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Abstract: By analysing the behavioural patterns of bird species in a specific region, researchers can predict future changes in 

the ecosystem. Many birds can be identified by their sounds, and autonomous recording units (ARUs) can capture real-time 

bird vocalisations. The recordings are analysed to see if there are any bird sounds. The sound of a bird can be used for further 

analysis, such as determining its species. Bird sound detection using Deep Neural Networks (DNNs) has been shown to 

outperform traditional methods. DNNs, however, necessitate a lot of storage and processing power. The use of Binarized 

Neural Networks (BNNs) is one of the most recent approaches to overcoming this limitation. In this paper, a bird sound 

detection architecture based on the XNOR-Net variant of BNN is used. Performance analysis of XNOR-Net in terms of the 

number of hidden layers used was performed, and the configuration with the highest accuracy was built. The system was tested 

using Xeno-Canto and UrbanSound8K datasets to represent bird and non-bird sounds, respectively. We achieved 96.06 per 

cent training accuracy and 94.08 per cent validation accuracy. We believe that BNNs are an effective method for detecting 

bird sounds. 
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1. INTRODUCTION 

Researchers can predict future changes in the environment, 

ecology, and population by analysing the behavioural 

patterns of bird species in a specific area [1]. Many birds 

can be identified by their sounds, and autonomous 

recording devices (ARUs) can capture bird vocalisations 

in real-time [2].  

The vast amounts of data generated by ARUs have 

outstripped humans’ ability to manually interpret it. As a 

result, a variety of automatic methods of bird detection and 

classification have emerged. The use of bioacoustics and 

machine learning now allows for the estimation of 

population densities and the location of the target species 

[3]. Bird detection and classification algorithms are 

proposed and evaluated in regular challenges such as 

BirdCLEF and DCASE. 

Deep neural networks (DNNs) have consistently 

outperformed traditional methods for bird detection since 

2016 [4,5]. However, DNNs require lots of storage and 

processing power. DNNs are especially difficult to use in 

low-cost embedded devices (e.g., Raspberry Pi) due to 

added power constraints. Binarized Neural Networks 

(BNNs) are one approach to addressing this deficiency. 

These are neural networks that use binary weights and 

activations rather than floating-point numbers. In this 

paper, we investigate the use of BNNs for the task of 

detecting bird sounds. 

2. BACKGROUND 

2.1 Bird Sound Detection 

Sound is a vibration that travels through the air and 

conveys information such as musicality, audibility or 

inaudibility, softness, or loudness, and so on. Sound has a 

diverse frequency content and temporal structure, resulting 

in a wide range of features. Acoustic bird detection and 

classification algorithms share many similarities with 

audio event detection (AED) and speech recognition 

algorithms. However, due to the variability of bird sounds 

according to species, sex, age, and season, detecting 

whether a bird sound is present in a sound recording 

presents unique challenges. 

A common method for pre-processing bird sounds 

before any kind of analysis is to apply the Short-Time 

Fourier Transform (STFT) to produce spectrograms, 

which are visual representations of sounds. Spectrograms 

can be used for feature extraction before applying 

traditional machine learning algorithms such as random 

forests [6] and support vector machines [7]. Bird detection 

can be improved by applying morphological filtering on 

the spectrograms [8] or by converting it to Mel-

spectrograms or Mel-frequency cepstral coefficients 

(MFCC) [9]. For DNNs, spectrogram generation becomes 

an essential step as deep learning requires images or 

image-like inputs. Figure 1 shows the call of the Asian koel 

((Eudynamys scolopaceus) in various forms. 
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Figure 1. Various representations of the sound of the 

Asian koel (Eudynamys scolopaceus): (a) time series (b) 

STFT spectrogram, (c) Mel spectrogram, and (d) Mel-

frequency cepstral coefficients (MFCC) 

 

2.2 Convolutional Neural Networks 

Many new intelligent applications rely on DNNs 

especially in the form of convolutional neural networks 

(CNNs) to achieve high accuracy in image recognition 

tasks [10]. CNNs detect bird acoustic events after sounds 

have been converted into spectrograms. 

A basic artificial neural network (ANN) consists of three 

main layer types: input layer, hidden layers, and output 

layer. Each node inside the three layers is known as a 

neuron. The operation of each neuron is the summation of 

input value multiplied with weight w. This operation is also 

known as multiply-accumulate (MAC). There is a bias 

offset b which serves the purpose of ensuring that there 

will be activation in the neuron even when all the input 

values are zero. The output is then computed using the 

sigmoid or hyperbolic tangent (TanH) activation function. 

When the number of layers exceeds one, the ANN is 

classified as a DNN. When the hidden layers use 

convolutions, the DNN transforms into a CNN. 

The performance of the CNNs comes at the expense of 

high memory and energy needs. This has hindered the use 

of CNNs on embedded and mobile devices with limited 

storage capacity and processing power. This has motivated 

TinyML, a field of study that explores machine learning 

models that can run on small, low-powered devices. 

Two small CNN architectures were proposed by [11] for 

AED. Both models were fed with a large input field to 

model entire audio events end-to-end. Architecture A 

consists of 4 convolutional and 3 fully connected layers 

and architecture B was made up of 6 convolutional and 3 

fully connected layers. All the convolutional layers are 

made up of 3⋅3 kernels. Taking the cue from automatic 

speech recognition (ASR), the input sub-word unit’s length 

is less than a few hundred milliseconds. By modelling the 

sub-word units in several seconds long signal, this gives 

the CNN an accuracy of 92.8%. 

To improve the accuracy of the CNN model in detecting 

avian flight calls of nocturnal bird migration from a ten-

hour recording, [12] proposed two noise adaptive 

techniques that integrate short-term (60 milliseconds) and 

long-term (30 minutes) context. The first technique uses 

the per-channel energy normalization (PCEN) model in the 

time-frequency domain. This model applies short-term 

automatic gain control to every sub-band in the Mel-

frequency spectrogram. The second technique is to replace 

the last dense layer in the network with a context-adaptive 

neural network (CA-NN) layer. This architecture consists 

of two branches: the main branch and the auxiliary branch. 

The architecture of the main branch originated from the 

state-of-the-art urban sound classification using Urban8K 

datasets [13] and the species classification from clips of 

avian flight calls using CLO-43SD dataset [14]. 

2.3 Binarized Neural Networks 

Besides making CNNs shallower, other methods to reduce 

computational complexity while maintaining acceptable 

accuracy have been proposed. To reduce the number of 

computations, most methods employ network pruning and 

overparameterization. To reduce the number of weights, 

channel-wise separable convolutions were proposed [15]. 

Weight sharing and low rank were also proposed [16]. 

Squeezenet [17] uses network topologies that are 

specifically designed to reduce the number of parameters.  

In 2015, Courbariaux et al. proposed BinaryConnect, a 

method to train deep neural networks using binary weights 

[18]. Only the weights are binarized in this approach, and 

inputs can remain non-binarized (real). The first layer is 

usually not completely binarized. The weights are binary, 

but the inputs are real. The outputs are also real, but they 

are converted to binary after activation before being used 

by other layers. The first layer can also be made fully 

binary by stochastic computing [19]. Additionally, the 

thresholding is not performed on the last layer. Instead, the 

output neuron with the maximum pop count value gives 

the output of the neural network. Courbariaux et al. 

expanded their work and in 2016, proposed Binary Neural 

Networks (BNNs) [20]. BNNs use binary values (+1 or -1) 

for both weights and activation during inference and 

backpropagation training. This drastically reduces the 

hardware requirements to operate the networks. 

Multiplication is replaced with XNOR gates, eliminating 

hardware multipliers. Accumulation, normally done by 

adders, is replaced by simple bit counting (pop count). 

Finally, the activation function is a simple thresholding or 

sign function. 

Two different binarization functions are used to convert 

real values to binary [15]. The first function is 

deterministic: 

 𝑥" =
+1,				𝑖𝑓	𝑥 ≥ 0,						

−1				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (1) 
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where x is the real-valued variable and xb is the binarized 

variable (weight or activation). The second binarization 

function is stochastic:  

 𝑥" =
+1,			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦		𝑝 = 𝜎 𝑥 ,

−1			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝑝.								
 (2) 

where	σ	is	the	“hard	sigmoid”	function: 

σ 𝑥 = clip
𝑥 + 1

2
, 0,1 					 

																			= max 0,	min 1,
EFG

H
  (3) 

 

The deterministic binarization function is more commonly 

used in practice as it is easier to implement. 

Rastegari et al. proposed two variants of the BNN: 

Binary Weight Networks and XNOR-Networks [21]. In a 

standard Convolutional Neural Network, both the weights 

and the inputs to the convolutional layers are real values 

(Figure 2 (a)). For Binary Weight Networks, binarized 

values were used in the weights of the neural network, 

shown in the weights as ±1 (Figure 2 (b)). The inputs are 

still real values. In the XNOR-net, both the inputs and the 

weights are binarized (Figure 2 (c)). With binary weights, 

memory usage is reduced by approximately 32x compared 

to the single-precision filters. Using binarized weights, 

multiplications can be replaced by additions and 

subtractions. As a result, this gives 2x improvement in a 

computation speed up. In the XNOR-Network, both 

weights and the inputs to the convolutional network are 

binary. This produces 58x speedup and 32x memory 

savings. 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Comparison of (a) standard and (b-c) 

binarized neural networks. 

 

The Binarized Convolutional Neural (BCNN) was 

proposed as a bird sound detector by Song and Li [22]. 

Based on the architecture used by the winner of the 

DCASE 2017 bird audio detection challenge, the authors 

proposed two networks (CNNs and BCNNs) [5]. It was 

tested on the DCASE 2018 dataset and it has 4 

convolutional layers with 5⋅5 filters and 2 fully connected 

layers. In the BCNN network, the Batch Normalization 

layer was used to normalize the data and binarize the 

activation layer before convolution operation. This 

prevents the activation layer’s result from becoming a 

single value after pooling. The activation function of the 

BCNN uses the Sign(x) function with a gradient of zero. 

To void having the gradient disappear during 

backpropagation, Htanh(x) function was used as the 

activation function. 

3. EXPERIMENTS AND RESULTS 

3.1 Dataset Preparation 

The preparation of datasets starts by downloading data 

files Xeno-Canto and Urban8k databases for positive and 

negative datasets, respectively [13, 23]. A web page for a 

sound file on Xeno-Canto contains metadata for the sound 

as well as spectrogram of the sound as shown in Figure 3. 

Multiple accesses were required to fetch the required data. 

The Urban8K dataset, on the other hand, is a single 6GB 

download that contains all files and a CSV containing 

metadata. The data files are pre-processed using MATLAB 

code to obtain 1000 files for each class. The complete 

dataset preparation steps are depicted in Figure 4. 

Due to the varying durations of the audio recordings, the 

techniques for positive and negative datasets are different. 

For positive datasets, most of the audio files downloaded 

from Xeno-canto are long, in which there are time frames 

where birds are detected and there are quiet passages. The 

audio wave’s amplitude is first normalised between -1 and 

+1. The audio files are segmented into many 1-second 

timeframes without overlapping. Then, five clips with an 

absolute amplitude of at least 0.5 were selected. 

The audio files from Urban8k are not always 1-second 

long. Prior to performing audio segmentation, files shorter 

than two seconds are rejected. Then audio segmentation is 

performed on the remaining audio files. Hence, 1000 files 

for each class were obtained. 

 

 
 

Figure 3. A sound file entry from the Xeno-Canto 

repository. 
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Figure 4. Stages in dataset preparation. 

 

The audio files are then converted to the frequency 

domain by 2048-point Fast Fourier Transform with 25% 

overlap. These outputs were then converted into Mel-

Spectrogram using Librosa library coded in Python [25]. 

Even though MFCC was the preferred method of audio 

feature extraction for traditional machine learning 

algorithms, we opted to use Mel-spectrogram as it requires 

fewer computations and works just as well as MFCC for 

deep learning algorithms [26]. 

Next, the Mel-spectrograms were converted into binary 

using OpenCV image binary thresholding library and were 

reshaped to 32⋅32 images before being fed to the BNN for 

training. The size of 32⋅32 was chosen as it produces 

sufficiently accurate results within the limitations of the 

Google Colab platform. Figure 5 shows the effect of 

binarization on Mel-spectrograms. 

 

        
         (a)                                         (b) 

 

Figure 5. The result of applying binarization: (a) source 

Mel-spectrogram image, and (b) 32⋅32 binary image 

 

3.2 Proposed BNN Model 

Our proposed architecture is based on XNOR-Net as 

shown in Table 1. The Binary Activation layer and Binary 

Convolution layer are wrapped as a layer named 

XNORnetConv. Other details about each layer are 

provided below: 

 

• Convolutional 2D layer — The input layer produces 

a tensor of receptive fields 

• Batch Normalization layer — Optimizes the 

activation of the previous layer to mean activation 

close to 0 and the standard activation close to 1. 

• Binary Activation layer — Uses Sign activation 

from TensorFlow to return -1 if x < 0, 1 if x ≥ 0. 

• The Max-Pooling layer — Down-samples the input 

representation by taking the maximum value over 

the window defined by the pool_size for each 

dimension along the features axis. 

• Flatten layer — Transform 2D matrix of features 

into a vector that can be fed into a fully connected 

neural network classifier. 

• Dropout layer — Randomly set the input units to 0 

with a frequency of rate at each step during training 

time to prevent over-fitting. 

• Dense layer — Fully connected the output layer. 

 

The BNN architecture is modelled with Keras/TensorFlow 

for training and validation, running on the Colab platform. 

The initial set of training parameters for one binary 

convolutional layer XNOR-Net is as shown in Table 2. 

 

Table 1. XNOR-Net parameters 

 

Layer type Output shape Parameter 

Input layer 32⋅32 0 

Conv2D 30⋅30 448 

Batch normalization 30⋅30 64 

XNORnetConv 28⋅28 4617 

Max Pooling 14⋅14 0 

Flatten 6272 0 

Dropout 6272 0 

Dense 2 12546 

Total trainable parameters 17,643  

 

 

Table 2. XNOR-Net initial hyperparameters 

 

Parameter Value 

Binary Activation Sign Function 

Epoch 30 

Batch Size 32 

Learning Rate 0.0003 

Decay 0.001 

 

 

3.3 Impact of Network Depth and Activation Function 

The output of XNOR-Net varies with different numbers of 

binary convolutional layers. The impact of varying the 

number of layers is shown in Table 3. 

To improve training accuracy, an additional activation 

layer was introduced after Batch Normalization and before 

the Binary Convolutional Layer. Table 4 shows that the 

addition of the activation layer between the output of Batch 

Normalization and at the input of Binary Convolutional 

Layer does improve the training accuracy. By adding only 

one TanH layer, the training and validation accuracy is the 

highest at 98.27% and 95.56% with a validation loss of 

12.01%. By adding a ReLU activation at the input of the 

TanH activation layer, the training accuracy is reduced, but 
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the difference between training and validation accuracies 

has narrowed and hence giving the network a better 

generalization performance. Hence, the TanH activation 

function was chosen for the final model. 

 

Table 3. Performance of XNOR-Net with different numbers of 

Binary Convolutional Layers 

 

 Number of hidden binary 

convolutional layers 

1 2 3 

Trainable Params 17,643 16,628 23,805 

Training Accuracy (%) 94 93 83 

Validation Accuracy (%) 95 96 95 

Training Loss (%) 14 19 36 

Validation Loss (%) 2 1 19 

Time (sec) 75.19 84.54 86.38 

Memory resources (MByte) 234.33 243.20 248.55 

 

Table 4. Performance of XNOR-Net with different types of 

activation functions 

 

Activation Layer None ReLU TanH 
ReLU+ 

TanH 

Training Accuracy 

(%) 

94.39 96.49 98.27 96.49 

Validation Accuracy 

(%) 

95.06 94.32 95.56 93.58 

Training Loss (%) 14.40 9.59 5.60 9.94 

Validation Loss (%) 2.29 23.84 12.01 19.43 

Time (sec) 75.19 85.46 88.94 86.49 

Memory (MByte) 234.33 236.56 236.33 236.02 

 

Table 5. Hyperparameters for the best model. 

 

Parameter Value 

Batch size 32 

Learning Rate 0.0003 

Validation dataset (%) 35 

Decay 0.001 

Training Accuracy (%) 96.06 

Validation Accuracy (%) 94.08 

Training Loss (%) 12.07 

Validation Loss (%) 1.01 

Time (sec) 247.1 

Memory resources (MByte) 234.34 

3.4 Optimization of XNOR-Net Hyperparameters 

After determining the model structure, hyperparameters 

such as batch size, learning rate, decay rate, and validation 

datasets can be changed to optimize the model. To have 

more data to be analyzed, 100 epochs was set for this run. 

Table 5 shows the most suitable hyperparameters to 

employ this variant to train 32⋅32 binary images. The 

training and validation results are shown in Table 6. 

 

4. CONCLUSION 

When compared to typical convolutional neural networks, 

the XNOR-Net binarized neural network allows 

classification tasks to be completed with significantly 

fewer logic operations. In this paper, a variant the XNOR-

Net binarized neural network was used in the bird acoustic 

event detection task. For the positive and negative datasets, 

audio files from the Xeno-Canto and UrbanSound8K 

databases were employed, respectively. The audio files 

were segmented into 1-second clips, which were then 

converted into to 32⋅32 binarized Mel-Spectrograms for 

use by the BNN. 

Following testing, the XNOR-Net model with 7 layers 

produced the best results. The hyperparameters were 

optimized to achieve 96.06 percent training accuracy and 

94.08 percent validation accuracy. Because the XNOR-net 

only has two output classes, binary images with a size of 

32⋅32 pixels are sufficient. When there are more output 

classes, the input size may need to be raised for the 

network to generalize more effectively. 

The datasets utilized in this model are considered small 

because the dropout rate must be adjusted to 50%. To 

improve generalization, the size of the positive and 

negative datasets could be increased. One way to enlarge 

the training datasets is by data augmentation techniques 

such as SpecAugment [26] which includes warping the 

features, masking blocks of frequency channels, masking 

blocks of the time step, and adding noise are used. The 

work could also be advanced by transferring the BNNs to 

embedded platforms such as microcontrollers and field-

programmable gate arrays (FPGAs). 

 

 

 

 

Table 6. Training and validation of XNOR-Net by varying the model parameters. 
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