In [51], an angle restriction was incorporated, and for
each P3P, it derived a compact bivariate polynomial equation.
Subsequently, it presented a generic approach using iterations
for a PnP problem with an uncertain focal length.

B. CNN-BASED
Convolutional neural networks (CNN), a deep-learning-
based camera localization method [52], [53], perform
convolution operations on RGB images to estimate the cam-
era pose. The first attempt to use CNNs for direct camera
pose regression was performed using PoseNet [54]. PoseNet
computers with fully connected layers use GoogleNet as a
framework for feature extraction [55], [56]. The proposed
pose-regression architecture comprises three components: an
encoder that creates the visual encoding vector, localizer
that produces the localization feature vector, and regressor
that regresses the pose. The encoder, localizer, and regres-
sor are the three main components of the PoseNet archi-
tecture, as shown in Figure 8. In Bayesian-PoseNet [56],
researchers introduced PoseNet to account for uncertainty
in pose estimation The LSTM-PoseNet [57] architecture
reduces dimensionality and improves localization accuracy.
Pose regression is based on the hourglass architecture [58].
Figure 9 shows the LSTM-PoseNet architecture. Other stud-
ies have focused on frameworks for improving camera local-
ization. They combined global poses with relative poses
by predicting comparative poses from the image sequence
[59]. This strategy focuses on the geometrically important
features [60]. They achieved pose regression through mul-
titasking learning, which combines information from the
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associated activities. The VidLoc architecture uses CNN-
RNN networks to constrain the network using the temporal
smoothness of camera motion [61]. In [62], recurrent neural
networks (RNNs) were incorporated into a nonlinear struc-
ture, dramatically improving performance.

FIGURE 8. PoseNet architecture [54].

A deep learning-based system usually requires large anno-
tated images to achieve high accuracy [63]. To overcome this
challenge, a 3Dmodel was used to generate synthetic images.
To develop a map of benchmarks that approximates the dif-
ference between synthetic and original images in the pattern
representations [64]. They evaluated feature search images
against synthetic images in a database, using synthesized
images to create a dataset of geolocation images [65]. Their
research shows a deep architecture that uses synthetic images
for training, and the recurrent neural network-based PoseNet
directly estimates camera localization. BIM-PoseNet uses
synthetic image sequences to estimate the camera pose
to improve localization performance [66], [67]. This pro-
cess reduces the localization performance by accounting for
the range changes between synthetic and original images
[68]. The localization performance degradation problem was
solved using a domain-matching approach [69].

The domain adaptation process uses labelled data from
different primary domains to achieve good results. Recently,
deep learning-based models have been proposed to address
the problem of domain matching between the input and
output domains for object identification, segmentation, and
classification [70]. These approaches aim to align feature
mapping between the input and output domains. Recent stud-
ies have sought to increase the capacity of deep-learning
models to match the environment [71]. Some current systems
attempt domain matching in the pixel space [72]. Researchers
have proposed methods for partitioning images into texture
representations, and domain-specific and domain-invariant
structures. Many studies have suggested changing synthetic
images to narrow the domain gap and improve the efficacy
of image translation strategies [73]. Several researchers have
studied domain adaptation for semantic segmentation. Amul-
tilevel adversarial network exploits the structural similarities
between source and target domains [74]. It introduces entropy
loss to minimize poor trust predictions for the target domain
[70]. A multilevel adversarial network [71], AdaptSegNet
[75], was developed to exploit the structural similarities
between source and target domains. Many current initia-
tives have addressed the domain-adaptation process, such as

2D-to-3D correspondence-based [75] and image-search-
based localization [76].

C. DEPTH IMAGE-BASED
In image-based indoor camera localization, depth cameras
assign the position of each pixel to an image [77]. An offline-
trained regression forest was used to regress the position
in a new indoor environment [78], [79], [80] using training
examples to update the learned model dynamically. A scene
coordinate regression forest (SCoRF) was trained to explic-
itly predict the correspondence between any image pixel and
points in a scene’s 3D world coordinate frame. Typical fea-
ture detection, description, and matching can be performed
without forest support. RGB-D photos with a recognized
camera pose trained using SCoRF in a specific scenario. The
depth maps and indoor camera locations adequately compute
the scene coordinate training labels for each pixel. A typi-
cal regression method uses these labels to learn the forests.
SCoRF uses straightforward and rapidly added RGB and
depth image pixel-comparison characteristics [77]. Changes
in DSAC [81] and DSAC++ [82]. DSAC and DSAC++

were optimized and exhibited excellent accuracy. Depth
image-based techniques use depth cameras to create depth
maps of indoor environments.

D. SYNTHETIC IMAGE-BASED
Creating synthetic images improves camera pose regression
by using a 3D model created from authentic images [83].
In coarse visual localization using images, researchers com-
pared natural and artificial images based on features derived
from a CNN using a similarity metric to compare natural
and synthetic images based on the information extracted
from a CNN [65]. Using known camera poses, researchers
classified actual images based on their similarity to synthetic
images. The BIM-PoseNet [66] model trains artificial images
extracted from a 3D model to predict camera position and
orientation from authentic images. By storing natural and
synthetic images, they considered results of less than 2m.
Synthetic images were then used to simulate the uncertainty
of the pose estimation using Bayesian BIM-PoseNet [66].
However, compared with systems that use authentic images,
the predicted camera poses of these techniques are less accu-
rate. The requirement of 3D reconstruction using the SfM
approach is a limitation [61]. However, this study had the
problem of relying on depth cameras, which makes them
unsuitable for most smartphone cameras [81]. The lack of
precise localization and inability to interpolate the exact cam-
era position hampers the results [65].

E. FEATURE-BASED
Pose estimation based on features and regression is the
primary method used for camera localization. A structural
feature-based camera pose estimation method recovers the
camera position and orientation by establishing a corre-
spondence between the test image features and structural
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FIGURE 9. LSTM-PoseNet architecture [57].

FIGURE 10. Direct 2D-to-3D matching [88].

features [84] of the 3D visual model using structure from
motion (SFM) to create a 3D point cloud model (PCM). The
feature-based method depends on various data regarding the
3D scene model compared with strategies that regress pose
as a function of image object features. After establishing
a correlation between the 3D point cloud model and query
images and recovering the camera pose, the perspective-
n-point (PnP) algorithm is traditionally used to localize the
camera in random sample consensus (RANSAC) [85] loops.

1) MATCHING BASED
We used feature descriptors in matching-based localization
approaches to establish a relationship between the object
and query images. We usually assign each 3D point one
or more visible local descriptors by the 3D scene model.
We must extract consistent and distinct characteristics to
build a connection between the images and environmental
representations from a query image. Therefore, a localization
process based on matching descriptors is transformed into
a feature descriptor matching task. Usually, the distances
between descriptors are compared to check features from
the scene model. The image-based localization of large-
scale cameras was previously considered to be difficult for
location determination [86]. The image that was most sim-
ilar to the database was used to find the searched image.
However, the localization accuracy does not require appli-
cations that require precise camera positioning. Researchers
are increasingly proposing and using three-dimensional (3D)
scene models to predict poses and achieve higher accuracy
[87]. Direct matching may seem straight forward, in that a
match can be made by directly matching the 2D feature of the
query image with the point of the 3D model. Figure 10 shows

the direct 2D-3D matching architecture. The main problem
with natural matching approaches is the identification of
sufficiently high-quality correspondences to allow for fast
and efficient pose estimation. Researchers have devoted con-
siderable efforts to the development of matching algorithms
[88]. However, 3D point matching and 2D image features do
not indicate whether the order of a person’s visual elements
is superior to that of the others.

Considering all features in a search image is time con-
suming [89]. A supervised, trained random forest is gener-
ated by assigning information for multiple features to the
same 3D point. In [90], a productive and practical pipeline
is proposed. Quantitative feature descriptors were used to
speed up the 2D-3D matching. It maintains the quantiza-
tion loss in 3D-2D matching methods. Similar or repetitive
feature points in a large-scale environment always lead to
location determination errors. To overcome this difficulty,
a more effective localization system using global contextual
information is required [91], [92]. In [92], a reliable and
tractable outlier suppression strategy is used to handle several
outliers. Improving 3D localization using vertical coordinates
[80]. Instead of simply enhancing the fitting accuracy, a new
method was used, as described in [93].

To match 3D points in RGB-D images with the scene’s
point cloud model, The iterative closest point approach (ICP)
is typically used when descriptors have with the scene’s
point-cloud model. Extract properties such as shape and
density without directly accessing the spatial information.
To construct a 3D-3D relationship by comparing descrip-
tors [94], the hand creates low-level 3D geometric feature
descriptions. 3D-ShapeNet uses 3D deep learning to create
point cloud shapes [95]. In [96], a reconstruction technique
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was proposed that combined local features within a narrow
domain to produce a complete descriptionwhileworkingwith
unresolved data hindered by various interference patterns and
inequalities.

2) HIERARCHICAL MATCHING-BASED
Researchers have analyzed each 3D point for a query feature
using direct matching algorithms; however, this approach
is insufficient. Many researchers’ attempts to improve the
speed and accuracy of matching still exhibit weak robustness
[97] compared with recurrent local features [98]. To improve
localization accuracy while maintaining computing costs
below acceptable limits. It is necessary to ensure that the
computational capacity does not exceed that of the model,
and that it can process a certain number of repetitive features.
A hierarchical localization model was proposed [99]. They
searched for the smallest subset of the scene model by using a
retrieval-based strategy [46].We can estimate the correlations
in this subset and perform real-time localization on large
datasets.

To solve this image-search problem, a system can find sim-
ilar images in a database when an image is queried. Previous
research has also used the activation function as an image
descriptor in the CNN layer, which appears in the empirical
retrieval results, to demonstrate the benefits of learning-based
features [100]. The training dataset was used to create a 3D
model using the unlabeled images [101]. Additionally, the
search technique used to find combinations of strongly pos-
itive and negative images for training influenced the results.
This result encourages the use of locally aggregated match
kernels to exploit specific image regions and provide discrim-
inative image representation [102]. TheRemap techniquewas
introduced to address the aggregation process [103]. It uses
the discriminating power of regions, where the Kullback
divergence [104] values are used to investigate a situation
in which region-based features are combined with multiple
resolutions.

In contrast to direct matching methods that use local fea-
tures [105], we entered matching problems by using a search
image and a series of similar scene images. The matching
rule states that local features are extracted and compared
to identical 3D feature points in a scene model. After key-
point detection, the feature descriptors were extracted from
the displayed vital points. Local features sensitive to scale
changes, rotations, and viewpoint variations, while remaining
constant. A detection regression problem was used to derive
covariance constraints that can be used for automatic learn-
ing. By introducing new concepts in the legal field, canonical
features extend the covariant restriction [106], increase the
robustness of the learning process, and reduce its sensitivity
to initialization settings.

The detected vital points were more stable when the detec-
tion was postponed to a later phase. We identified significant
locations using local feature representations along the spa-
tial and depth directions, and relative and absolute feature

estimations [107]. A unique technique, DGC-Net [108], takes
advantage of recently developed optical-flow methods. New
method for finding image-pair correspondence with signif-
icant changes [109]. Develop a framework for learning a
conditioned feature and unique score used by an attentional
mechanism to select the best matches. It presents a dataset
with camera poses related to the InLoc model for extensive
indoor navigation [110], [111] and dense feature extraction.
This plan was derived from several detailed inspections.

In contrast to techniques focused on matching, where
matching descriptors are used to create 2D-3D correspon-
dences explicitly, localization technologies are based on
scene coordinate regression, where 3D scene coordinates are
regressed directly from the query image. To predict the 3D
scene coordinates of pixels, they can use a random forest or
a neural network. Researchers have proposed a probabilistic
selection-based differential RANSAC [112] and integrated
a camera localization process for end-to-end learning. The
trainable localization process outperformed the competition.
To facilitate unsupervised learning, [113], [114] geometric
constraints are applied to multiple views. After training,
a hybrid classification regression forest can estimate the scene
IDs and coordinates [115]. They described scene coordinate
regression [116] as a combination of two tasks: the detection
of object instances and the regression of local coordinates.
Instead of embedding individual scene information into net-
work parameters, SANet [117] is a technique for obtaining
the representation of a scene from specific reference images
and 3D coordinates. Table 2 lists the pose errors in structure-
based camera-localization research. In addition to camera
pose regression, these findings demonstrate the effectiveness
of the structure-based localization techniques.

F. REGRESSION-BASED
In this section, we describe the regression-based estimation
of camera pose, divided into relative and absolute camera
pose regression, using a recurrent neural network or image
retrieval to extract the pose of a reference image.

1) ABSOLUTE CAMERA POSE REGRESSION
CNN use absolute camera pose regression (APR) techniques
to predict the camera pose of an input image [118] by implic-
itly expressing a scene using network weights. They adhere
to the same process: a base network extracts the absolute
features [119] that are then embedded in a high-dimensional
space. The camera pose in the scene is then regressed using
this embeddingmethod. The training loss function and under-
lying base architecture are where existing methods differ.
Three steps of absolute camera pose regression are shown
depending on whether the network input is an image, image
sequence, or video.

ARP through single image PoseNet [54] is the first
method used to successfully and directly regress the camera
pose from a single image. PoseNet uses similar expressions
for the encoder, the localizer, and the regressor, uses a single
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TABLE 2. The pose error of published structure-based approach on the 7-scenes dataset.

image as the input for deep absolute pose regression [122],
[123]. The overall pose result, which combines the position
and orientation, is the output. This technique uses a sin-
gle image to extract high-dimensional features and presents
them as features, with poses represented sequentially as a
six-dimensional vector. PoseNet [54] was the first study to
recover camera poses [124] from RGB images by training the
CNNs. PoseNet was accomplished without requiring addi-
tional techniques such as keyframes to estimate the pose.
PoseNet outperformed the SIFT-based SfM technique, which
failed abruptly when the training sample size decreased to
below a certain threshold. PoseNet has been employed to
create methods that improve the localization accuracy, rear-
range the network, and change the loss function from a single
image [125]. All the approaches using fixed loss employed
the same method. Researchers have used stochastic gradient
descent with an objective loss function to concurrently learn
the position and orientation. A Bayesian-PoseNet [56] using
Bernoulli distributions was developed to enhance localiza-
tion performance and understand model uncertainty. The real
benefit of Bayesian-PoseNet [56] is that it can be extended
to a Bayesian model that can estimate localization uncer-
tainty. To achieve this, we added dropout layers following
the final output layer and sub-net to obtain the stochastic
pose samples. Because it may predict position errors using
uncertainty, the evaluation revealed a significant correlation
between uncertainty estimation and location error to increase

the re-localization precision of the direct PoseNet for indoor
[126] and outdoor environments [127].

Hourglass-PoseNet [58] adds a second component to
encode the rich and comprehensive information from
coarse object structures and a third component to recover
fine-grained object features to further increase localization
accuracy. Instead of optimizing the hyperparameters for
every training dataset, SVS-PoseNet [128] developed a new
approach that relies on a classification system that employs
the same parameters and performs better than the Cambridge
Landmark dataset [54]. The training strategy was individ-
ually tuned for the translation and orientation. PoseNet’s
orientation expression is not unique. The computation of the
sparse frames requires additional time. To efficiently mini-
mize the sparsity of sampled poses, BranchNet [129] devel-
oped a novel two-branch network to address these issues. This
network concurrently learns the orientation and translation
representations. The encoder, decoder, and regressor are the
three parts of hourglass-PoseNet [58]. It employs a modified
version of ResNet34 [130] as an encoder-decoder, which is
comparable to the encoder of the pipeline. BranchNet [129]
uses an alternative design to that of PoseNet [54]. Following
the fifth inception module, two distinct branches are used
to predict the orientation and translation vectors. The loss
function used throughout is the same as that used in PoseNet
[54]. However, there are issues with the choice of the balance
elements. Because of the joint loss that the loss function
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utilizes, careful adjustment is required, particularly in a
unique scene. Geometric PoseNet [131] provides learnable
weight reduction to balance performance and improve robust-
ness [132] for better localization [133], [134].

Unlike PoseNet, this technique maintains scalability and
resilience without changing the fixed-balancing-factor hyper-
parameters of the loss function. Fixed Euclidean loss utilizes
balanced hyperparameters, and can independently learn the
location and orientation of an item from an image. However,
determining their weights is expensive. This might mutually
constrain the loss by training the estimate of the homoscedas-
ticity task uncertainty [56] to represent the uncertainty terms
and residual multiple regression analysis to reflect the regres-
sion performance [135]. In addition, a learnable geometric
loss function [136] can be applied in various ways to add
additional modules or functionalities, while obtaining geo-
metric [137] restrictions. Before calculating the regression
coordinates, the attentionmodule added byAtLoc [60] directs
the network to concentrate on the critical region of the input
images, that is, a discrete, static, and stable area. AdPR
[138] uses a discriminator network in addition to adversarial
learning.

The 2048-dimensional fully connected layer of PoseNet
was regressed using ResNet34, which is the encoder net-
work used by AtLoc [60]. This may regress the position and
increase accuracy. AdPR [138] uses the ResNet-18 network
to extract features, because it performs better than VGG16
and AlexNet. To generate images that resemble the source
image and to determine the camera pose more precisely,
APANet [139] uses an adversarial network. To minimize the
impact of the uncertainty of dynamic objects in dynamic
contexts, PVL [140] implements a prior guided dropoutmask.
A dropout module is introduced before the feature [141]
extractor encoder to output various uncertainty possibilities,
which might increase the pose resilience under challenging
circumstances, such as illimitation and perspective shifts.
The feature map is reweighted after extraction using a self-
attention module. Synthetically generating training data is
another way to boost the localization performance. Geo-
PoseNet [142] and SPP-Net [143] use the same loss function.
However, the SPP-Net uses a unique DNN architecture based
on spatial pyramid max-pooling units.

APR through image sequences is another method for
regressing the absolute camera pose [144]. Complete pose
regression [145] and additional task constraints were com-
bined to form the auxiliary learning. APR and extra loss
comprise most of the loss functions in the auxiliary learn-
ing methodologies. The aforementioned approaches have
been applied to obtain a perfect camera pose. In a pipeline,
researchers may employ the relative pose regression loss.
Deep neural networks still have disadvantages compared with
conventional structure-based techniques [146], [147]. There-
fore, some studies have suggested the use of absolute pose
regression with image sequences [148]. Auxiliary learning
uses image sequences. In contrast to approaches that employ

a single image, auxiliary learning learns the final pose by esti-
mating the relative pose using additional constraints. Globally
consistent pose predictions may be required to enhance local-
ization performance. According to MapNet [149], adding
loss terms from the image sequence as a geometric restric-
tion might improve the localization performance. Similar to
MapNet, other techniques include auxiliary learning, which
employs a weight coefficient factor to minimize the sum of
the relative pose losses between image sequences and the
absolute pose loss per image.

To improve the performance ofAtLoc using a single image,
AtLoc+ [60] integrates temporal constraints to simultane-
ously learn complete pose loss and relative pose loss. Map-
Net and AtLoc+ use the same loss function. DGRNet [114]
proposed a novel architecture that includes a fully connected
fusion layer (FCFL) to extract features from the images.
Cross-transformation constraints (CTC) and mean square
error (MSE) were added to the loss function to enhance
regression performance. This method can be used to obtain
visual odometry (VO) [150], and the localization results
impose geometry-aware temporal and other limitations when
using the image sequences. Additionally, DGRNet can access
the network to obtain semantic segmentation results [151].
An image sequence regression network frequently extracts
features using ResNet-50 [130] with some modifications.

APR through video is use video clips can substitute
images or sequences of an image in pose regression by adding
the temporal uniformity requirement [152], [153]. Mobile
devices can quickly access videos and other sensor data. It is
possible to synchronize videos with input data such as visual
odometry [154], IMU [155], [156] sensors such as accelerom-
eters and gyroscopes, andGNSS data by aligning timestamps.
Similar to only one image or image sequence-based ARP
work, video-based ARP approaches use CNN feature extrac-
tion and a localizer regressor to recover the rotation and orien-
tation and incorporate multiple additional data, as in videos.
VidLoc is a convolutional neural network and recurrent neural
network-based model used to smooth pose estimation from
image or video inputs and regress the camera pose. We con-
structed a network using a bidirectional LSTM component
to represent temporal features with memory elements, a few
gates, and GoogleNet [55] inception to retrieve the visual
features without fully connected layers [157]. Researchers
can use a bidirectional LSTM network with two hidden states
to process forward and backward directions [158]. They used
this method, with only one hidden state, obtain the camera
pose. The weighted translation and orientation errors from
the LSTM [159] output are used to calculate the VidLoc [61]
network loss.

MapNet [149] and MapNet+ [149] employ a global aver-
age pooling layer to extract features using ResNet34 [130],
and have the same network design. Visual odometry loss and
complete pose loss were computed to increase the accuracy
of MapNet estimates. To further enhance pose regression,
the method uses GNSS and IMU data. The self-supervised
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TABLE 3. Qualitative comparison of absolute and relative camera
localization.

learning method combines labelled and unlabeled data
through visual odometry or sensors and exhibits enhanced
performance in testing settings. It uses videos as input by
VidLoc, MapNet, and MapNet+, some of which combine
unlabeled data to enhance supervised learning. To regress
the camera pose and output the probability of the pose esti-
mate, VidLoc included a bidirectional RNN. To improve
the efficiency of regression, MapNet and MapNet+ use
visual odometry in the loss function. Table 3 summarizes
the qualitative comparisons based on the published statistical
regression-based techniques. The prime factors for evaluating
camera localization performance are robustness and accu-
racy. The localization performance improved with increased
robustness and flexibility in response to changes in the scene
environment.

2) RELATIVE POSE REGRESSION
The coordinate system determines the mapping from the
pixels in the object images to the camera poses, which are
learned by using an absolute camera-pose regression model.
Thus, bounded coordinate transfers that offer learnable phys-
ical geometric information are realized through cross-scene
learning. Relative camera pose regression [161], [162], [163],
[164] techniques produce reference images. For the relative
camera pose, regression may be computed using the pre-
vious image retrieval method [165], which first determines
the image in the database that is most similar to the query
image, and then calculates the absolute pose of the target
image after predicting their respective relative poses. NNnet
[59] initially proposed an image-retrieval-based relative pose
regression approach. The approach inputs a search image and

an image database containing ground-truth poses. Using a
sequence of images, we regressed the relative pose using a
Siamese network with two customized ResNet34 [130] nodes
and a constant-loss function. The network branch developed
a feature extractor that can locate the closest neighbor image
of the query image. We can then obtain the absolute pose of
the query image by combining the relative pose [166] with
the ground-truth pose of the neighboring image. RelocNet
[167] further enhances NNnet [59] by applying geometric
relative pose loss and continuous metric learning to learn
global image features with a camera pose to improve the per-
formance. Relative pose loss employs rotation and translation
matrix representations to understand the difference between
two pose matrices. The performance limitation of previous
retrieval-based relative regression algorithms that use the
same features for the retrieval and regression modules was
addressed by CamNet [168], which provides a novel pipeline
divided into three phases. The phases included coarse, fine,
and relative-pose regressions. Each phase is based on Siamese
architecture with three branches. Regression is more accurate
and scalable because of its coarse-to-fine design.

In analyzing the earlier relative pose regression approach
based on image retrieval in [169], a new framework for
computing the absolute pose was proposed, which included
fundamental matrices and a modified RANSAC [170].
Amatching score map for an additional regression, that is, the
important matrix, was trained using the Siamese ResNet34
[130] network. They optimized the fundamental matrix with
two 9D vectors by using the Euclidean distance loss function.
Several systems have attempted to retrieve the relative pose
using artificial neural networks to avoid extensive database
collection and drawn-out test periods. A relative NN [171]
suggests that an end-to-end system can regress the relative
pose between two cameras by using two input images. They
used a Siamese network of two branches to conduct regres-
sion using a fixed Euclidean loss, which worked well with the
robot image dataset [172]. AnchorNet [173] defines anchor
points as visible landmarks to learn the relative anchors and
offsets of the query image and defines anchor points as visi-
ble landmarks. The multitask model identifies the offsets of
classified anchor points and categorizes the query image to
which particular anchor points are located. Retrieval-based
techniques use a multistage strategy, with the retrieval phase
serving as the central element of the process to achieve
absolute and regressed relative poses. Another method for
implicitly regressing a closed stance within a network is the
use of CNN-based algorithms.

Table 4 shows the pose error of regression-based camera
pose estimation. We also investigated the most prominent
indoor localization approach. Most participants exhibited
temporal uniformity throughout their journey and con-
tained significant errors that made them prone to motion
blurring. Although the LSTM-PoseNet [57] and VidLoc
[61] approaches produced substantially smoother trajecto-
ries, they did not produce consistent trajectory outputs.
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TABLE 4. Summary of published absolute and relative camera localization accuracy on the 7-scenes dataset.

BIM-PoseNet [66] predicts a smoother and more consistent
trajectory than previous approaches.

• Critical Analysis: The camera poses are estimated using
a fixed loss function, which takes time to minimize the
loss of a dataset because it uses a balance factor to
various weighted components. Later, it suggested using
a learnable loss that outperforms fixed loss methods by
automatically balance the pose losses with the addition
of homoscedastic uncertainty. Some approaches sug-
gested reprojection loss, GPoseNet loss, fixed loss, and
learnable loss methods to include different information
formats. In image sequence regression networks, the
modified ResNet-34 and ResNet-50 are widely used
to extract features. Relative and absolute pose losses
improve regression in MapNet, VlocNet, and AtLoc.
The semantic restriction is added to the loss function by
VlocNet+. DGRNet combines CTC and MSE to deter-
mine loss. Videos are used as input by VidLoc and Map-
Net, and some of these algorithms use unlabeled data to
improve supervised learning. When regressing the cam-
era’s 6DoF pose, VidLoc incorporates a bidirectional
RNN and outputs the probabilistic for pose estimation.
MapNet+ primarily incorporates visual odometry
into the loss function to enhance the efficiency of
regression.

G. INDOOR SLAM ALGORITHMS
The ability to simultaneously generate a map and estimate an
indoor camera’s pose in an unknown environment, simulta-
neous localization and mapping (SLAM) algorithms are the
subjects of extensive research. Because of their roots in a
small, inexpensive camera system that ensures their advan-
tages over other camera-based SLAM techniques, visual-
based SLAM methods play a crucial role in this area. The
simplicity of sensor construction, reduced size, and the low
cost of visual-based SLAM algorithms make them partic-
ularly attractive. Visual SLAM (V-SLAM), visual-inertial
SLAM, and RGB-D SLAM are the three primary divisions
of the visual-based approaches. Using the deep learning
application paradigm as a starting point, researchers address
the application position of deep learning to use VSLAM.
At first monocular SLAM (MonoSLAM) [29] system pro-
posed in 2007, and V-SLAM quickly became famous as a
research area. The underlying theoretical study on classic
V-SLAM has reached a mature stage before the appearance
of relatively mature V-SLAM solutions like Oriented FAST
and Rotated BRIEF SLAM (ORB-SLAM) [31], Semi-direct
Visual Odometry (SVO) [30], and direct sparse odometry
(DSO) [37]. Most of the ensuing effort focused on improv-
ing suitable scenes [174] and expanding sensors [175]. The
study of the conventional V-SLAM method has increasingly
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become application-focused a pose regression using images
as input and pose as its output.

1) VISUAL SLAM
The V-SLAM algorithm became popular after the researcher
proposed it in [176]. They also presented several SLAM
algorithms on visual sensors, including Parallel Tracking and
Mapping (PTAM) [177], which made it possible to carry
out many SLAM tasks in parallel, and MonoSLAM [29],
which is based on monocular cameras. Based on PTAM,
proposed Oriented FAST and Rotated BRIEF (ORB-SLAM)
[31]. V-SLAM has been proposed as a direct approach
called Large-Scale Direct Monocular SLAM (LSD-SLAM)
[33]. Direct Sparse Odometry SLAM (DSO-SLAM) [37] has
been suggested because of its high accuracy and efficiency.
Figure 11 shows the timeline of most representative visual
SLAM.

FIGURE 11. Timeline of most representative visual SLAM.

• Monocular SLAM: Davison et al. [29] suggested
MonoSLAM as the initial monocular SLAM algorithm.
Initializing the system is the first phase in the algo-
rithm. The state vector is then updated while considering
a steady-speed motion model. The extended Kalman
filter (EKF) estimates the real-time camera movement
and environment structure. Vincke et al. evaluated the
MonoSLAM algorithm’s implementation in [178] by
merging many cameras and a multi-processor architec-
ture. The initialization process of MonoSLAM causes
a known target that is only sometimes reachable. They
used neither loop closure detection nor global opti-
mization strategies in this algorithm. Finally, it simply
reconstructs a map containing features, which could be
problematic for applications that need a more precise
reconstruction.

• Parallel Tracking and Mapping: The Parallel Tracking
and Mapping (PTAM) [177] technique is another inno-
vative approach. PTAM uses the correspondences to cal-
culate the camera pose to minimize re-projection error.
Several features can be represented on the map thanks
to PTAM. This method also performs global optimiza-
tions. The map produced by PTAM does not consider
loop closure, making it better suited for locating land-
marks. It has a non-negligible energy consumption and
causes user intervention to establish the basic keyframes,
making it inappropriate for inexpensive embedded
devices [179].

• Dense Tracking and Mapping: The concept of Dense
Tracking and Mapping (DTAM) was first forth by
Newcombe et al. [180]. A dense mapping algorithm and
a dense tracking algorithm are essential components.
The first stage computes the data expenditure volume
representing the average photometric error over many
frames calculated for the inverse depth of the current
frame to estimate the depth values. DTAM calculates
the movement control in the dense tracking step by
matching the current frame with an image from a dense
model presented in a virtual camera. Although the algo-
rithm produces a precise and thorough reconstruction,
the amount of density reconstruction impacts how much
computing power is required to store and analyze the
data. DTAM does not use global optimization or loop
closure techniques.

• Semi-Direct Visual Odometry: The Semi-direct Visual
Odometry (SVO) [30] technique is quick and doesn’t
require calculating several descriptors, uses semi-direct
visual odometry. Consumer computers can produce
300 frames per second, and an unmanned aerial vehi-
cle (UAV) can produce 55 frames per second. SVO
makes using a probabilistic mapping technique and
direct pixel correspondences. Because this method does
not require feature extraction for every frame [31],
it may operate with high frame rate. It can therefore
used in low-cost embedded systems, such as the embed-
ded platform under consideration [30]. Because of the
correlation of short-term data, the SVO’s accuracy is
limited [32]. SVO does not use loop closure or global
optimization strategies.

• Large-Scale Direct Monocular SLAM: A direct
approach that provides a semi-dense reconstruction is
the large-scale direct monocular SLAM (LSD-SLAM)
[33]. To determine the pose of the sensor, this SLAM
reduces the photometric error. The LSD-SLAM then
completes the depth map estimation step’s keyframe
selection. The depth map of the algorithm is initialized
if a new keyframe is added; otherwise, the depth map of
the currently selected keyframe is improved via some
small-baseline stereo comparisons. The LSD-SLAM
inserts the new keyframe into the map at this point and
optimizes it using a pose-graph optimization technique.
This method uses loop closure and global optimization
to create large-scale maps in real-time. In [181], Boikos
and Bouganis used FPGA technologies to build the
LSD-SLAM method. To handle the tracking thread’s
more expensive activities, the designers of [181] con-
structed two processors on the FPGA. The LSD-SLAM
map estimate algorithm, which has a lesser accuracy
than others like PTAM and ORB-SLAM [31], is primar-
ily based on pose-graph optimization [32].

• ORB-SLAM 2: The main component of the V-SLAM is
the Oriented FAST and Rotated BRIEF (ORB-SLAM)
introduced by Mur-Artal et al. [31]. It is a well-known
system that employs the feature point technique. Scale
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drift was an issue with the monocular camera used as
the visual sensor in ORB-SLAM [31]. The first SLAM
system with monocular, stereo, and RGB-D cameras.
ORB-SLAM2 [34] was developed in 2016 in response
to ORB drawbacks. It incorporated a lightweight posi-
tioning system that employed VO to track the unmapped
regions and match map points to achieve zero-drift posi-
tioning. The most advanced feature-based method is the
ORB-SLAM2 [34] method, built on the ORB-SLAM
algorithm [31]. Tracking, local mapping, and loop clos-
ing are three concurrent threads it uses to function.
Yu et al. [35] and Abouzahir et al. [36] deployed the
ORB-SLAM method on several CPU and GPU-based
systems, and they assessed the accuracy of each thread
on each platform.

• Direct Sparse Odometry: The direct sparse odome-
try (DSO) technique [37] combines a straightforward
strategy with a sparse reconstruction. The DSO algo-
rithm takes into account a recent frame window. It car-
ried continuous optimization by using a local bundle
adjustment to optimize both the inverse depth map and
the keyframes window. Although Gao et al. [182] sug-
gested an update of the DSO technique that includes
loop closure recognition and pose graph optimization,
the original version of this approach does not contain
universal optimization or loop closure.

2) VISUAL INERTIAL SLAM (VI-SLAM)
• Multi-State Constraint Kalman Filter: Stereo and
monocular cameras can both be used to create the
multi-state constraint Kalman filter (MSCKF) [182].
Because of the MSCKF’s low computing cost [182] and
reputation as one of the best filter-based algorithms in
the literature, embedded implementations are a good
fit for this approach. Delmerico and Scaramuzza [183]
employed various hardware platforms depending on
CPU architectures to build visual-inertial SLAM algo-
rithms. Figure 11 shows the timeline of most represen-
tative visual inertial SLAM.

FIGURE 12. Timeline of most representative visual SLAM.

• Open Keyframe-Based Visual-Inertial SLAM: The
optimization-based approach Open Keyframe-based
Visual-Inertial SLAM (OKVIS) [184] uses keyframes.
It creates an objective function out of the IMU infor-
mation, and re-projection terms enable the algorithm
to jointly optimize the weighted re-projection defect
and the temporal error from the IMU. It implemented
the OKVIS algorithm using various CPU platforms in

Delmerico and Scaramuzza’s [183] work. Nikolic et al.
[185] assessed the performance of the OKVIS algorithm
using an FPGA-CPU architecture.

• Robust Visual Inertial Odometry: Another filter-based
approach that uses the EKF is the Robust Visual Inertial
Odometry (ROVIO) technique [186]. Like other filter-
based approaches, it propagates the state using IMU data
and updates the filter with camera data. The prediction
and update phase uses the patches to get the innova-
tion term. It suited the ROVIO technique for embed-
ded implementations because it delivers high accuracy
and robustness with minimal resource usage [183]. The
method, however, turned out to be less accurate and
more susceptible to per-frame process time than other
algorithms, including VI-DSO [187].

• Visual Inertial ORB-SLAM: The previously presented
ORB-SLAM method [34] provides the foundation for
the Visual-Inertial ORB-SLAM (VIORB) technique
[188]. The VIORB algorithm, which first used map
reuse in a visual-inertial approach, offers good predic-
tive performance [189] and memory use. The authors
in [32] suggested the ORB-SLAM3 method based on
the ORB-SLAM2 and VIORB algorithms. Compared
to VIORB, the system’s predecessor, initialization times
are less.

• Monocular Visual-Inertial System: A monocular visual-
inertial state estimator is the Monocular Visual-Inertial
System (Mono-VINS) [190]. The first step of the mea-
surement process that extracts and tracks features is
the pre-integration of the IMU information in-between
frames. The algorithm executes an initialization step
to supply the input data for a non-linear optimiza-
tion problem that minimizes the optical and inertial
errors. It combined the IMU measurements and feature
observations with a re-localization and pose-graph opti-
mization module implemented by the VINS. They can
use the method while considering stereo and binocular
approaches [191].

• Visual-Inertial Direct Sparse Odometry: The DSO [37]
algorithm, which has already been given, is the foun-
dation of the Visual-Inertial Direct Sparse Odometry
(VI-DSO) [187] method. The approach seeks to min-
imize a nonlinear dynamic model-based energy func-
tion incorporating photometric and inertial errors. The
VI-DSO expands the DSO considering inertial infor-
mation compared to the original DSO and other algo-
rithms. Unfortunately, the startup process could be faster
because it depends on bundle change [32]. The approach
does not detect loop closures or perform global opti-
mization, and no embedded implementations exist in the
literature.

• ORB-SLAM3:Amethod that integrates theORB-SLAM
and VIORB techniques is called the ORB-SLAM3
algorithm [192]. An active map used by the tracking
thread and non-active maps needed for re-localization
and location recognition is maintained by
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ORB-multi-map SLAM3’srepresentation, known as
Atlas. This algorithm

uses loop closures and global optimizations, and they can
apply it to monocular, stereo, and RGB-D cameras. However,
the performance of ORB-SLAM3 online was shown to have
many things that the authors could have improved [175].
Although the algorithm in [193] performed well, it could only
evaluate some sequences and produced incorrect outdoor
sequence estimates.

3) RGB-D SLAM
SLAM systems based on RGB-D sensors comprise a depth
sensor and a monocular RGB camera, enabling SLAM sys-
tems to immediately obtain depth information with practical
accuracy in real-time using affordable hardware. Since it uses
a lot of memory and power, this method is best suited to
indoor settings [194]. Since the SLAM receive the depth
map directly from the RGB-D devices. Most RGB-D-based
devices use the ICP algorithm, which uses iterative closest
points to locate the sensor. The benefits of RGB-D systems
include providing dense depth maps and color image data.
Figure 13 shows the timeline of most representative RGB-D
SLAM.

FIGURE 13. Timeline of most representative RGBD SLAM.

• KinectFusion: The first RGB-D sensor-based algorithm
to function in real-time was the KinectFusion algorithm
[195]. In maximum medium-sized spaces, the Kinect-
Fusion algorithm can map robots effectively in Robotics
[195]. Yet, when loop termination is not performed,
drift errors accrue [196]. In [197], Nardi et al. suggest a
KinectFusion implementation and evaluate it on several
CPU- and GPU-based systems. Bodin et al. [198] used
the framework proposed by [197] to develop the Kinect-
Fusion on two separate CPU and GPU architectures.

• Dense Visual Odometry: Keyframe-based algorithms
are used in the dense visual odometry SLAM
(DVO-SLAM) method developed by Kerl et al. [199].
It reduces camera motion and photometric inaccu-
racy when gaining depth values and pixel coordinates
between keyframes. The algorithm calculates an entropy
value for each input frame compared to a predefined
threshold. Even though loop detection employs a dif-
ferent threshold value, the same approach is applied.
A SLAM graph represents the map, with camera poses
as the vertex and keyframe transformations as the edges.

This algorithm performs loop closure identification
and is resistant to textureless situations. The technique
does not undertake a detailed map reconstruction; the
map representations depend on a presentation of the
keyframes. Table 5 shows the latest SLAM for indoor
environment.

• SLAM++: The object-oriented SLAM algorithm
SLAM++ [200] uses previously observed scenes with
recurring objects and structures, like a classroom.
Besides performing loop closure detection, SLAM++

further improves scene description by considering the
object’s repeatability. Yet, the algorithm works best with
scenes that are already well-known.

• RGBDSLAMv2: One of the most well-known RGB-D-
based algorithms, the RGBDSLAMv2 [201], depends
on feature extraction. The ICP algorithm estimates pose
after performing the RANSAC method to predict the
transition between the matched features. For RGBD-
SLAMv2 to operate properly, the sensor must move
slowly and consume a lot of computation [196].

• Critical Analysis: The feature-based technique ORB-
SLAM performed better than the LSD-SLAM in terms
of absolute translation RMSE and relative rotation
RMSE. The LSD-SLAM and ORB-SLAMmore diverse
indoor environment.

H. MILTI-CAMERA LOCALIZATION
Araar et al. [202] proposed a system with multi-cameras for
indoor localization. The experimental findings showed the
usefulness of their system in attaining indoor localization, and
the authors comprehensively explained its implementation.
The study claims that it offers a ‘‘low-cost’’ solution, but it
does not specify the actual cost of the suggested system. Ince
and Kim [203] presented a novel technique for simultaneous
localization and mapping (SLAM) in a multi-camera system
without calibration. The proposed approach integrated col-
laborative scene mapping with independent object tracking
for each camera view. They described the proposed algorithm
and its implementation using experimental findings on a real-
world dataset.

Sewtz et al. [204] presented a multi-camera localization
for dynamic scenes. Their proposed solutions address occlu-
sions, moving objects, and shifting illumination. These
strategies include feature-based and deep learning-based
approaches, which assess the effectiveness of each using data
obtained from a real-world scenario. The findings show that
the proposed methods produce high precision and robustness,
making them suitable for applications such as robotics and
surveillance. Liu et al. [205] present a multi-camera localiza-
tion for indoor environments. This paper thoroughly explains
the system design, details of the calibration procedure, and
algorithms for object tracking and position estimation. How-
ever, a thorough assessment of the system, including the
accuracy of the positioning findings under various circum-
stances, the system’s resistance to noise and occlusions, and
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TABLE 5. Some latest slam for indoor environment.

TABLE 6. Common datasets used for indoor camera localization tasks.

the computing effectiveness of the algorithms, is lacking in
this work.

VI. COMMON DATASET
The lack of adequate datasets is a problem for the success
of deep learning-based camera localization. Recently, many
public databases have become available for indoor local-
ization activities. This study presents examples of datasets
commonly used for indoor localization using a deep-learning
approach. We focused on the image processing. However,
there is a growing trend in the research community to compile
lists of these datasets. Only a few public indoor databases,
such as Microsoft Researchers 7-Scenes [211], TUM LSI
[57], InLoc [6], and InteriorNet [212] are available. The
few image processing objects used for localization have con-
tributed to the development of public databases. A complete
list of public databases is available online. The 7-Scenes
dataset comprises seven separate interior scenes and is a
commonly used RGB-D dataset. The RGB-D images were
captured using a 640 × 480 resolution handheld Kinect cam-
era and linked to the ground-truth camera positions captured
using Kinect fusion [213]. A detailed three-dimensional (3D)
model was also applied to each scene. Each scene comprises
multiple sequences of tracked RGB-D camera frames that are
split into training and testing data. In [214], a hybrid image
dataset for object recognition that includes both natural and
artificial images was developed.

We used the publicly available 7-Scenes [211] dataset
to evaluate recurrent neural network [215], [216] related

algorithms. Indoor camera localization is challenging
because it contains many blurred images and exhibits motion-
blurring [217]. The 7-Scenes are adopted to evaluate the
proposed method. 7-Scenes [211] have a very high number
of images in a small spatial extent; hence, they are more
suitable for indoor camera localization. Some studies used
the InteriorNet [212] dataset for model training and eval-
uation. Imperial College London released this dataset in
2018. The dataset comprised 10 K scenes, 1.7 M rooms,
and 5M frames. RGB, depth, and semantic instances are
available for this dataset. The image resolution of the dataset
to create photorealistic images and related ground-truth data.
640 × 480 pixels. An end-to-end pipeline was suggested
in produced various trajectory types by adjusting the linear
velocity ratio and angular velocity, including the open and
closed shutter positions in a single-trajectory view. To create
motion-blurred renderings, many renderings were averaged
from intermediate poses. The InteriorNet dataset uses path
tracing [62] to provide high-quality image renderings. Path
tracing is a Monte Carlo technique that renders images with
an accurate global illumination. One feature that it mim-
ics from the actual world is motion blur, and the renderer
simulates camera motion blur [218]. The common datasets
used for the camera indoor localization listed in Table 6.
Table 7 comprise the publicly accessible benchmark dataset
for evaluating the original studies’ stated SLAM algorithms.

Datasets directly provided ground truth poses. The dif-
ference between predicted and ground truth poses measured
pose accuracy. To evaluate sophisticated camera localization
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TABLE 7. Common datasets used for indoor SLAM.

algorithms, large-scale multidimensional datasets that
include multiple collection platforms, environments, and
images such as illumination, viewpoints, and scene changes
are required. Table 6 lists the popular datasets used in camera
localization tasks, including 7-Scenes [211], TUM-LSI [57],
and InLoc [6].

The TUM RGB-D database [127] comprises some image
sequences with depth and color images captured using a
Microsoft Kinetic within indoor settings on two separate
platforms. The ICL-NUIM [129] is another significant bench-
mark dataset. Eight artificially created it used indoor scenar-
ios in the dataset to evaluate 3D reconstruction, which focuses
on RGB-D methods. It produced the sequences through a
handheld RGB-D camera.

The EuRoC standard dataset [22] is frequently utilized to
evaluate visual-inertial SLAM algorithms. It provided eleven
stereo image sequences and IMU data from the data gathered
in two indoor situations. The TUM MonoVO is an exten-
sively used dataset to investigate monocular systems [29].
It includes various photometrically adjusted indoor sequences
captured using two non-stereo monocular cameras. The TUM
VI dataset [131] is made publicly available for evaluating
visual-inertial systems. It offers some scenes shot indoors
using a stereo camera and an IMU. Because the sensing
system is portable, it could not determine actual ground truth
for all the sequences using the TUM MonoVO.

VII. LIMITATIONS
However, there are still some difficulties in image-based
indoor-camera localization. The localization accuracy must
include the training costs and offline training. It is diffi-
cult to view online, and is not functional. It can perform
online localization in different contexts and achieve excellent
indoor performances. The most challenging aspect of the 3D
structure-based localization approach is that it is difficult
to adjust to scenes with changes in the environment and
repeating elements, textures with less surface, illumination
changes, motion blur, and significantly reduced viewpoint
adjustments and localization results.

PoseNet results in a reduction in the intensity of noisy
things when responding to them. The ConvNet has identified
this dynamic object as inappropriate for indoor localization
[54]. The LSTM-PoseNet model could not get accurate
reconstructions of SfM from the TUM-LSI dataset [57].

In most images, there is no texture, so SfM and COLMAP
fold repeating structures on top of each other. Traditional
visual SLAM systems cannot expand maps to unknown terri-
tories, unlike MapNet and MapNet+.

LSTM-PoseNet [57] and VidLoc [61] approaches pro-
duced smoother trajectories, but they did not produce con-
sistent trajectory outputs. BIM-PoseNet [66] predicts a
smoother andmore consistent trajectory than the PoseNet and
LSTM-PoseNet.

Using a constant loss function to estimate the indoor
camera pose utilizing a balance factor to balance different
weights requires considerable time to minimize the loss.
Later, researchers proposed a learnable loss that performs
better than fixed loss strategies by effectively minimizing the
pose losses with homoscedastic uncertainty.

DGRNet can get the localization result by using image
sequences and imposing geometric-aware time constraints.
Moreover, DGRNet could use the network to obtain semantic
segmentation results. Further to the localization results DGR-
Net might access the network to obtain semantic segmenta-
tion results.

One significant problem is tracking failure of the large
indoor environments [225]; the algorithms still need to iden-
tify and correlate features in the currently received image,
leading to inaccurate pose estimation. Authors have been
investigating innovative approaches to the SLAM issue to
address this challenge. Recent research proposed integrating
recurrent neural networks and spectral methods to improve
the system’s resilience [226].

The assumption of fixed scenarios, whereas the real world
has dynamic surroundings, is a significant problem that
reduces the robustness of SLAM algorithms and may lead
to tracking and reconstructing failures [227]. Modern SLAM
algorithms consider computing resources. The current topic
brings up the open issue of memory consumption by map
storing.

Map sparsity is one of the storage issues that affect resource
use. Dense or semi-dense maps provide a more accurate
representation of the scene, but this characteristic has impli-
cations for resource utilization. The sparse map uses less
power than a semi-dense or dense model [228].

The performance of several deep-learning algorithms
can be improved when applied to the indoor environ-
ment. These include PoseNet, Bayesian-PoseNet, LSTM-
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PoseNet, VidLoc, AtLoc, and InLoc. For the 7-Schenes
dataset, these algorithms produced good results. The best
SLAM algorithms are PL-SLAM, CubeSLAM, DymSLAM,
TIMA-SLAM, FSD-SLAM, and DSP-SLAM. These algo-
rithms provide good results for TUM RGB-D, TUM
MonoVO, and TUM VI datasets in indoor environments.

VIII. CONCLUSION
We have made remarkable progress in various indoor camera
localization studies. This paper addresses the main sections
and compares the different techniques. Many structure-based
studies have been based on 3D point characteristics obtained
from 2D scene images. We limited this challenging scenario
to texture-less surfaces, less lighting, and fewer changes in
weather. However, multiple features can improve the local-
ization. Deep learning can be applied to solve features from
many cameras end-to-end and speed up feature computa-
tions. An essential step in developing an accurate positioning
system is learning to enhance the positioning performance
under challenging situations. Applications that employ cam-
era positions will become lightweight in the future, making
them more rapidly and easily applicable to small-time com-
puting devices.

We also provided an overview of the primary visual-based
SLAMmethodologies and a concise description and in-depth
assessments of several of the most notable techniques.
Researchers can use the offered article as a starting point
for their initial analysis and analyze each criterion in light of
their application. Also, we examined the key benchmarking
datasets for evaluating V-SLAM and visual odometry algo-
rithms, presented some significant difficulties, and proposed
future approaches for the subject.

IX. FUTURE WORK
Some sensors, such as LiDAR, Wi-Fi, IMU, and Bluetooth,
can gather more detailed localization information. We should
overcome the difficulty of heterogeneous features from many
sensor data to achieve more precise positioning. We need to
develop a more accurate and potent localization system by
effectively combining the data from many sensors as one of
the future directions.

Real-world scenes sometimes significantly depend on the
semantics of features. The semantics of the features makes
a new approach. Semantic data simplify the exclusion of
dynamic object attributes that affect localization outcomes.
In the future, a semantics model should be helpful for a more
accurate indoor positioning system.

A multi-camera setup may improve robotic applications
and offer a 360-degree panoramic field of view. One potential
future research direction is to develop a deep learning system
to analyze the features of many cameras end-to-end and speed
up feature calculation time.

Analyze the nuclear decommissioning situations in subse-
quent publications using the suggested criteria. Researchers
will choose the optimum SLAM algorithm by considering the

various qualities and particularities of such an environment
and application.
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