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Abstract: Utilization of distributed generation (DG) in the distribution network has become trending ever since it has been 
introduced with proven benefits. DG plays a significant role in improving the quality and quantity as well as the efficiency of 
the power transmission and distribution system. By allowing smaller generating units to operate in parallel with the main grid, 
a continuous reliable power supply with lower power loss and higher power output can be achieved. However, improper 
placement and inappropriate sizing of DG leads to a moderate level performance in terms of power loss and voltage profile. 
Limited studies have been conducted on mitigating these problems in order to maximize the benefits from DG’s application. 
To solve this problem, a research is proposed which mainly aims in determining the location and size of DG as well as 
improving the voltage profile and efficiency of the distribution system significantly. A metaheuristic algorithm called Multi-
Objective Particle Swarm Optimization (MOPSO) method is used to simultaneously determine the optimal size and location 
of DG. To assist the proposed method, Pareto analysis is incorporated to handle conflicting objectives. This method is then 
tested on the IEEE 14-bus and 33-bus distribution systems under two different conditions which is before and after 
optimization. The percentage of power loss reduction is calculated and the voltage profile is drawn to compare the output of 
both conditions. Evaluations from the tests have proven that by using the Pareto-Based MOPSO method, the most optimal size 
and location of DG in producing an improved voltage profile with lower power loss is identified. 
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1. INTRODUCTION 
Long transmission line in the power system operation 
causes the power losses consisting of real and reactive 
powers to be as high as 20% from the total power 
transmitted. If considered separately, distribution system 
tends to have higher losses as compared to transmission 
system due to its R/X ratio, which is the ratio of the system 
reactance to the system resistance when short circuit is 
applied at any point in the power circuit. These losses 
derange the voltage profile of the distribution system, 
causing the bus voltages to run out of an acceptable level 
after being subjected to any disturbance. 

Minimization of these losses is significant for the power 
utilities to provide a reliable and quality power supply. In 
order to reduce the power losses and improve the voltage 
profile of the distribution system, the concept of 
Distributed Generation (DG) is introduced in which 
smaller generating units are allowed to operate in parallel 
with the main grid to produce electricity. It also acts as a 
replacement for the conventional power plants such as the 

thermal and nuclear power plants that have large impacts 
on the environment and are responsible for the Green 
House Effect. 

There are many advantages of implementing DG in the 
power distribution system. Some of them includes smaller 
size, lower operational and maintenance cost, better 
reliability and lesser environmental effects, especially if 
non-conventional generators are used. However, 
inappropriate sizing and improper placement of DG leads 
to a moderate level performance. One of the most effective 
and convenient way to improve the performance of DG is 
by placing it in an optimum size and location. 

Therefore, this study utilizes a good optimization 
technique along with considering better multi-objective 
functions and effect of other constraints to improve the 
sizing and location optimization as well as providing a 
better performance of DG. Also, this research focuses on 
improving the voltage profile and reducing the power loss 
of the distribution system by determining the optimal size 
and location of DG using Pareto-Based Multi-Objective 
Particle Swarm Optimization (MOPSO) method. 
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The rest of this paper is organized as the following. A 
review based on previous researches related to the study is 
presented in Section 2. Section 3 explains the theoretical 
background whereas Section 4 produces the research 
methodology. This section covers the problem 
formulation, load flow technique and optimization method 
used in this research. Section 5 provides the simulation 
results obtained from the tests and discusses the outcome. 
Lastly, Section 6 proposes a conclusion to this effort. 

2. LITERATURE REVIEW 
Recently, researchers are experimenting on introducing 
DG into power system operation to reduce power losses, 
increase efficiency, reduce line current, enhance voltage 
profile, improve system stability and raise the load 
performance. Hence, a variety of algorithms and 
optimization strategies including heuristic and 
metaheuristic techniques are applied. In this section, some 
researches related to the performance improvement of DG 
are studied. 

Several researches have used the Genetic Algorithm 
(GA) which is a metaheuristic algorithm that depends on 
biologically inspired operators including mutation, 
crossover and selection to develop high-quality solutions 
for optimization and search problems. In [1], [2] and [4], 
GA is combined with different load flow techniques such 
as Power Flow (PF), Newton Raphson (NR) and topology-
based load flow. As for [3] and [5], Neuro-Genetic 
algorithm and Micro-Genetic algorithm are used 
respectively. 

Besides, researchers have also implemented nature-
inspired algorithms such as Bat Algorithm (BA), Artificial 
Bee Colony Algorithm (ABC) and Particle Swarm 
Optimization (PSO) to find the best size and location of 
DG. In [6], [8] and [9], the multi-objective approach of 
Shuffled BA, Pareto Optimal BA and Fuzzy-based BA are 
used respectively whereas in [7], the Modified Discrete 
BA is implemented. Meanwhile, [10] and [11] have 
utilized ABC as the optimization method without any 
improvement followed by [12] and [13] with multi-
objective ABC and modified ABC. 

As for [14], PSO is combined with Voltage Stability 
Index (VSI) whereas in [17], weight-improved PSO is 
used. [15] has proposed the multi-objective PSO along 
with NR, which is then improved by [16] through modified 
multi-objective PSO with NR. Lastly, the Artificial 
Immune System (AIS) is used in [18] and [19] under 
different conditions. [18] combined the clonal selection 
principle with PSO for a novel approach whereas [19] 
combined the clonal selection principle with Optimal 
Power Flow (OPF) to optimize the performance of DG. 

In summary, most of the methods addressed in the 
literature have only evaluated single objective 
optimization, namely the minimization of power losses or 
the enhancement of the voltage profile but not both. As for 
those researches that have used multi-objective approach, 
it is still in the initial stages and requires improved 
objective functions as well as considering the effects of 
additional constraints for better improvement. 

As a result, a multi-objective function is applied in this 
study whereby it analyses not only the power losses but 

also the voltage profile of the system. Also, a strong 
optimization algorithm called PSO is chosen as it 
demonstrates great problem-solving capacity due to its 
better efficiency in locating global optima as well as its 
rapid convergence. Despite the fact that alternative 
approaches appear to be fairly competitive, they are not 
chosen due to their inadequacy for the proposed system. 
Hence, the logic of this work is to introduce the Pareto 
analysis to the MOPSO algorithm in order to enhance the 
system’s performance. 

3. THEORETICAL BACKGROUND 
For maximum improvement in the performance of DG, it 
has to be incorporated in an optimal size and location. In 
order to develop this system, the fundamental knowledge 
of DG, Pareto-based multi-objective approach and PSO 
method is presented in this section. 

3.1 Distributed Generation (DG) 
DG is defined as a local generation of electricity that is 
usually situated near the end-users. They operate in 
parallel with the central grid and generate power from 
renewable or non-renewable resources at a near distant. 
Some common examples of systems that uses renewable 
resources are the wind turbines, hydropower and solar 
photovoltaic panels. As for the non-renewable resources, 
fuel cells fired by natural gas and reciprocating combustion 
engine fueled by oil are used in producing power supply 
for the end-users. 

As the DG transmits power over a short distance, the 
amount of losses released due to the inefficiency of 
transmission line is reduced greatly. This allows an 
improvement in the efficiency of the distribution system as 
well as a reduction in the carbon pollution. Besides, by 
generating additional electricity, higher load demand can 
be fulfilled while curtailing the requirement for new 
transmission investments. DG also reduces the fossil fuel 
consumption, providing cleaner generation of electricity. 

DG can be implemented in both residential and 
commercial or industrial sectors. In residential sectors, it 
usually serves as a single structure such as the solar panel 
installed on the rooftop of a house. In commercial or 
industrial sectors, it normally becomes a part of the 
microgrid, a small network attached with the central grid 
that uses local resources to generate electricity and is able 
to detach and function independently on certain 
circumstances. Such example of application is the backup 
generators situated in an industrial facility. 

3.2 Pareto-Based Multi-Objective Approach 
The multi-objective optimization is an approach that 
involves more than one objective function to be optimized. 
The final outcome or answer to the optimization will be the 
set of solutions that define the best trade-off between the 
competing objectives. In single objective optimization, a 
solution’s superiority is easily determined by comparing 
its objective function values. However, in multi-objective 
approach, the goodness of a solution is determined by its 
dominance. 

For an instance, X1 dominates X2 if the solution of X1 
is no worse than that of X2 in all objectives or if the 
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solution of X1 is strictly better than that of X2 in at least 
one objective. The non-dominated solutions are optimal as 
no other solutions in the design space are better than them 
or can ‘dominate’ them when all the objectives are 
considered. These set of solutions are called Pareto optimal 
solutions whereby all the other solutions are ‘dominated’ 
by them. The set of Pareto optimal solutions is generated 
to ease the process of choosing the best solution out of the 
set of alternatives. 

3.3 Particle Swarm Optimization (PSO) 
As for PSO, it is a metaheuristic algorithm proposed by 
Kennedy and Eberhart, inspired by the collective 
intelligence of swarms of biological populations such as 
flock of birds, colonies of insects, schools of fish and herds 
of animals. This method is a population-based search 
method where by it moves from a set of points (particles’ 
positions) to another set of points with likely improvement 
in one iteration (move) as explained by the following. 

A swarm of birds flying over a place must find a point 
with maximum survival conditions to land (more food and 
less predators). To find the best point, each bird flies 
searching and assessing different points at the same time. 
Each member of the swarm balances its individual and 
swarm knowledge experience by sharing information 
among themselves. All the birds of a swarm will know the 
best point when it is found by one of the swarm’s members. 
The movement of the flock happens once the best place to 
land is defined and all the flock lands at once. 

4. PROPOSED SOLUTION  
In this section, the problem formulation of the research is 
discussed followed by the load flow technique. Then, the 
step-by-step procedure of the optimization method is also 
included. 

4.1 Problem Formulation 
The proposed algorithm's aim is to minimize the objective 
functions of the system and find the best size and location 
for DG implementation. Two main elements involved in 
establishing the formula are power loss and voltage 
deviation. Mathematically, the objective functions are 
written as (1) and (2) subjected to the equality constraints 
(3) and (4) and inequality constraints (5), (6), (7) and (8). 
 

min		f& x = min g*+(V*. + V+. − 2V*V+cosθ*+
*,+)∈9

(1)	

min		f. x = min
V* − V*;<=>

V*?@A − V*?*B

.
C

*DE

(2)	

PGH* − PI* = V* V+(G*+cosθ*+ + B*+sinθ*+

C

+D&

(3)	

QGH* − QI* = V* V+(G*+sinθ*+ − B*+cosθ*+

C

+D&

(4)	

PGH*?*B ≤ PGH* ≤ PGH*?@A (5)	

QGH*?*B ≤ QGH* ≤ QGH*?@A (6)	

V*?*B ≤ V* ≤ V*?@A (7)	

S*+?*B ≤ S*+ ≤ S*+?@A (8)	

4.2 Newton-Raphson (NR) Load Flow 
The NR load flow method is used in this study to perform 
the load flow analysis. This method is begined with the 
formation of a Y bus. Then, for i = 2, 3,.....n, the initial 
value of the bus voltages |Vi|0 and phase angle δi0 for PV 
buses are considered to be equal to the slack bus quantities, 
|V1| = 1.0 and δ1 = 0⁰ . 

After that, for each load bus, Pi, Qi, ΔPi and ΔQi are 
calculated. The exact value of Qi for PV buses is unknown, 
but its limitations are known. ΔPi is calculated only when 
the calculated value of Qi falls within the limit. If the 
computed value of Qi exceeds the limit, a suitable limit is 
set and ΔQi is determined by subtracting the calculated 
value of Qi from the suitable limit. 

The bus under consideration is now classified as a load 
bus. The elements of the Jacobian matrix are calculated 
and the values of Δ|Vi| and Δδ are obtained. The voltage 
magnitude and phase angle at all load buses are modified 
using the values of Δδi and Δ|Vi| before commencing the 
next iteration cycle, which is repeated until all planned 
errors for all load buses are within a defined tolerance. 

4.3 Pareto-Based MOPSO 
The optimization process is started by reading the network 
data consisting of the line and load data. Then, the position 
and velocity of the population is initialized based on the 
control parameters specified such as the inertia weighting 
(w) and acceleration constant (C1 and C2). This step is 
then followed by applying the objective functions, namely 
the active power loss minimization and voltage deviation 
reduction before proceeding to the process of each particle. 

In this sub-process, the fitness value of each particle is 
calculated by running the Newton-Raphson load flow 
analysis. Then, the penalty function is called to apply 
equality and inequality constraints before generating the 
augmented function. Based on the fitness value of the 
augmented function, the MOPSO algorithm is run and the 
velocity, Pbest and Gbest for each particle is determined. 
Then, the best fitness value, Pbest is compared with the 
best fitness value achieved so far by any particle in the 
population, Gbest. If Pbest is found to be higher than 
Gbest, Gbest is then updated to the new value. 

This process is repeated until the termination criteria is 
met which is when the maximum iteration is reached. Until 
the termination criteria is met, this sub-process is repeated 
by increasing the iteration count and updating the swarm 
position. Finally, the results display the location and size 
of DG that contributes to the lowest power loss and 
improved voltage profile. Figure 1 explains the overall 
operational flowchart of the proposed system. 
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Figure 1. Operational flowchart of the proposed system 

5. RESULTS AND DISCUSSION 
In order to simulate the proposed solution, Matlab R2020a 
programming software is used on a 4 GB, 64-bit I5 Asus 
Laptop. To verify the effectiveness of the proposed work, 
it is tested on the IEEE 14-bus and 33-bus distribution 
systems under two different conditions, namely without 
and with DG implementation using Pareto-Based MOPSO. 
The results obtained are presented in this section. 

5.1 IEEE 14-Bus Distribution System 
Table 1 is the power flow results without DG and when 
DG is implemented using Pareto-Based MOPSO. The total 
active power losses for the first case is 13.3933 MW, 
which is then reduced by 63% to 4.9599 MW when DGs 
are placed at bus 7, 13 and 9 with a size of 59.888, 60.0892 
and 36.6429 MW respectively. Meanwhile, the voltage 
deviation for this test system is reduced by 5% from 0.9754 

before optimization to 0.9244 after optimization. 

Table 1. Power flow result for 14-bus system before and 
after optimization 

 Without 
optimization 

With optimization 
using Pareto-

Based MOPSO 

Voltage 
deviation 0.9754 0.9244 

Power 
losses 13.3933 4.9599 

 
Figure 2 portrays the distribution of Pareto optimal 

solution in (f1, f2) plane for the IEEE 14-bus distribution 
system. Referring to Figure 3, the plot clearly shows an 
obvious improvement in the voltage profile of the test 
system when DG is implemented using the Pareto-Based 
MOPSO.  

 

Figure 2. Pareto optimal solutions for 14-bus system 

 

Figure 3. Voltage profile comparison for 14-bus system 

5.2 IEEE 33-Bus Distribution System 
For this test system, the power flow results without and 
with DG implementation is as shown in Table 2. The total 
active power losses for the non-optimized case is 0.2027 
MW, which is then decreased by 80% to 0.0414 MW when 
DGs with sizes of 0.48, 1.4959 and 1.5003 MW are 
installed at bus 13, 30 and 24 respectively. In the 

Start

Read the line & load data

Specify the control parameters

Initialize the position &          
velocity of population

Apply the objective functions

Run the load flow analysis & 
calculate the fitness value

Call the penalty function to apply 
constraints & generate the 

augmented function

Run MOPSO algorithm based        
on the fitness value of the       

augmented function

Calculate the velocity,                    
Pbest & Gbest

Compare Pbest with Gbest. If Pbest > 
Gbest, then update Gbest = Pbest

Maximum 
iteration 
reached?

Display results: size &            
location of DG

End

No 

Yes 

Increase 
iteration 

count 

Update swarm 
position using 
x(t+1) = x(t) + 

v(t) 



Saifulnizam Abd. Khalid et al. / ELEKTRIKA, 21(1), 2022, 35-41 

 39 

meantime, the voltage deviation for this test system is 
lowered by 99%, from 2.9274 prior to optimization to 
0.0151 after optimization. 

Table 2. Power flow result for 33-bus system before and 
after optimization 

 Without 
optimization 

With optimization 
using Pareto-

Based MOPSO 

Voltage 
deviation 2.9274 0.0151 

Power 
losses 0.2027 0.0414 

 
The distribution of the Pareto optimum solutions on the 

(f1, f2) plane for the IEEE 33-bus distribution system is 
shown in Figure 4. When DG is applied using the Pareto-
Based MOPSO, the voltage profile of the test system 
dramatically improves as depicted in Figure 5. 

 

Figure 4. Pareto optimal solutions for 33-bus system 

 

Figure 5. Voltage profile comparison for 33-bus system 

6. CONCLUSION 
In this paper, an alternative method for the improvement 
of power system operation by determining the sitting and 
sizing of DG using Pareto-based MOPSO is implemented. 
It estimates the size and location of DG for better 

performance by using improved objective functions and 
considering effect of other constraints. When tested using 
the IEEE 14-bus and 33-bus distribution systems, the DG 
works at its best when it is placed at the optimized size and 
location. The study also proves an obvious improvement 
in the voltage profile and the power loss which is reduced 
by 5% and 63% for IEEE 14-bus distribution system as 
well as 99% and 80% for IEEE 33-bus distribution system 
when DG is implemented using the Pareto-based MOPSO. 
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APPENDIX 

Table 3. Line data of IEEE 14-bus distribution system 

Line 
no 

From 
bus 

To 
bus 

Line Impedance (p.u) 
Resistance Reactance 

1 1 2 0.01938 0.05917 
2 1 5 0.05403 0.22304 
3 2 3 0.04699 0.19797 
4 2 4 0.05811 0.17632 
5 2 5 0.05695 0.17388 
6 3 4 0.06701 0.17103 
7 4 5 0.01335 0.04211 
8 4 7 0 0.20912 
9 4 9 0 0.55618 

10 5 6 0 0.25202 
11 6 11 0.09498 0.19890 
12 6 12 0.12291 0.25581 
13 6 13 0.06615 0.13027 
14 7 8 0 0.17615 
15 7 9 0 0.11001 
16 9 10 0.03181 0.08450 
17 9 14 0.12711 0.27038 
18 10 11 0.08205 0.19207 
19 12 13 0.22092 0.19988 
20 13 14 0.17093 0.34802 

Table 4. Load data of IEEE 14-bus distribution system 

Bus 
no 

Load 

Real power 
(MW) 

Reactive power 
(MVAR) 

1 0 0 
2 21.7 12.7 
3 94.2 19.1 
4 47.8 -3.9 
5 7.6 1.6 
6 11.2 7.5 
7 0 0 
8 0 0 
9 29.5 16.6 

10 9.0 5.8 
11 3.5 1.8 
12 6.1 1.6 
13 13.8 5.8 
14 14.9 5.0 
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Table 5. Line data of IEEE 33-bus distribution system 

Line 
no 

From 
bus 

To 
bus 

Line Impedance (p.u) 
Resistance Reactance 

1 1 2 0.0922 0.0470 
2 2 3 0.4930 0.2511 
3 3 4 0.3660 0.1864 
4 4 5 0.3811 0.1941 
5 5 6 0.8190 0.7070 
6 6 7 0.1872 0.6188 
7 7 8 1.7114 1.2351 
8 8 9 1.0300 0.7400 
9 9 10 1.0440 0.7400 

10 10 11 0.1966 0.0650 
11 11 12 0.3744 0.1238 
12 12 13 1.4680 1.1550 
13 13 14 0.5416 0.7129 
14 14 15 0.5910 0.5260 
15 15 16 0.7463 0.5450 
16 16 17 1.2890 1.7210 
17 17 18 0.7320 0.5740 
18 2 19 0.1640 0.1565 
19 19 20 1.5042 1.3554 
20 20 21 0.4095 0.4784 
21 21 22 0.7089 0.9373 
22 3 23 0.4512 0.3083 
23 23 24 0.8980 0.7091 
24 24 25 0.8960 0.7011 
25 6 26 0.2030 0.1034 
26 26 27 0.2842 0.1447 
27 27 28 1.0590 0.9337 
28 28 29 0.8042 0.7006 
29 29 30 0.5075 0.2585 
30 30 31 0.9744 0.9630 
31 31 32 0.3105 0.3619 
32 32 33 0.3410 0.5302 

 

 

 

 

 

 

 

Table 6. Load data of IEEE 33-bus distribution system 

Bus 
no 

Load 

Real power 
(MW) 

Reactive 
power 

(MVAR) 
1 0 0 
2 0.100 0.060 
3 0.090 0.040 
4 0.120 0.080 
5 0.060 0.030 
6 0.060 0.020 
7 0.200 0.100 
8 0.200 0.100 
9 0.060 0.020 

10 0.060 0.020 
11 0.045 0.030 
12 0.060 0.035 
13 0.060 0.035 
14 0.120 0.080 
15 0.060 0.010 
16 0.060 0.020 
17 0.060 0.020 
18 0.090 0.040 
19 0.090 0.040 
20 0.090 0.040 
21 0.090 0.040 
22 0.090 0.040 
23 0.090 0.050 
24 0.420 0.200 
25 0.420 0.200 
26 0.060 0.025 
27 0.060 0.025 
28 0.060 0.020 
29 0.120 0.070 
30 0.200 0.600 
31 0.150 0.070 
32 0.210 0.100 
33 0.060 0.040 

 


