
VOL. 21, NO. 1, 2022, 48-53
www.fke.utm.my/elektrika

ISSN 0128-4428

48

Bird Sound Detection with Binarized

Neural Networks

Muhammad Mun’im Ahmad Zabidi
*
, Wong Kah Liang, Usman Ullah Sheikh,

Shahidatul Sadiah and Muhammad Afiq Nurudin

School of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

*
Corresponding author: munim@utm.my

Abstract: By analysing the behavioural patterns of bird species in a specific region, researchers can predict future changes in

the ecosystem. Many birds can be identified by their sounds, and autonomous recording units (ARUs) can capture real-time

bird vocalisations. The recordings are analysed to see if there are any bird sounds. The sound of a bird can be used for further

analysis, such as determining its species. Bird sound detection using Deep Neural Networks (DNNs) has been shown to

outperform traditional methods. DNNs, however, necessitate a lot of storage and processing power. The use of Binarized

Neural Networks (BNNs) is one of the most recent approaches to overcoming this limitation. In this paper, a bird sound

detection architecture based on the XNOR-Net variant of BNN is used. Performance analysis of XNOR-Net in terms of the

number of hidden layers used was performed, and the configuration with the highest accuracy was built. The system was tested

using Xeno-Canto and UrbanSound8K datasets to represent bird and non-bird sounds, respectively. We achieved 96.06 per

cent training accuracy and 94.08 per cent validation accuracy. We believe that BNNs are an effective method for detecting

bird sounds.

Keywords: binarized neural networks, bioacoustics, bird sound detection, convolutional neural networks, deep learning

© 2022 Penerbit UTM Press. All rights reserved

Article History: received 8 February 2022; accepted 1 April 2022; published 20 April 2022.

1. INTRODUCTION

Researchers can predict future changes in the environment,

ecology, and population by analysing the behavioural

patterns of bird species in a specific area [1]. Many birds

can be identified by their sounds, and autonomous

recording devices (ARUs) can capture bird vocalisations

in real-time [2].

The vast amounts of data generated by ARUs have

outstripped humans’ ability to manually interpret it. As a

result, a variety of automatic methods of bird detection and

classification have emerged. The use of bioacoustics and

machine learning now allows for the estimation of

population densities and the location of the target species

[3]. Bird detection and classification algorithms are

proposed and evaluated in regular challenges such as

BirdCLEF and DCASE.

Deep neural networks (DNNs) have consistently

outperformed traditional methods for bird detection since

2016 [4,5]. However, DNNs require lots of storage and

processing power. DNNs are especially difficult to use in

low-cost embedded devices (e.g., Raspberry Pi) due to

added power constraints. Binarized Neural Networks

(BNNs) are one approach to addressing this deficiency.

These are neural networks that use binary weights and

activations rather than floating-point numbers. In this

paper, we investigate the use of BNNs for the task of

detecting bird sounds.

2. BACKGROUND

2.1 Bird Sound Detection

Sound is a vibration that travels through the air and

conveys information such as musicality, audibility or

inaudibility, softness, or loudness, and so on. Sound has a

diverse frequency content and temporal structure, resulting

in a wide range of features. Acoustic bird detection and

classification algorithms share many similarities with

audio event detection (AED) and speech recognition

algorithms. However, due to the variability of bird sounds

according to species, sex, age, and season, detecting

whether a bird sound is present in a sound recording

presents unique challenges.

A common method for pre-processing bird sounds

before any kind of analysis is to apply the Short-Time

Fourier Transform (STFT) to produce spectrograms,

which are visual representations of sounds. Spectrograms

can be used for feature extraction before applying

traditional machine learning algorithms such as random

forests [6] and support vector machines [7]. Bird detection

can be improved by applying morphological filtering on

the spectrograms [8] or by converting it to Mel-

spectrograms or Mel-frequency cepstral coefficients

(MFCC) [9]. For DNNs, spectrogram generation becomes

an essential step as deep learning requires images or

image-like inputs. Figure 1 shows the call of the Asian koel

((Eudynamys scolopaceus) in various forms.

Muhammad Mun’im Ahmad Zabidi et al. / ELEKTRIKA, 21(1), 2022, 48-53

 49

 (a) (b)

 (c) (d)

Figure 1. Various representations of the sound of the

Asian koel (Eudynamys scolopaceus): (a) time series (b)

STFT spectrogram, (c) Mel spectrogram, and (d) Mel-

frequency cepstral coefficients (MFCC)

2.2 Convolutional Neural Networks

Many new intelligent applications rely on DNNs

especially in the form of convolutional neural networks

(CNNs) to achieve high accuracy in image recognition

tasks [10]. CNNs detect bird acoustic events after sounds

have been converted into spectrograms.

A basic artificial neural network (ANN) consists of three

main layer types: input layer, hidden layers, and output

layer. Each node inside the three layers is known as a

neuron. The operation of each neuron is the summation of

input value multiplied with weight w. This operation is also

known as multiply-accumulate (MAC). There is a bias

offset b which serves the purpose of ensuring that there

will be activation in the neuron even when all the input

values are zero. The output is then computed using the

sigmoid or hyperbolic tangent (TanH) activation function.

When the number of layers exceeds one, the ANN is

classified as a DNN. When the hidden layers use

convolutions, the DNN transforms into a CNN.

The performance of the CNNs comes at the expense of

high memory and energy needs. This has hindered the use

of CNNs on embedded and mobile devices with limited

storage capacity and processing power. This has motivated

TinyML, a field of study that explores machine learning

models that can run on small, low-powered devices.

Two small CNN architectures were proposed by [11] for

AED. Both models were fed with a large input field to

model entire audio events end-to-end. Architecture A

consists of 4 convolutional and 3 fully connected layers

and architecture B was made up of 6 convolutional and 3

fully connected layers. All the convolutional layers are

made up of 3⋅3 kernels. Taking the cue from automatic

speech recognition (ASR), the input sub-word unit’s length

is less than a few hundred milliseconds. By modelling the

sub-word units in several seconds long signal, this gives

the CNN an accuracy of 92.8%.

To improve the accuracy of the CNN model in detecting

avian flight calls of nocturnal bird migration from a ten-

hour recording, [12] proposed two noise adaptive

techniques that integrate short-term (60 milliseconds) and

long-term (30 minutes) context. The first technique uses

the per-channel energy normalization (PCEN) model in the

time-frequency domain. This model applies short-term

automatic gain control to every sub-band in the Mel-

frequency spectrogram. The second technique is to replace

the last dense layer in the network with a context-adaptive

neural network (CA-NN) layer. This architecture consists

of two branches: the main branch and the auxiliary branch.

The architecture of the main branch originated from the

state-of-the-art urban sound classification using Urban8K

datasets [13] and the species classification from clips of

avian flight calls using CLO-43SD dataset [14].

2.3 Binarized Neural Networks

Besides making CNNs shallower, other methods to reduce

computational complexity while maintaining acceptable

accuracy have been proposed. To reduce the number of

computations, most methods employ network pruning and

overparameterization. To reduce the number of weights,

channel-wise separable convolutions were proposed [15].

Weight sharing and low rank were also proposed [16].

Squeezenet [17] uses network topologies that are

specifically designed to reduce the number of parameters.

In 2015, Courbariaux et al. proposed BinaryConnect, a

method to train deep neural networks using binary weights

[18]. Only the weights are binarized in this approach, and

inputs can remain non-binarized (real). The first layer is

usually not completely binarized. The weights are binary,

but the inputs are real. The outputs are also real, but they

are converted to binary after activation before being used

by other layers. The first layer can also be made fully

binary by stochastic computing [19]. Additionally, the

thresholding is not performed on the last layer. Instead, the

output neuron with the maximum pop count value gives

the output of the neural network. Courbariaux et al.

expanded their work and in 2016, proposed Binary Neural

Networks (BNNs) [20]. BNNs use binary values (+1 or -1)

for both weights and activation during inference and

backpropagation training. This drastically reduces the

hardware requirements to operate the networks.

Multiplication is replaced with XNOR gates, eliminating

hardware multipliers. Accumulation, normally done by

adders, is replaced by simple bit counting (pop count).

Finally, the activation function is a simple thresholding or

sign function.

Two different binarization functions are used to convert

real values to binary [15]. The first function is

deterministic:

 𝑥" =
+1,				𝑖𝑓	𝑥 ≥ 0,						

−1				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (1)

Muhammad Mun’im Ahmad Zabidi et al. / ELEKTRIKA, 21(1), 2022, 48-53

 50

where x is the real-valued variable and xb is the binarized

variable (weight or activation). The second binarization

function is stochastic:

 𝑥" =
+1,			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦		𝑝 = 𝜎 𝑥 ,

−1			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝑝.								
 (2)

where	σ	is	the	“hard	sigmoid”	function:

σ 𝑥 = clip
𝑥 + 1

2
, 0,1 					

																			= max 0,	min 1,
EFG

H
 (3)

The deterministic binarization function is more commonly

used in practice as it is easier to implement.

Rastegari et al. proposed two variants of the BNN:

Binary Weight Networks and XNOR-Networks [21]. In a

standard Convolutional Neural Network, both the weights

and the inputs to the convolutional layers are real values

(Figure 2 (a)). For Binary Weight Networks, binarized

values were used in the weights of the neural network,

shown in the weights as ±1 (Figure 2 (b)). The inputs are

still real values. In the XNOR-net, both the inputs and the

weights are binarized (Figure 2 (c)). With binary weights,

memory usage is reduced by approximately 32x compared

to the single-precision filters. Using binarized weights,

multiplications can be replaced by additions and

subtractions. As a result, this gives 2x improvement in a

computation speed up. In the XNOR-Network, both

weights and the inputs to the convolutional network are

binary. This produces 58x speedup and 32x memory

savings.

(a)

(b)

(c)

Figure 2. Comparison of (a) standard and (b-c)

binarized neural networks.

The Binarized Convolutional Neural (BCNN) was

proposed as a bird sound detector by Song and Li [22].

Based on the architecture used by the winner of the

DCASE 2017 bird audio detection challenge, the authors

proposed two networks (CNNs and BCNNs) [5]. It was

tested on the DCASE 2018 dataset and it has 4

convolutional layers with 5⋅5 filters and 2 fully connected

layers. In the BCNN network, the Batch Normalization

layer was used to normalize the data and binarize the

activation layer before convolution operation. This

prevents the activation layer’s result from becoming a

single value after pooling. The activation function of the

BCNN uses the Sign(x) function with a gradient of zero.

To void having the gradient disappear during

backpropagation, Htanh(x) function was used as the

activation function.

3. EXPERIMENTS AND RESULTS

3.1 Dataset Preparation

The preparation of datasets starts by downloading data

files Xeno-Canto and Urban8k databases for positive and

negative datasets, respectively [13, 23]. A web page for a

sound file on Xeno-Canto contains metadata for the sound

as well as spectrogram of the sound as shown in Figure 3.

Multiple accesses were required to fetch the required data.

The Urban8K dataset, on the other hand, is a single 6GB

download that contains all files and a CSV containing

metadata. The data files are pre-processed using MATLAB

code to obtain 1000 files for each class. The complete

dataset preparation steps are depicted in Figure 4.

Due to the varying durations of the audio recordings, the

techniques for positive and negative datasets are different.

For positive datasets, most of the audio files downloaded

from Xeno-canto are long, in which there are time frames

where birds are detected and there are quiet passages. The

audio wave’s amplitude is first normalised between -1 and

+1. The audio files are segmented into many 1-second

timeframes without overlapping. Then, five clips with an

absolute amplitude of at least 0.5 were selected.

The audio files from Urban8k are not always 1-second

long. Prior to performing audio segmentation, files shorter

than two seconds are rejected. Then audio segmentation is

performed on the remaining audio files. Hence, 1000 files

for each class were obtained.

Figure 3. A sound file entry from the Xeno-Canto

repository.

Muhammad Mun’im Ahmad Zabidi et al. / ELEKTRIKA, 21(1), 2022, 48-53

 51

Figure 4. Stages in dataset preparation.

The audio files are then converted to the frequency

domain by 2048-point Fast Fourier Transform with 25%

overlap. These outputs were then converted into Mel-

Spectrogram using Librosa library coded in Python [25].

Even though MFCC was the preferred method of audio

feature extraction for traditional machine learning

algorithms, we opted to use Mel-spectrogram as it requires

fewer computations and works just as well as MFCC for

deep learning algorithms [26].

Next, the Mel-spectrograms were converted into binary

using OpenCV image binary thresholding library and were

reshaped to 32⋅32 images before being fed to the BNN for

training. The size of 32⋅32 was chosen as it produces

sufficiently accurate results within the limitations of the

Google Colab platform. Figure 5 shows the effect of

binarization on Mel-spectrograms.

 (a) (b)

Figure 5. The result of applying binarization: (a) source

Mel-spectrogram image, and (b) 32⋅32 binary image

3.2 Proposed BNN Model

Our proposed architecture is based on XNOR-Net as

shown in Table 1. The Binary Activation layer and Binary

Convolution layer are wrapped as a layer named

XNORnetConv. Other details about each layer are

provided below:

• Convolutional 2D layer — The input layer produces

a tensor of receptive fields

• Batch Normalization layer — Optimizes the

activation of the previous layer to mean activation

close to 0 and the standard activation close to 1.

• Binary Activation layer — Uses Sign activation

from TensorFlow to return -1 if x < 0, 1 if x ≥ 0.

• The Max-Pooling layer — Down-samples the input

representation by taking the maximum value over

the window defined by the pool_size for each

dimension along the features axis.

• Flatten layer — Transform 2D matrix of features

into a vector that can be fed into a fully connected

neural network classifier.

• Dropout layer — Randomly set the input units to 0

with a frequency of rate at each step during training

time to prevent over-fitting.

• Dense layer — Fully connected the output layer.

The BNN architecture is modelled with Keras/TensorFlow

for training and validation, running on the Colab platform.

The initial set of training parameters for one binary

convolutional layer XNOR-Net is as shown in Table 2.

Table 1. XNOR-Net parameters

Layer type Output shape Parameter

Input layer 32⋅32 0

Conv2D 30⋅30 448

Batch normalization 30⋅30 64

XNORnetConv 28⋅28 4617

Max Pooling 14⋅14 0

Flatten 6272 0

Dropout 6272 0

Dense 2 12546

Total trainable parameters 17,643

Table 2. XNOR-Net initial hyperparameters

Parameter Value

Binary Activation Sign Function

Epoch 30

Batch Size 32

Learning Rate 0.0003

Decay 0.001

3.3 Impact of Network Depth and Activation Function

The output of XNOR-Net varies with different numbers of

binary convolutional layers. The impact of varying the

number of layers is shown in Table 3.

To improve training accuracy, an additional activation

layer was introduced after Batch Normalization and before

the Binary Convolutional Layer. Table 4 shows that the

addition of the activation layer between the output of Batch

Normalization and at the input of Binary Convolutional

Layer does improve the training accuracy. By adding only

one TanH layer, the training and validation accuracy is the

highest at 98.27% and 95.56% with a validation loss of

12.01%. By adding a ReLU activation at the input of the

TanH activation layer, the training accuracy is reduced, but

Muhammad Mun’im Ahmad Zabidi et al. / ELEKTRIKA, 21(1), 2022, 48-53

 52

the difference between training and validation accuracies

has narrowed and hence giving the network a better

generalization performance. Hence, the TanH activation

function was chosen for the final model.

Table 3. Performance of XNOR-Net with different numbers of

Binary Convolutional Layers

 Number of hidden binary

convolutional layers

1 2 3

Trainable Params 17,643 16,628 23,805

Training Accuracy (%) 94 93 83

Validation Accuracy (%) 95 96 95

Training Loss (%) 14 19 36

Validation Loss (%) 2 1 19

Time (sec) 75.19 84.54 86.38

Memory resources (MByte) 234.33 243.20 248.55

Table 4. Performance of XNOR-Net with different types of

activation functions

Activation Layer None ReLU TanH
ReLU+

TanH

Training Accuracy

(%)

94.39 96.49 98.27 96.49

Validation Accuracy

(%)

95.06 94.32 95.56 93.58

Training Loss (%) 14.40 9.59 5.60 9.94

Validation Loss (%) 2.29 23.84 12.01 19.43

Time (sec) 75.19 85.46 88.94 86.49

Memory (MByte) 234.33 236.56 236.33 236.02

Table 5. Hyperparameters for the best model.

Parameter Value

Batch size 32

Learning Rate 0.0003

Validation dataset (%) 35

Decay 0.001

Training Accuracy (%) 96.06

Validation Accuracy (%) 94.08

Training Loss (%) 12.07

Validation Loss (%) 1.01

Time (sec) 247.1

Memory resources (MByte) 234.34

3.4 Optimization of XNOR-Net Hyperparameters

After determining the model structure, hyperparameters

such as batch size, learning rate, decay rate, and validation

datasets can be changed to optimize the model. To have

more data to be analyzed, 100 epochs was set for this run.

Table 5 shows the most suitable hyperparameters to

employ this variant to train 32⋅32 binary images. The

training and validation results are shown in Table 6.

4. CONCLUSION

When compared to typical convolutional neural networks,

the XNOR-Net binarized neural network allows

classification tasks to be completed with significantly

fewer logic operations. In this paper, a variant the XNOR-

Net binarized neural network was used in the bird acoustic

event detection task. For the positive and negative datasets,

audio files from the Xeno-Canto and UrbanSound8K

databases were employed, respectively. The audio files

were segmented into 1-second clips, which were then

converted into to 32⋅32 binarized Mel-Spectrograms for

use by the BNN.

Following testing, the XNOR-Net model with 7 layers

produced the best results. The hyperparameters were

optimized to achieve 96.06 percent training accuracy and

94.08 percent validation accuracy. Because the XNOR-net

only has two output classes, binary images with a size of

32⋅32 pixels are sufficient. When there are more output

classes, the input size may need to be raised for the

network to generalize more effectively.

The datasets utilized in this model are considered small

because the dropout rate must be adjusted to 50%. To

improve generalization, the size of the positive and

negative datasets could be increased. One way to enlarge

the training datasets is by data augmentation techniques

such as SpecAugment [26] which includes warping the

features, masking blocks of frequency channels, masking

blocks of the time step, and adding noise are used. The

work could also be advanced by transferring the BNNs to

embedded platforms such as microcontrollers and field-

programmable gate arrays (FPGAs).

Table 6. Training and validation of XNOR-Net by varying the model parameters.

Muhammad Mun’im Ahmad Zabidi et al. / ELEKTRIKA, 21(1), 2022, 48-53

 53

REFERENCES

[1] D. Hayhow, F. Burns, M. Eaton, N. Al Fulaij, T.

August, L. Babey, L. Bacon, C. Bingham, J. Boswell,

K. Boughey, et al., “State of nature 2016”, The State

of Nature partnership (2016).

[2] J. Shonfield and E. Bayne, “Autonomous recording

units in avian ecological research: current use and

future applications”, Avian Conservation and

Ecology 12 (2017).

[3] T. A. Rhinehart, L. M. Chronister, T. Devlin, and J.

Kitzes, “Acoustic localization of terrestrial wildlife:

Current practices and future opportunities”, Ecology

and Evolution 10, 6794-6818 (2020).

[4] H. Goeau, H. Glotin, W.-P. Vellinga, R. Planque, and

A. Joly, “LifeCLEF bird identification task 2016:

The arrival of deep learning”, in CLEF: Conference

and Labs of the Evaluation Forum, 1609 (2016) pp.

440-449.

[5] D. Stowell, M. D. Wood, H. Pamula, Y. Stylianou,

and H. Glotin, “Automatic acoustic detection of birds

through deep learning: the first bird audio detection

challenge”, Methods in Ecology and Evolution 10,

368-380 (2019).

[6] C. Bravo, R. Berríos, and T. Aide. “Species-specific

audio detection: a comparison of three template-

based detection algorithms using random forests”,

PeerJ Computer Science 3 (2017): e113.

[7] S. Fagerlund. “Bird species recognition using

support vector machines”, EURASIP Journal on

Advances in Signal Processing (2007).

[8] G. de Oliveira, T. M. Ventura, T. D. Ganchev, J. M.

de Figueiredo, O. Jahn, M. I. Marques, and K.-L.

Schuchmann, “Bird acoustic activity detection based

on morphological filtering of the spectrogram”,

Applied Acoustics 98, 34-42 (2015).

[9] D. Steven, and P. Mermelstein. “Comparison of

parametric representations for monosyllabic word

recognition in continuously spoken sentences”, IEEE

transactions on acoustics, speech, and signal

processing 28, no. 4 (1980): 357-366.

[10] I. Goodfellow, Y. Bengio, and A. Courville, “Deep

learning book”, MIT Press 521, 800 (2016).

[11] N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool,

“Deep convolutional neural networks and data

augmentation for acoustic event detection”, arXiv

preprint arXiv:1604.07160 (2016).

[12] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling,

and J. P. Bello, “Robust sound event detection in

bioacoustic sensor networks”, PLoS ONE 14,

e0214168 (2019).

[13] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and

taxonomy for urban sound research”, in Proceedings

of the 22nd ACM international conference on

Multimedia (2014) pp. 1041-1044.

[14] J. Salamon, J. P. Bello, A. Farnsworth, M. Robbins,

S. Keen, H. Klinck, and S. Kelling, “Towards the

automatic classification of avian flight calls for

bioacoustic monitoring”, PLoS ONE 11, 1-26

(2016).

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,

W. Wang, T. Weyand, M. Andreetto, and H. Adam,

“MobileNets: Efficient convolutional neural

networks for mobile vision applications”, CoRR

arXiv preprint arXiv:1704.04861 (2017).

[16] M. Jaderberg, A. Vedaldi, and A. Zisserman,

“Speeding up convolutional neural networks with

low rank expansions”, arXiv preprint

arXiv:1405.3866 (2014).

[17] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,

W. J. Dally, and K. Keutzer, “Squeezenet: AlexNet-

level accuracy with 50x fewer parameters and <0.5

MB model size”, arXiv preprint arXiv:1602.07360

(2016).

[18] M. Courbariaux, Y. Bengio, and J.-P. David,

“BinaryConnect: Training deep neural networks with

binary weights during propagations”, in Proceedings

of the 28th International Conference on Neural

Information Processing Systems-Volume 2 (2015)

pp. 3123-3131.

[19] T. Hirtzlin, B. Penkovsky, M. Bocquet, J.-O. Klein,

J.-M. Portal, and D. Querlioz, “Stochastic computing

for hardware implementation of binarized neural

networks”, IEEE Access 7, 76394-76403 (2019).

[20] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,

and Y. Bengio, “Binarized neural networks: Training

deep neural networks with weights and activations

constrained to +1 or -1”, arXiv preprint

arXiv:1602.02830 (2016).

[21] M. Rastegari, V. Ordonez, J. Redmon, and A.

Farhadi, “XNOR-Net: ImageNet classification using

binary convolutional neural networks”, in European

Conference on Computer Vision (Springer, 2016) pp.

525-542.

[22] J. Song and S. Li, “Bird sound detection based on

binarized convolutional neural networks”, in

Proceedings of the 6th Conference on Sound and

Music Technology (CSMT) (Springer, 2019) pp. 63-

71.

[23] W.-P. Vellinga and R. Planque, “The Xeno-canto

collection and its relation to sound recognition and

classification”, in CLEF (Working Notes) (2015).

[24] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M.

McVicar, E. Battenberg, and O. Nieto, “librosa:

Audio and music signal analysis in Python”, in

Proceedings of the 14th Python in Science

conference, Vol. 8 (Citeseer, 2015) pp. 18-25.

[25] H. Fayek. “Speech processing for machine learning:

Filter banks, mel-frequency cepstral coefficients

(mfccs) and what’s in-between”, URL:

https://haythamfayek.com/2016/04/21/speech-

processingfor-machine-learning. html (2016).

[26] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E.

D. Cubuk and Q. V. Le, “SpecAugment: A simple

data augmentation method for automatic speech

recognition”, arXiv preprint arXiv:1094.08779

(2019).

